From Bulk Gallium Nitride Material to Vertical GaN Devices

Size: px
Start display at page:

Download "From Bulk Gallium Nitride Material to Vertical GaN Devices"

Transcription

1 From Bulk Gallium Nitride Material to Vertical GaN Devices Thomas Mikolajick 1,2, Stefan Schmult 2, Rico Hentschel 1, Patrick Hofmann 1, and Andre Wachowiak 1 1 NaMLab ggmbh 2 Chair of Nanoelectronic Materials, TU Dresden

2 Outline o Introduction GaN o GaN HVPE material Doping o GaN Vertical Device Trench gate MOSFET

3 Introduction GaN

4 c-axis GaN material properties III-V compound semiconductor Hexagonal crystal lattice Direct semiconductor Wide bandgap ~3.4 ev high breakdown E-field strength High mobility 2DEG at GaN/AlGaN Ga-face Ga N heterostructure interface EVBM ECBM p-gan MQW n-gan

5 Application of GaN Semiconductors OPTO - ELECTRONICS ELECTRONICS Laser Diodes LED Power Devices RF electronic systems industry projection car lighting power supply power management power amplifier RF communications PV converter electric vehicle hybrid electric vehicle

6 GaN for power devices Properties Si / SiC / GaN Melting point [x 1000 C] Area specific R on vs. Breakdown Voltage Stephen Sque (NXP) ESSDERC tutorial (2013) Band gap [ev] Electron sat. velocity [x 10 7 cm/s] Breakdown field E crit [MV/cm] GaN Levers: Electron mobility [x 1000 cm 2 /Vs] Superior bulk properties for power applications: E crit, µ, E gap Higher temperature operation possible HEMT device concept Advantages of GaN Low on-state resistance at given voltage rating - compact high voltage devices - fast efficient switching Benefits on system level: - more efficient energy conversion - smaller inductors - smaller and low weighted converter systems energy saving / innovative systems

7 GaN Material MOCVD hetero-epitaxy on host substrate Example HEMT structure on Si (111) Homo-epitaxy of functional device layers on GaN substrate MOCVD (MBE) Layer stack dependent on device n+ GaN wafer Advantage: Low cost for large diameter: up to 200mm available Device processing in standard silicon fabs Challenge: large lattice and thermal expansion mismatch to Si Core IP in complex strain management buffer Semi-Insulating properties by compensation of residual n-type doping (N-vac.,O) with C, Fe,.. Dislocation density in top layers: 1E8 5E8 cm -2 Alternative Substrates: Sapphire, SiC ~ 150 mm Advantage: No lattice and thermal expansion mismatch Low dislocation density of substrate < 3E6 cm -2 Challenge / Requirements: high-quality regrowth without defect generation Freestanding GaN substrate wafer by HVPE growth wafer size 2-4 Chemical-mechanical polished substrate surface Doping of GaN substrate wafer

8 GaN HVPE material

9 GaN HVPE HVPE: Hydride Vapour Phase Epitaxy: Growth on GaN/Sapphire Template Growth thickness: several 100 µm 1 cm Growth rate: ~ µm/h Growth Temp.: C Dislocation density: 2E6 cm -2 Low residual dopant conc. (uid): 1E16 cm -3 NaMLab s vertical HVPE Reactor

10 Doping GaN Doping during growth Introduction of dopant to the growth atmosphere Post growth doping Ion implant lattice damage High temp. anneal necessary for pgan: Mg (>1300 C) material decomposition w/o cap Diffusion Small diffusion constants for Si and Mg reported n-type GaN Optoelectronic, sensory, power application Main dopants: Si Ga, Ge Ga, (O N ) Semi-insulating GaN device, sensory applications Main dopants: Fe Ga, Mn Ga, C p-type GaN (MOCVD) Optoelectronic, power application Dopant: Mg Ga GaN:Si GaN:Ge GaN:Fe GaN:Mn

11 Si-Doping n-type 2 GaN Boule Si Si Ga, E D = mev HVPE: dichlorosilane, thermal stability Reduction of threading dislocation prior Si doping to avoid tensile stress generation HVPE GaN:Si samples n e ~2* *10 19 cm -3 Linear dependency of charge carriers on eff. DCS flow x-section Local strain analyses by Raman spectroscopy using E 2 high mode GaN:Si ~2E18 cm -3 un-intentionally doped-gan Dichloro- Silane (DCS) T. Mikolajick Patrick Hofmann et al J. Phys. D: Appl. Phys (2016)

12 Ge doping n-type n-type doping without tensile stress generation Vapour phase dopant smaller incorporation efficiency Solid State Doping line Doping flux SIMS 2.6 rpmsample 3 1E21 1E21 1E20 Sample 2 1E19 1E18 1E19 Sample 1 1E rpm 1E17 Sample 3 Sample 2 Sample 1 Hall SIMS 1E17 1E16 1E HCl flow [sccm] Sputter depth [mm] T. Mikolajick Patrick Hofmann et al. J. Cryst. Growth (2016) Concentration [cm-3] Concentration [cm-3] 1E20

13 Pyroelectricity of semi-insulating GaN Change of spontaneous polarization due to change in temperature PS = p T I(t) T(t) Measure current with electrodes on c plane surfaces GaN:Fe / GaN:Mn / GaN:C Dependence of pyroeletric effect on c-lattice constant: Spontaneous polarization function of lattice constant and different dopants change c-lattice constant differently T. Mikolajick Sven Jachalke et al. Appl. Phys. Lett. 109, (2016)

14 GaN vertical device

15 GaN for power switches V BD 2 R ON A = μe C 3 ε/4 = C mat highest for GaN ON I SD I max min R ON Source Gate Drain Area specific R on vs. Breakdown Voltage Stephen Sque (NXP) ESSDERC tutorial (2013) fast switching by gate V I 0 Power Loss Efficiency < 1 OFF V SD min. I Leak V BD Performance Targets Min. On-Resistance (R ON ) Max. Break-Down Voltage V BD Fast Switching w/o Transients Small Device Area / Large Wafer low cost Advantages of GaN Low on-state resistance at given voltage rating - compact high voltage devices - fast efficient switching Benefits on system level: - more efficient energy conversion - smaller inductors - smaller and low weighted converter systems energy saving / innovative systems

16 Lateral GaN HEMT HEMT = High electron mobility transistor Vertical GaN Transistor Example: Trench MOSFET Gate-Drain distance defines VBD Source Gate Source Gate Passivation Drain HV n(+) n(+) p 2DEG AlGaN GaN e - Strain management (AlGaN/GaN) buffer Compensated (C,Fe..) Substrate Si(111) n(-) GaN drift n(+) GaN Substrate Drain: HV Pros - High mobility 2DEG - large GaN-Si epi wafer up to 200 mm Advantages - area efficient scaling of breakdown voltage with drift layer thickness (> 1 kv) - separation HV / isolation, less surface effects - GaN substrates dislocations density < 3E6 cm -2 Cons - Less area efficient for high voltages - Vertical buffer breakdown / trapping - Higher dislocation density > 1E8 cm -2 Con - Costly GaN substrates / Wafer size 2-4

17 Vertical transistor device concepts in GaN Examples Trench MOSFET Slanted HEMT p-gan Gate MOS Fin Tower + high V th > 3V - Lower channel mobility Ch. Gupta et al. IEEE EDL (2016) 37 p1601 Ray Li et al. IEEE EDL (2016) 37 p1466 Tohru Oka et al. APEX (2015) 8 p V th = 2.5 V + high channel mobility - Complex integration Daisuke Shibata et al. IEDM (2016) + no p-gan used + low Ron - V th ~ 1V for fins < 500nm Min Sun et al. IEEE EDL (2017) 48, p509 Pics from Jie Hu et al. Mat. Sci. Semi. Processing (2017)

18 Pseudo-vertical MOSFET device (Low volt.) (High volt.) True vertical MOSFET S e - G D S n + GaN p GaN n - GaN n + GaN separated high and low voltage terminals area efficient scaling of breakdown voltage with drift layer thickness normally-off operation n + /p/n - layer stack on freestanding GaN needed Pseudo-vertical MOSFET better GaN material availability Limitations in RON and VBD n - GaN thickness, TDD, top-sided Drain process and characterization well transferable to true vertical devices G S B D n + GaN p GaN n - GaN n + GaN Sapphire suitable test vehicle for technology setup

19 Pseudo vertical layer stack 5 4 5,0 n + GaN : Si p GaN : Mg 200 nm 500 nm Dislocation examples 3 2 4,0 n - GaN : Si n + GaN : Si 1000 nm 3500 nm R RMS = 0.4 nm 3,0 Sapphire substrate 300 µm 4 2,0 prior to MBE overgrowth: H out-diffusion anneal Benefits of MBE for n+ GaN regrowth Hydrogen free environment for PA-MBE Lower growth temperature ( C) High quality regrowth: dislocation density n+ surface ~ Dislocation examples R RMS = 0.3 nm (nm) 1, cm -2 as on p GaN surface (µm) Atomic force microscope images

20 Device integration Growth & p-gan: Mg activation Insulation / pseudo vert. etch Ohmic contacts to n GaN (Ti/Al) Upper n + GaN etch Ohmic contacts to p GaN (Ni/Au) Gate trench etch (dry & wet) Gate dielectric deposition (ALD-Al 2 O 3 ) Gate TiN Source Body Drain Ti/Al Al 2 O 3 n + GaN p GaN n - GaN Ni/Au Ti/Al n + GaN Sapphire Gate metal deposition & structuring (ALD-TiN) Passivation (ALD-Al 2 O 3 ) processed 2 wafer contact lithography TiN Al 2 O 3 GaN 200 nm R. Hentschel et al. at ASDAM 2016

21 Device characteristics Transfer characteristic = 5 V R. Hentschel et al. at ASDAM 2016 G S B D V GS 0V 0V V DS n + GaN p GaN n - GaN n + GaN expected output control with increasing gate overdrive withv th ~5 V I D (V DS ) scaling but weak output saturation Drain Curr. Density I D (ma/mm) Sapphire Output characteristics V GS = 7 V to 12 V, 1 V step Drain-Source Voltage V DS (V) Well controllable normally-off operation

22 Body bias method: measure p-gan:mg activation Transfer V BS G S B D V GS 0V V BS 0.1V n + -GaN p -GaN n - -GaN n + -GaN Sapphire Many Mg-sites hydrogen passivated p-gan:mg deep acceptor level ~ 0.18 ev reduced hole conc. in equilibrium at RT Substrate control allows estimation of apparent hydrogen-free Mg acceptor sites V th = Φ MS Q eff C ox + 2ϕ F + 2qϵ GaNN A x ( 2ϕF U BS ) C ox estimated concentration N A- = cm -3 (SIMS: N Mg = cm -3 ) R. Hentschel et al. at ASDAM 2016

23 vertical GaN transistor benchmark Vertical GaN transistors beyond area specific R ON vs. Breakdown Voltage lateral GaN HEMT Different device concepts with different strength (V TH, R ON, V BD ) L lateral HEMT [3] Fin tower MOSFET V TH =1V [1] Trench MOSFET vertical [2] slanted HEMT p-gan Gate [1] T. Oka et al. APEX 8, p (2015) [2] Daisuke Shibata et al. IEDM (2016) [3] Min Sun et al. IEEE EDL 48, p509 (2017) Graph by part from Daisuke Shibata et al. IEDM (2016) T. Mikolajick

24 Summary and outlook o o o HVPE growth currently most productive technology for GaN wafer n-type doping opens door for vertical power devices Promising performance indicators of vertical GaN devices (main competitor SiC MOSFET) o Further understanding of interaction between material and device important to foster vertical GaN power technology o Reliability to be demonstrated on large device count o o Influence of defect density and different types on yield Availability and cost development of larger GaN wafer (100mm and above) important for decision on manufacturing

25 Thank you for your kind attention!!! Thanks to: Martin Krupinski Nadine Szábo Felix Schubert Cooperation: Acknowledgement: This work was financially supported by the European Fund for regional Development EFRD, the Free State of Saxony, Europe supports Saxony and the German Federal Ministry of Education und Research BMBF

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Kjeld Pedersen Department of Physics and Nanotechnology, AAU SEMPEL Semiconductor Materials for Power Electronics

More information

International Workshop on Nitride Semiconductors (IWN 2016)

International Workshop on Nitride Semiconductors (IWN 2016) International Workshop on Nitride Semiconductors (IWN 2016) Sheng Jiang The University of Sheffield Introduction The 2016 International Workshop on Nitride Semiconductors (IWN 2016) conference is held

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

GaN power electronics

GaN power electronics GaN power electronics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Lu, Bin, Daniel Piedra, and

More information

GaN: Applications: Optoelectronics

GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics GaN: Applications: Optoelectronics - The GaN LED industry is >10 billion $ today. - Other optoelectronic applications of GaN include blue lasers and UV emitters and detectors.

More information

Innovative Technologies for RF & Power Applications

Innovative Technologies for RF & Power Applications Innovative Technologies for RF & Power Applications > Munich > Nov 14, 2017 1 Key Technologies Key Technologies Veeco Market Focus Advanced Packaging, MEMS & RF Lighting, Display & Power Electronics Lithography

More information

High Voltage Normally-off GaN MOSC- HEMTs on Silicon Substrates for Power Switching Applications

High Voltage Normally-off GaN MOSC- HEMTs on Silicon Substrates for Power Switching Applications High Voltage Normally-off GaN MOSC- HEMTs on Silicon Substrates for Power Switching Applications Zhongda Li, John Waldron, Shinya Takashima, Rohan Dayal, Leila Parsa, Mona Hella, and T. Paul Chow Department

More information

N-polar GaN/ AlGaN/ GaN high electron mobility transistors

N-polar GaN/ AlGaN/ GaN high electron mobility transistors JOURNAL OF APPLIED PHYSICS 102, 044501 2007 N-polar GaN/ AlGaN/ GaN high electron mobility transistors Siddharth Rajan a Electrical and Computer Engineering Department, University of California, Santa

More information

We are right on schedule for this deliverable. 4.1 Introduction:

We are right on schedule for this deliverable. 4.1 Introduction: DELIVERABLE # 4: GaN Devices Faculty: Dipankar Saha, Subhabrata Dhar, Subhananda Chakrabati, J Vasi Researchers & Students: Sreenivas Subramanian, Tarakeshwar C. Patil, A. Mukherjee, A. Ghosh, Prantik

More information

Wide Band-Gap Power Device

Wide Band-Gap Power Device Wide Band-Gap Power Device 1 Contents Revisit silicon power MOSFETs Silicon limitation Silicon solution Wide Band-Gap material Characteristic of SiC Power Device Characteristic of GaN Power Device 2 1

More information

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Sanghoon Lee 1*, V. Chobpattana 2,C.-Y. Huang 1, B. J. Thibeault 1, W. Mitchell 1, S. Stemmer

More information

A new Vertical JFET Technology for Harsh Radiation Applications

A new Vertical JFET Technology for Harsh Radiation Applications A New Vertical JFET Technology for Harsh Radiation Applications ISPS 2016 1 A new Vertical JFET Technology for Harsh Radiation Applications A Rad-Hard switch for the ATLAS Inner Tracker P. Fernández-Martínez,

More information

Impact of Basal Plane Dislocations and Ruggedness of 10 kv 4H-SiC Transistors

Impact of Basal Plane Dislocations and Ruggedness of 10 kv 4H-SiC Transistors 11th International MOS-AK Workshop (co-located with the IEDM and CMC Meetings) Silicon Valley, December 5, 2018 Impact of Basal Plane Dislocations and Ruggedness of 10 kv 4H-SiC Transistors *, A. Kumar,

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions

4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions ELECTRONICS 4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions Yu SAITOH*, Toru HIYOSHI, Keiji WADA, Takeyoshi MASUDA, Takashi TSUNO and Yasuki MIKAMURA ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.2, APRIL, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.2.221 ISSN(Online) 2233-4866 Normally-Off Operation of AlGaN/GaN

More information

III-Nitride microwave switches Grigory Simin

III-Nitride microwave switches Grigory Simin Microwave Microelectronics Laboratory Department of Electrical Engineering, USC Research Focus: - Wide Bandgap Microwave Power Devices and Integrated Circuits - Physics, Simulation, Design and Characterization

More information

Customized probe card for on-wafer testing of AlGaN/GaN power transistors

Customized probe card for on-wafer testing of AlGaN/GaN power transistors Customized probe card for on-wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Outline Introduction GaN for power switching applications

More information

AlGaN/GaN HEMTs and HBTs

AlGaN/GaN HEMTs and HBTs AlGaN/GaN HEMTs and HBTs Umesh K. Mishra PART I AlGaN/GaN HEMTs Materials Properties Comparison Material µ ε Eg BFOM JFM Tmax Ratio Ratio Si 1300 11.4 1.1 1.0 1.0 300 C GaAs 5000 13.1 1.4 9.6 3.5 300 C

More information

Customized probe card for on wafer testing of AlGaN/GaN power transistors

Customized probe card for on wafer testing of AlGaN/GaN power transistors Customized probe card for on wafer testing of AlGaN/GaN power transistors R. Venegas 1, K. Armendariz 2, N. Ronchi 1 1 imec, 2 Celadon Systems Inc. Presented by Bryan Root 2 Outline Introduction GaN for

More information

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER What I will show you today 200mm/8-inch GaN-on-Si e-mode/normally-off technology

More information

AlGaN/GaN HEMTs and HBTs

AlGaN/GaN HEMTs and HBTs AlGaN/GaN HEMTs and HBTs Umesh K. Mishra PART I AlGaN/GaN HEMTs Materials Properties Comparison Material µ ε Eg BFOM JFM Tmax Ratio Ratio Si 1300 11.4 1.1 1.0 1.0 300 C GaAs 5000 13.1 1.4 9.6 3.5 300 C

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

General look back at MESFET processing. General principles of heterostructure use in FETs

General look back at MESFET processing. General principles of heterostructure use in FETs SMA5111 - Compound Semiconductors Lecture 11 - Heterojunction FETs - General HJFETs, HFETs Last items from Lec. 10 Depletion mode vs enhancement mode logic Complementary FET logic (none exists, or is likely

More information

CHAPTER 2 HEMT DEVICES AND BACKGROUND

CHAPTER 2 HEMT DEVICES AND BACKGROUND CHAPTER 2 HEMT DEVICES AND BACKGROUND 2.1 Overview While the most widespread application of GaN-based devices is in the fabrication of blue and UV LEDs, the fabrication of microwave power devices has attracted

More information

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Power Semiconductor Devices - Silicon vs. New Materials. Si Power Devices The Dominant Solution Today

Power Semiconductor Devices - Silicon vs. New Materials. Si Power Devices The Dominant Solution Today Power Semiconductor Devices - Silicon vs. New Materials Jim Plummer Stanford University IEEE Compel Conference July 10, 2017 Market Opportunities for Power Devices Materials Advantages of SiC and GaN vs.

More information

III-V CMOS: the key to sub-10 nm electronics?

III-V CMOS: the key to sub-10 nm electronics? III-V CMOS: the key to sub-10 nm electronics? J. A. del Alamo Microsystems Technology Laboratories, MIT 2011 MRS Spring Meeting and Exhibition Symposium P: Interface Engineering for Post-CMOS Emerging

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Introduction of Device Technology Digital wireless communication system has become more and more popular in recent years due to its capability for both voice and data communication.

More information

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Anri Nakajima Research Center for Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama, Higashi-Hiroshima,

More information

Organic Electronics. Information: Information: 0331a/ 0442/

Organic Electronics. Information: Information:  0331a/ 0442/ Organic Electronics (Course Number 300442 ) Spring 2006 Organic Field Effect Transistors Instructor: Dr. Dietmar Knipp Information: Information: http://www.faculty.iubremen.de/course/c30 http://www.faculty.iubremen.de/course/c30

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

Chapter 13 Insulated Gate Nitride-Based Field Effect Transistors

Chapter 13 Insulated Gate Nitride-Based Field Effect Transistors Chapter 13 Insulated Gate Nitride-Based Field Effect Transistors M. Shur, G. Simin, S. Rumyantsev, R. Jain and R. Gaska Abstract Polarization doping related to the piezoelectric and spontaneous polarization

More information

Quantum Condensed Matter Physics Lecture 16

Quantum Condensed Matter Physics Lecture 16 Quantum Condensed Matter Physics Lecture 16 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 16.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Final Report. Contract Number Title of Research Principal Investigator

Final Report. Contract Number Title of Research Principal Investigator Final Report Contract Number Title of Research Principal Investigator Organization N00014-05-1-0135 AIGaN/GaN HEMTs on semi-insulating GaN substrates by MOCVD and MBE Dr Umesh Mishra University of California,

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information

RADIATION RESPONSE AND RELIABILITY OF HIGH SPEED AlGaN/GaN HEMTS

RADIATION RESPONSE AND RELIABILITY OF HIGH SPEED AlGaN/GaN HEMTS RADIATION RESPONSE AND RELIABILITY OF HIGH SPEED AlGaN/GaN HEMTS By Jin Chen Dissertation Submitted to the Faculty of the Graduate school of Vanderbilt University in partial fulfillment of the requirements

More information

Proposal of Novel Collector Structure for Thin-wafer IGBTs

Proposal of Novel Collector Structure for Thin-wafer IGBTs 12 Special Issue Recent R&D Activities of Power Devices for Hybrid ElectricVehicles Research Report Proposal of Novel Collector Structure for Thin-wafer IGBTs Takahide Sugiyama, Hiroyuki Ueda, Masayasu

More information

InGaAs MOSFETs for CMOS:

InGaAs MOSFETs for CMOS: InGaAs MOSFETs for CMOS: Recent Advances in Process Technology J. A. del Alamo, D. Antoniadis, A. Guo, D.-H. Kim 1, T.-W. Kim 2, J. Lin, W. Lu, A. Vardi and X. Zhao Microsystems Technology Laboratories,

More information

Novel III-Nitride HEMTs

Novel III-Nitride HEMTs IEEE EDS Distinguished Lecture Boston Chapter, July 6 2005 Novel III-Nitride HEMTs Professor Kei May Lau Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth Record Extrinsic Transconductance (2.45 ms/μm at = 0.5 V) InAs/In 0.53 Ga 7 As Channel MOSFETs Using MOCVD Source-Drain Regrowth Sanghoon Lee 1*, C.-Y. Huang 1, A. D. Carter 1, D. C. Elias 1, J. J. M.

More information

Monolithic integration of GaN power transistors integrated with gate drivers

Monolithic integration of GaN power transistors integrated with gate drivers October 3-5, 2016 International Workshop on Power Supply On Chip (PwrSoC 2016) Monolithic integration of GaN power transistors integrated with gate drivers October 4, 2016 Tatsuo Morita Automotive & Industrial

More information

Carbon Nanotube Bumps for Thermal and Electric Conduction in Transistor

Carbon Nanotube Bumps for Thermal and Electric Conduction in Transistor Carbon Nanotube Bumps for Thermal and Electric Conduction in Transistor V Taisuke Iwai V Yuji Awano (Manuscript received April 9, 07) The continuous miniaturization of semiconductor chips has rapidly improved

More information

Scaling of InGaAs MOSFETs into deep-submicron regime (invited)

Scaling of InGaAs MOSFETs into deep-submicron regime (invited) Scaling of InGaAs MOSFETs into deep-submicron regime (invited) Y.Q. Wu, J.J. Gu, and P.D. Ye * School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 * Tel: 765-494-7611,

More information

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

Effective Channel Mobility of AlGaN/GaN-on-Si Recessed-MOS-HFETs

Effective Channel Mobility of AlGaN/GaN-on-Si Recessed-MOS-HFETs JOURNAL OF SEMICONUCTOR TECHNOLOGY AN SCIENCE, VOL.16, NO.6, ECEMBER, 216 ISSN(Print) 1598-1657 https://doi.org/1.5573/jsts.216.16.6.867 ISSN(Online) 2233-4866 Effective Channel Mobility of AlGaN/GaN-on-Si

More information

A Gate Sinking Threshold Voltage Adjustment Technique for High Voltage GaN HEMT

A Gate Sinking Threshold Voltage Adjustment Technique for High Voltage GaN HEMT A Gate Sinking Threshold Voltage Adjustment Technique for High Voltage GaN HEMT by WeiJia Zhang A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Y9.FS1.2.1: GaN Low Voltage Power Device Development. Sizhen Wang (Ph.D., EE)

Y9.FS1.2.1: GaN Low Voltage Power Device Development. Sizhen Wang (Ph.D., EE) Y9.FS1.2.1: GaN Low Voltage Power Device Development Faculty: Students: Alex. Q. Huang Sizhen Wang (Ph.D., EE) 1. Project Goals The overall objective of the GaN power device project is to fabricate and

More information

Integration of III-V heterostructure tunnel FETs on Si using Template Assisted Selective Epitaxy (TASE)

Integration of III-V heterostructure tunnel FETs on Si using Template Assisted Selective Epitaxy (TASE) Integration of III-V heterostructure tunnel FETs on Si using Template Assisted Selective Epitaxy (TASE) K. Moselund 1, D. Cutaia 1. M. Borg 1, H. Schmid 1, S. Sant 2, A. Schenk 2 and H. Riel 1 1 IBM Research

More information

Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs

Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs Yuewei Zhang, Sriram Krishnamoorthy, Fatih Akyol, Sadia Monika Siddharth Rajan ECE, The Ohio State University Andrew Allerman, Michael

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11293 1. Formation of (111)B polar surface on Si(111) for selective-area growth of InGaAs nanowires on Si. Conventional III-V nanowires (NWs) tend to grow in

More information

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

More information

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 Lecture 020 ECE4430 Review II (1/5/04) Page 020-1 LECTURE 020 ECE 4430 REVIEW II (READING: GHLM - Chap. 2) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught

More information

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random 45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11 Process-induced Variability I: Random Random Variability Sources and Characterization Comparisons of Different MOSFET

More information

AlGaN/GaN metal-insulator-semiconductor heterojunction field-effect transistors using BN and AlTiO high-k gate insulators

AlGaN/GaN metal-insulator-semiconductor heterojunction field-effect transistors using BN and AlTiO high-k gate insulators AlGaN/GaN metal-insulator-semiconductor heterojunction field-effect transistors using BN and AlTiO high-k gate insulators NGUYEN QUY TUAN Japan Advanced Institute of Science and Technology Doctoral Dissertation

More information

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT)

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT) Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT) Nov. 26, 2004 Outline I. Introduction: Why needs high-frequency devices? Why uses compound semiconductors? How to enable

More information

Characterization of SOI MOSFETs by means of charge-pumping

Characterization of SOI MOSFETs by means of charge-pumping Paper Characterization of SOI MOSFETs by means of charge-pumping Grzegorz Głuszko, Sławomir Szostak, Heinrich Gottlob, Max Lemme, and Lidia Łukasiak Abstract This paper presents the results of charge-pumping

More information

600V GaN Power Transistor

600V GaN Power Transistor 600V GaN Power Transistor Sample Available Features Normally-Off Current-Collapse-Free Zero Recovery GaN Power Transistor (TO220 Package) ID(Continuous) : 15A RDS(on) : 65m Qg : 11nC Applications Power

More information

Chapter 3 Basics Semiconductor Devices and Processing

Chapter 3 Basics Semiconductor Devices and Processing Chapter 3 Basics Semiconductor Devices and Processing 1 Objectives Identify at least two semiconductor materials from the periodic table of elements List n-type and p-type dopants Describe a diode and

More information

E-MODE III-N HIGH-VOLTAGE TRANSISTOR DEVELOPMENT

E-MODE III-N HIGH-VOLTAGE TRANSISTOR DEVELOPMENT 1 E-MODE III-N HIGH-VOLTAGE TRANSISTOR DEVELOPMENT 1 st -Year Final Project Report (Feb 2010 March 2011) Presented to Intersil Corp., Milpitas CA Program Manager: Dr. François Hébert Georgia Tech PIs:

More information

Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors

Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors L. Liu 1, 2,*, B. Sensale-Rodriguez 1, Z. Zhang 1, T. Zimmermann 1, Y. Cao 1, D. Jena 1, P. Fay 1,

More information

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801 Comparative study of self-aligned and nonself-aligned SiGe p-metal oxide semiconductor modulation-doped field effect transistors with nanometer gate lengths Wu Lu Department of Electrical and Computer

More information

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator Jianqiang Lin, Dimitri A. Antoniadis, and Jesús A. del Alamo Microsystems Technology Laboratories,

More information

Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers

Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers Receivers & Array Workshop 2010 September 20th, 2010 Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers Andreas R. Alt, Colombo R. Bolognesi Millimeter-Wave Electronics Group (MWE)

More information

FinFET Devices and Technologies

FinFET Devices and Technologies FinFET Devices and Technologies Jack C. Lee The University of Texas at Austin NCCAVS PAG Seminar 9/25/14 Material Opportunities for Semiconductors 1 Why FinFETs? Planar MOSFETs cannot scale beyond 22nm

More information

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s18/ecse

More information

Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar)

Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar) Y9.FS1.1: SiC Power Devices for SST Applications Project Leader: Faculty: Dr. Jayant Baliga Dr. Alex Huang Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar) 1. Project Goals (a)

More information

2558 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 65, NO. 6, JUNE Development of GaN Vertical Trench-MOSFET With MBE Regrown Channel

2558 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 65, NO. 6, JUNE Development of GaN Vertical Trench-MOSFET With MBE Regrown Channel 2558 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 65, NO. 6, JUNE 2018 Development of GaN Vertical Trench-MOSFET With MBE Regrown Channel Wenshen Li Zongyang Hu, Student Member, IEEE, Kazuki Nomoto, Member,

More information

On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si

On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

AlGaN/GaN High-Electron-Mobility Transistor Using a Trench Structure for High-Voltage Switching Applications

AlGaN/GaN High-Electron-Mobility Transistor Using a Trench Structure for High-Voltage Switching Applications Applied Physics Research; Vol. 4, No. 4; 212 ISSN 19169639 EISSN 19169647 Published by Canadian Center of Science and Education AlGaN/GaN HighElectronMobility Transistor Using a Trench Structure for HighVoltage

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/01/2007 MOSFETs Lecture 5 Announcements HW7 set is due now HW8 is assigned, but will not be collected/graded. MOSFET Technology Scaling Technology

More information

Gallium Nitride & Related Wide Bandgap Materials and Devices

Gallium Nitride & Related Wide Bandgap Materials and Devices Gallium Nitride & Related Wide Bandgap Materials and Devices Dr. Edgar J. Martinez Program Manager DARPATech 2000 GaAs IC Markets 1999 Market $11 Billion 2005 Market $20 Billion Consumers 2% Computers

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/6/2007 MOSFETs Lecture 6 BJTs- Lecture 1 Reading Assignment: Chapter 10 More Scalable Device Structures Vertical Scaling is important. For example,

More information

GaN based Power Devices. Michael A. Briere. RPI CFES Conference

GaN based Power Devices. Michael A. Briere. RPI CFES Conference GaN based Power Devices Michael A. Briere ACOO Enterprises LLC Under contract to International Rectifier RPI CFES Conference January 25, 2013 1 Motivation : Potential Energy Savings Worldwide M.A. Briere

More information

Vertical-cavity surface-emitting lasers (VCSELs)

Vertical-cavity surface-emitting lasers (VCSELs) 78 Technology focus: Lasers Advancing InGaN VCSELs Mike Cooke reports on progress towards filling the green gap and improving tunnel junctions as alternatives to indium tin oxide current-spreading layers.

More information

Nanoscale III-V CMOS

Nanoscale III-V CMOS Nanoscale III-V CMOS J. A. del Alamo Microsystems Technology Laboratories Massachusetts Institute of Technology SEMI Advanced Semiconductor Manufacturing Conference Saratoga Springs, NY; May 16-19, 2016

More information

LSI ON GLASS SUBSTRATES

LSI ON GLASS SUBSTRATES LSI ON GLASS SUBSTRATES OUTLINE Introduction: Why System on Glass? MOSFET Technology Low-Temperature Poly-Si TFT Technology System-on-Glass Technology Issues Conclusion System on Glass CPU SRAM DRAM EEPROM

More information

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 ECE 658 Sp 2018 Semiconductor Materials and Device Characterizations OUTLINE Background FinFET Future Roadmap Keeping up w/ Moore s Law

More information

Sub-micron technology IC fabrication process trends SOI technology. Development of CMOS technology. Technology problems due to scaling

Sub-micron technology IC fabrication process trends SOI technology. Development of CMOS technology. Technology problems due to scaling Goodbye Microelectronics Welcome Nanoelectronics Sub-micron technology IC fabrication process trends SOI technology SiGe Tranzistor in 50nm process Virus The thickness of gate oxide= 1.2 nm!!! Today we

More information

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness MIT International Journal of Electronics and Communication Engineering, Vol. 4, No. 2, August 2014, pp. 81 85 81 Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness Alpana

More information

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI 1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

More information

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications Radhakrishnan Sithanandam and M. Jagadesh Kumar, Senior Member, IEEE Department of Electrical Engineering Indian Institute

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si Authors: Yi Sun 1,2, Kun Zhou 1, Qian Sun 1 *, Jianping Liu 1, Meixin Feng 1, Zengcheng Li 1, Yu Zhou 1, Liqun

More information

Christian Boit TUB Berlin University of Technology Sect. Semiconductor Devices. 1

Christian Boit TUB Berlin University of Technology Sect. Semiconductor Devices. 1 Semiconductor Device & Analysis Center Berlin University of Technology Christian Boit TUB Berlin University of Technology Sect. Semiconductor Devices Christian.Boit@TU-Berlin.DE 1 Semiconductor Device

More information

Development of Gallium Nitride High Electron Mobility Transistors for Cellular Base Stations

Development of Gallium Nitride High Electron Mobility Transistors for Cellular Base Stations ELECTRONICS Development of Gallium Nitride High Electron Mobility Transistors for Cellular Base Stations Kazutaka INOUE*, Seigo SANO, Yasunori TATENO, Fumikazu YAMAKI, Kaname EBIHARA, Norihiko UI, Akihiro

More information

Fabrication, Corner, Layout, Matching, & etc.

Fabrication, Corner, Layout, Matching, & etc. Advanced Analog Building Blocks Fabrication, Corner, Layout, Matching, & etc. Wei SHEN (KIP) 1 Fabrication Steps for MOS Wei SHEN, Universität Heidelberg 2 Fabrication Steps for MOS Wei SHEN, Universität

More information

What is the highest efficiency Solar Cell?

What is the highest efficiency Solar Cell? What is the highest efficiency Solar Cell? GT CRC Roof-Mounted PV System Largest single PV structure at the time of it s construction for the 1996 Olympic games Produced more than 1 billion watt hrs. of

More information

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors Veerendra Dhyani 1, and Samaresh Das 1* 1 Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi-110016,

More information

GaN MMIC PAs for MMW Applicaitons

GaN MMIC PAs for MMW Applicaitons GaN MMIC PAs for MMW Applicaitons Miroslav Micovic HRL Laboratories LLC, 311 Malibu Canyon Road, Malibu, CA 9265, U. S. A. mmicovic@hrl.com Motivation for High Frequency Power sources 6 GHz 11 GHz Frequency

More information

Near/Mid-Infrared Heterogeneous Si Photonics

Near/Mid-Infrared Heterogeneous Si Photonics PHOTONICS RESEARCH GROUP Near/Mid-Infrared Heterogeneous Si Photonics Zhechao Wang, PhD Photonics Research Group Ghent University / imec, Belgium ICSI-9, Montreal PHOTONICS RESEARCH GROUP 1 Outline Ge-on-Si

More information

Power MOSFET Zheng Yang (ERF 3017,

Power MOSFET Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Power MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Evolution of low-voltage (

More information

Advanced PDK and Technologies accessible through ASCENT

Advanced PDK and Technologies accessible through ASCENT Advanced PDK and Technologies accessible through ASCENT MOS-AK Dresden, Sept. 3, 2018 L. Perniola*, O. Rozeau*, O. Faynot*, T. Poiroux*, P. Roseingrave^ olivier.faynot@cea.fr *Cea-Leti, Grenoble France;

More information

RADIATION RESPONSE AND RELIABILITY OF AlGaN/GaN HEMTS

RADIATION RESPONSE AND RELIABILITY OF AlGaN/GaN HEMTS RADIATION RESPONSE AND RELIABILITY OF AlGaN/GaN HEMTS By Jin Chen Thesis Submitted to the Faculty of the Graduate school of Vanderbilt University in partial fulfillment of the requirements For the degree

More information