GEOS 107: The Planet Earth Session 7. Geographic Information Science: Remote Sensing, GIS and GPS/1. Dr. Mark J Chopping

Size: px
Start display at page:

Download "GEOS 107: The Planet Earth Session 7. Geographic Information Science: Remote Sensing, GIS and GPS/1. Dr. Mark J Chopping"

Transcription

1 GEOS 107: The Planet Earth Session 7 Geographic Information Science: Remote Sensing, GIS and GPS/1 Dr. Mark J Chopping

2 Geographic Information Science We have 3 sessions on Geographic Information Science: REMOTE SENSING, GIS and GPS Today s s will cover just REMOTE SENSING This is a logical place to start, since much mapping is now done using remote sensing as the data source.

3 Geographic Information Science Movie on NPOESS: the National Polar Orbiting Operational Environmental Satellite System (NOAA/DoD/NASA) Compare and contrast with the NASA Earth Science movie you saw Make notes: what is the tone/mood of the movie? What is the message? What are the benefits of NPOESS? To whom? Will it be able to answer long or short-term questions/problems?

4 Geographic Information Science In case you didn t t know: GIS = Geographic Information Systems. A database storing maps of features above, on or below the Earth s s surface (hence the geographic), encoded in binary data (i.e. in a computer system). Implies not only storage but input, display, transformation, extraction, output, and analysis of these data. GPS = Global Positioning System. Doesn t actually position (move) anything but gives you your position on the planet to a very high precision (centimeters to meters). Uses 24 satellites.

5 GISci:Remote Sensing:Lecture Outline What You are Expected to Know Definition Sources of Radiation for Remote Sensing Remote Sensing Systems & Acquisition RS Systems/Resolution & Coverage Remote Sensing of Vegetation Common Applications Case Study: Scanning LIDAR The State-of-the-Art Further Reading & Surfing Questions to Ponder

6 GISci:Remote Sensing: What is Expected 1. You may be concerned at the level of knowledge expected of you with respect to Remote Sensing Science. 2. The difficulty is that most Earth Science textbooks treat Remote Sensing in a very flimsy way. This is no longer acceptable as in recent years Remote Sensing is contributing much more to the study of the Earth System (partly as a result of improvements in technology, e.g. satellite radar interferometry, imaging LIDAR and imaging spectroscopy). 3. The following page lists the topics within Remote Sensing that you are expected to become familiar with.

7 GISci:Remote Sensing:What is Expected 1. The Electromagnetic Spectrum: major regions imptt. for RS as less affected by atmosphere; and for vegetation remote sensing; 2. Classification of RS instruments (passive, active, imaging, non- imaging) and the platforms on which they are flown; 3. The Acquisition Methods of different sensor types (e.g. across- track scanning, whiskbroom, circular scanning, CCD, antennæ); 4. The effects of Acquisition Geometry (sun-target-sensor) for passive instruments which use solar wavelength (visible to near- infrared) radiation AND the definitions of related angle terms (nadir, zenith, azimuth, backscattering, forward-scattering); 5. Resolution and Coverage, including barriers to global coverage; 6. Vegetation Indices & Maximum Value Compositing; 7. Atmospheric Windows: the t role of the atmosphere in solar wavelength satellite remote sensing (briefly, what aerosols, water vapor and gases do to light as it passes thru the atmosphere).

8 GISci:Remote Sensing:Definition REMOTE SENSING Implies measuring something - anything! - without physical contact. Under a restricted definition for Earth Observation: sensed objects / areas are on or near the Earth s s surface observation is from above (airborne or spaceborne sensors) information is carried by electromagnetic radiation (radio waves, emitted infrared, visible and ultraviolet radiation) Essentially, remote sensing is a development of aerial photography (but what a development).

9 GISci:RS:Sources of Radiation Longer Shorter Electromagnetic radiation/1 Principally specified by wavelength (l)( ) or frequency (1/l) Ultraviolet - white clothes reflect; absorbs O 3 Visible - the light you use to see (violet-red) Near-infrared - u can t t see this but camcorders can Shortwave/MID-IR /MID-IR- veg.. moisture/stress; snow/clouds Thermal infrared - felt from sun, heaters, fires Far infrared - nothing special here (atm( atm.. opaque) Radio frequencies - microwave range is useful (not attenuated by water vapor, can see thru clouds). Most of the light reaching the Earth s s surface is concentrated in the VNIR: after interacting with atmospheric and surface materials, this radiation is absorbed, reflected or transmitted.. After transmission and absorption it can be emitted with a shift to longer wavelengths (e.g, thermal).

10 GISci:RS:Sources of Radiation Electromagnetic radiation/2 Most incoming light is in visible to near-infrared (VNIR) region. That s s why our eyes use it rather than other ls. VNIR radiation is reflected, absorbed or transmitted.. (if absorbed, interaction transforms to longer l) Near-infrared (NIR) light is invisible but non-negligible: leaves reflect and transmit to avoid overheating (some materials -- e.g. leaves -- are partially translucent in the NIR region even if opaque in the visible). Thermal IR radiation is emitted; emission depends on the Temperature and Emissivity of a material. Nothing is emitted in the VIS wavelengths at ambient temps. (300 K): things don t t glow until they get really hot! Surface of sun is 6000 K, so peak emission is ~0.5 µm red-orange light (color of sun).

11 GISci:RS:Passive Solar Radiation <<< SHORTER l LONGER >>> YOU SEE HERE! also showing atmospheric transmission, leaf spectral reflectance, absorption features and regions used by the three best-known satellite-based sensors. this feature is important for RS of vegetation!

12 GISci:RS:Passive Solar Radiation <<< LONGER l SHORTER >>> showing atmospheric windows where attenuation (db) is relatively low and which are useful for remote sensing from space.

13 GISci:RS:Remote Sensing Systems CLASSIFICATION OF REMOTE SENSING SYSTEMS A) PASSIVE using naturally-occurring radiation - sunlight or thermal emission B) ACTIVE using an artificial light source to illuminate the target 1) IMAGING SYSTEMS form a two-dimensional array corresponding to the brightness of the object or surface 2) NON-IMAGING SYSTEMS - don t. These systems sample points or profiles (see case study/slide 58). 1 2 A B

14 GISci:RS:Remote Sensing Systems Passive Sensor Systems Spaceborne / Airborne / Ground-based High / Low altitude Airborne aerial photography, scanners, CCD arrays: low-alt platforms: blimps, helicopters high-alt: aircraft, balloons Spaceborne scanners, CCD arrays, microwave antennas - all from satellites (LEO, GEO) - orbits from 400 km km; ~40,000 km towers, masts, cherry-pickers, blimps(?), hand-held radiometers, spectrometers Remote Sensing Active Sensor Systems Spaceborne / Airborne RADAR SLAR (side-looking synth.. aperture; imaging) SAR (synthetic aperture; imaging) Scatterometers (non-imaging) LIDAR Scanning LIDAR (imaging) Laser profilers (non-imaging) Sounding devices (SONAR) Ground-based Camera with flash {Camera ALL REQUIRE CALIBRATION AND VALIDATION

15 GISci:RS:Remote Sensing Systems Imaging Sensor Systems Spaceborne / Airborne / Ground-based High / Low altitude Airborne aerial photography, videography scanners (whiskbroom; Daedalus ATM) CCD arrays (pushbroom( pushbroom; ; SPOT HRV) coherent (SLAR, scanning LIDAR) Spaceborne scanners (whiskbroom; Landsat, AVHRR) CCD arrays (pushbroom( pushbroom; ; SPOT HRV) coherent (SAR) Ground-based Film/ digital camera, video from masts, cherry-pickers, blimps*, Remote Sensing * hybrid types Non-Imaging Sensor Systems Spaceborne / Airborne / Ground-based High / Low altitude Airborne radar altimeter laser profiler (Ritchie( Ritchie) MQUALS - MODIS QUick Airborne Looks Spaceborne radar altimeter radar scatterometer laser profiler (VCL*) Ground-based spectroradiometer,, IRT from masts, cherry-pickers, blimps*, hand-held

16 GISci:RS:Systems - Acquisition Cross-track (whiskbroom) & circular scanners (ATSR-2)

17 GISci:RS:Systems - Acquisition Along-track (pushbroom( pushbroom) ) & side-scanning techniques (SLAR)

18 GISci:RS:Systems - Acquisition Landsat TM spectra Multispectral sensors register response in a few channels

19 GISci:RS:Systems - Acquisition ASD FieldSpec spectra (ground) Imaging Spectroscopy: when each pixel of an image is recorded as a spectrum like this one a a LOT of data! Hyperspectral sensors register response in many (15 to 200+) channels

20 Earth & Environmental Studies Montclair State University Remote Sensing provides GISci:RS:Resolution & information on things a long way Coverage away - at different spatial & temporal scales AirPhoto (air) IKONOS lat w/pointing NASA MASTER (air) 250 m 2,500 m 25 m 10,000 m LANDSAT TM Every 16 days - w/o clouds NOAA AVHRR-LAC 2 x day/satellite x 2 satellites 100 km NOAA AVHRR-GAC 2 x day/satellite

21 Earth & Environmental Studies Montclair State University GISci:RS:Resolution & Coverage The BIG PICTURE from km (GEO) above the equator. Observes 42% of the surface.

22 Earth & Environmental Studies Montclair State University GISci:RS:Resolution & Coverage The SMALL PICTURE (QuickBird)

23 GISci:RS:Resolution & Coverage We are interested in the ENTIRE PLANET we need to use SENSOR/PLATFORM COMBINATIONS which provide a high geographic coverage. This means using a WIDE SWATH

24 GISci:RS:Systems:Acquisition:Geometry Acquisition Geometry is IMPORTANT!

25 GISci:RS:Systems:Acquisition Geometry

26 GISci:RS:Systems:Acquisition Geometry BRDF* Effects, Example 1: Spruce Forest Looking in the Backscattering direction: shadows are HIDDEN behind objects casting them; sensor sees a smaller proportion of shadows. Looking in the Forward- scattering direction: shadows are VISIBLE to the sensor to a greater or lesser degree * Bidirectional Reflectance Distribution Function which describes the angular distribution of reflected light over the upper hemisphere in relation to the angular distribution of incoming light. The Most Important effect is from SHADOWING by plants and microtopographic elements (e.g., rough soil elements; if you don t believe me see the next slide).

27 GISci:RS:Systems:Acquisition Geometry BRDF Effects, Example 7: from Space (AVHRR) (a) Before BRDF correction (b)after BRDF correction (a) images from 2 different orbits stitched together: in the left half the satellite sensor is looking in the backscattering direction (sensor looking away from the sun) and in the right half it is looking in the forward-scattering direction (towards the sun). (b) BRDF correction gives more reasonable map of reflectance. Courtesy Canadian Ctr. for Remote Sensing

28 GISci:RS:Resolution & Coverage For MODERATE RESOLUTION ( km) GLOBAL COVERAGE we need to use SENSOR/PLATFORM COMBINATIONS which provide a high geographic coverage but which also provide (WHAT?) high repeat rates (temporal sampling) so that we can fill in the gaps in our maps created by clouds

29 GISci:RS:Resolution & Coverage MODERATE RESOLUTION ( km) RS SYSTEMS HAVE PIXEL SIZES OF 250 m to 1.5 km (or >) AND HIGH REVISIT TIMES to obtain GLOBAL COVERAGE What does this mean for applications, e.g. global land cover mapping or within-biome mapping (e.g. forest type / semi-arid grassland species)?

30 GISci:RS:Systems - Acquisition MODIS and MISR on the NASA EOS Terra Satellite launched in December MODIS = MODerate resolution Imaging Spectrometer MISR = MultiAngular Imaging SpectroRadiometer

31 Forestry Agriculture GISci:RS:What about the practice? Crop stress & disease Yield forecasting Precision Agriculture w/gps Monitoring CRP (US) Monitoring Set-a-Side (EU) Stand stress & disease Inventory Planning Hydrology (runoff ) Geomorphology (erosion) R a n g e o f A p p l i c a t i o n s Natural Resourecs Natural Hazards Semi-natural environments (range, forest, reserves) Geological exploration (minerals/mining) Snow, rivers, lakes, water supply & quality (sediment loads, diatoms) Fire Weather (including tornadoes, floods) Volcanoes Earthquakes Landslides Airborne particulate matter (dust, PM10s) Tsetse fly and ticks (yes, really)

32 Remote Sensing : The State-of-the-Art REMOTE SENSING IN THE SOLAR WAVELENGTHS REMOTE SENSING AT THERMAL INFRA-RED WAVELENGTHS REMOTE SENSING AT MICROWAVE WAVELENGTHS REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS Imaging spectroscopy ( hyperspectral( hyperspectral,, AVIRIS, Hyperion) LIDAR: light detection and ranging (VCL) Multiangular & BRDF sampling (MISR, CHRIS, POLDER) High spatial resolution imagery (IKONOS, QuickBird,, aerial photography) Land emissivity and LST from multispectral data (temperature-emissivity separation algorithm) Sea surface temperature (AATSR) Multi-polarimetric SAR, interferometry (ERS-1/2, ENVISAT); soil moisture (passive, e.g. SGP97/99) Integrated GIS - combining raster and vector models (e.g., CLEVER mapping project at Cambridge University)

33 Reading & Surfing THE Remote Sensing Tutorial: WHAT YOU CAN LEARN FROM SENSORS ON SPACECRAFT THAT LOOK INWARD AT THE EARTH AND OUTWARD AT THE PLANETS, THE GALAXIES AND, GOING BACK IN TIME, THE COSMOS.. (NASA) tutore.html Fundamentals of Remote Sensing Tutorial (Canadian Ctr. for Remote Sensing).

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning Lecture 6: Multispectral Earth Resource Satellites The University at Albany Fall 2018 Geography and Planning Outline SPOT program and other moderate resolution systems High resolution satellite systems

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

IKONOS High Resolution Multispectral Scanner Sensor Characteristics

IKONOS High Resolution Multispectral Scanner Sensor Characteristics High Spatial Resolution and Hyperspectral Scanners IKONOS High Resolution Multispectral Scanner Sensor Characteristics Launch Date View Angle Orbit 24 September 1999 Vandenberg Air Force Base, California,

More information

remote sensing? What are the remote sensing principles behind these Definition

remote sensing? What are the remote sensing principles behind these Definition Introduction to remote sensing: Content (1/2) Definition: photogrammetry and remote sensing (PRS) Radiation sources: solar radiation (passive optical RS) earth emission (passive microwave or thermal infrared

More information

Remote Sensing 1 Principles of visible and radar remote sensing & sensors

Remote Sensing 1 Principles of visible and radar remote sensing & sensors Remote Sensing 1 Principles of visible and radar remote sensing & sensors Nick Barrand School of Geography, Earth & Environmental Sciences University of Birmingham, UK Field glaciologist collecting data

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

1. Theory of remote sensing and spectrum

1. Theory of remote sensing and spectrum 1. Theory of remote sensing and spectrum 7 August 2014 ONUMA Takumi Outline of Presentation Electromagnetic wave and wavelength Sensor type Spectrum Spatial resolution Spectral resolution Mineral mapping

More information

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing Mads Olander Rasmussen (mora@dhi-gras.com) 01. Introduction to Remote Sensing DHI What is remote sensing? the art, science, and technology

More information

REMOTE SENSING INTERPRETATION

REMOTE SENSING INTERPRETATION REMOTE SENSING INTERPRETATION Jan Clevers Centre for Geo-Information - WU Remote Sensing --> RS Sensor at a distance EARTH OBSERVATION EM energy Earth RS is a tool; one of the sources of information! 1

More information

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage 746A27 Remote Sensing and GIS Lecture 3 Multi spectral, thermal and hyper spectral sensing and usage Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Multi

More information

746A27 Remote Sensing and GIS

746A27 Remote Sensing and GIS 746A27 Remote Sensing and GIS Lecture 1 Concepts of remote sensing and Basic principle of Photogrammetry Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University What

More information

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003 Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry 28 April 2003 Outline Passive Microwave Radiometry Rayleigh-Jeans approximation Brightness temperature Emissivity and dielectric constant

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

Remote Sensing for Rangeland Applications

Remote Sensing for Rangeland Applications Remote Sensing for Rangeland Applications Jay Angerer Ecological Training June 16, 2012 Remote Sensing The term "remote sensing," first used in the United States in the 1950s by Ms. Evelyn Pruitt of the

More information

Introduction of Satellite Remote Sensing

Introduction of Satellite Remote Sensing Introduction of Satellite Remote Sensing Spatial Resolution (Pixel size) Spectral Resolution (Bands) Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands)

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

Remote Sensing and GIS

Remote Sensing and GIS Remote Sensing and GIS Atmosphere Reflected radiation, e.g. Visible Emitted radiation, e.g. Infrared Backscattered radiation, e.g. Radar (λ) Visible TIR Radar & Microwave 11/9/2017 Geo327G/386G, U Texas,

More information

John P. Stevens HS: Remote Sensing Test

John P. Stevens HS: Remote Sensing Test Name(s): Date: Team name: John P. Stevens HS: Remote Sensing Test 1 Scoring: Part I - /18 Part II - /40 Part III - /16 Part IV - /14 Part V - /93 Total: /181 2 I. History (3 pts. each) 1. What is the name

More information

Lecture 13: Remotely Sensed Geospatial Data

Lecture 13: Remotely Sensed Geospatial Data Lecture 13: Remotely Sensed Geospatial Data A. The Electromagnetic Spectrum: The electromagnetic spectrum (Figure 1) indicates the different forms of radiation (or simply stated light) emitted by nature.

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

Some Basic Concepts of Remote Sensing. Lecture 2 August 31, 2005

Some Basic Concepts of Remote Sensing. Lecture 2 August 31, 2005 Some Basic Concepts of Remote Sensing Lecture 2 August 31, 2005 What is remote sensing Remote Sensing: remote sensing is science of acquiring, processing, and interpreting images and related data that

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

A broad survey of remote sensing applications for many environmental disciplines

A broad survey of remote sensing applications for many environmental disciplines 1 2 3 4 A broad survey of remote sensing applications for many environmental disciplines 5 6 7 8 9 10 1. First definition is very general and applies to many types of remote sensing. You use your eyes

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Popular Remote Sensing Sensors & their Selection Michiel Damen (September 2011) damen@itc.nl 1 Overview Low resolution

More information

UNERSITY OF NAIROBI UNIT: PRICIPLES AND APPLICATIONS OF REMOTE SENSING AND APLLIED CLIMATOLOGY

UNERSITY OF NAIROBI UNIT: PRICIPLES AND APPLICATIONS OF REMOTE SENSING AND APLLIED CLIMATOLOGY UNERSITY OF NAIROBI DEPARTMENT OF METEOROLOGY UNIT: PRICIPLES AND APPLICATIONS OF REMOTE SENSING AND APLLIED CLIMATOLOGY COURSE CODE: SMR 308 GROUP TWO: SENSORS MEMBERS OF GROUP TWO 1. MUTISYA J.M I10/2784/2006

More information

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition Module 3 Introduction to GIS Lecture 8 GIS data acquisition GIS workflow Data acquisition (geospatial data input) GPS Remote sensing (satellites, UAV s) LiDAR Digitized maps Attribute Data Management Data

More information

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry Satellite Imagery and Remote Sensing DeeDee Whitaker SW Guilford High EES & Chemistry whitakd@gcsnc.com Outline What is remote sensing? How does remote sensing work? What role does the electromagnetic

More information

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks)

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks) Final Examination Introduction to Remote Sensing Time: 1.5 hrs Max. Marks: 50 Note: Attempt all questions. Section-I (50 x 1 = 50 Marks) 1... is the technology of acquiring information about the Earth's

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Daniel McInerney Urban Institute Ireland, University College Dublin, Richview Campus, Clonskeagh Drive, Dublin 14. 16th June 2009 Presentation Outline 1 2 Spaceborne Sensors

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

Ghazanfar A. Khattak National Centre of Excellence in Geology University of Peshawar

Ghazanfar A. Khattak National Centre of Excellence in Geology University of Peshawar INTRODUCTION TO REMOTE SENSING Ghazanfar A. Khattak National Centre of Excellence in Geology University of Peshawar WHAT IS REMOTE SENSING? Remote sensing is the science of acquiring information about

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

Microwave Remote Sensing

Microwave Remote Sensing Provide copy on a CD of the UCAR multi-media tutorial to all in class. Assign Ch-7 and Ch-9 (for two weeks) as reading material for this class. HW#4 (Due in two weeks) Problems 1,2,3 and 4 (Chapter 7)

More information

Fundamentals of Remote Sensing

Fundamentals of Remote Sensing Climate Variability, Hydrology, and Flooding Fundamentals of Remote Sensing May 19-22, 2015 GEO-Latin American & Caribbean Water Cycle Capacity Building Workshop Cartagena, Colombia 1 Objective To provide

More information

Remote Sensing Platforms

Remote Sensing Platforms Types of Platforms Lighter-than-air Remote Sensing Platforms Free floating balloons Restricted by atmospheric conditions Used to acquire meteorological/atmospheric data Blimps/dirigibles Major role - news

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

JP Stevens High School: Remote Sensing

JP Stevens High School: Remote Sensing 1 Name(s): ANSWER KEY Date: Team name: JP Stevens High School: Remote Sensing Scoring: Part I - /18 Part II - /40 Part III - /16 Part IV - /14 Part V - /93 Total: /181 2 I. History (3 pts each) 1. What

More information

RADAR (RAdio Detection And Ranging)

RADAR (RAdio Detection And Ranging) RADAR (RAdio Detection And Ranging) CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE Real

More information

SATELLITE OCEANOGRAPHY

SATELLITE OCEANOGRAPHY SATELLITE OCEANOGRAPHY An Introduction for Oceanographers and Remote-sensing Scientists I. S. Robinson Lecturer in Physical Oceanography Department of Oceanography University of Southampton JOHN WILEY

More information

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf(

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf( GMAT x600 Remote Sensing / Earth Observation Types of Sensor Systems (1) Outline Image Sensor Systems (i) Line Scanning Sensor Systems (passive) (ii) Array Sensor Systems (passive) (iii) Antenna Radar

More information

REMOTE SENSING FOR FLOOD HAZARD STUDIES.

REMOTE SENSING FOR FLOOD HAZARD STUDIES. REMOTE SENSING FOR FLOOD HAZARD STUDIES. OPTICAL SENSORS. 1 DRS. NANETTE C. KINGMA 1 Optical Remote Sensing for flood hazard studies. 2 2 Floods & use of remote sensing. Floods often leaves its imprint

More information

Remote Sensing in Daily Life. What Is Remote Sensing?

Remote Sensing in Daily Life. What Is Remote Sensing? Remote Sensing in Daily Life What Is Remote Sensing? First time term Remote Sensing was used by Ms Evelyn L Pruitt, a geographer of US in mid 1950s. Minimal definition (not very useful): remote sensing

More information

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2) Remote Sensing Ch. 3 Microwaves (Part 1 of 2) 3.1 Introduction 3.2 Radar Basics 3.3 Viewing Geometry and Spatial Resolution 3.4 Radar Image Distortions 3.1 Introduction Microwave (1cm to 1m in wavelength)

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Remote Sensing Defined Remote Sensing is: The art and science of

More information

Remote Sensing Platforms

Remote Sensing Platforms Remote Sensing Platforms Remote Sensing Platforms - Introduction Allow observer and/or sensor to be above the target/phenomena of interest Two primary categories Aircraft Spacecraft Each type offers different

More information

Introduction to Remote Sensing. Electromagnetic Energy. Data From Wave Phenomena. Electromagnetic Radiation (EMR) Electromagnetic Energy

Introduction to Remote Sensing. Electromagnetic Energy. Data From Wave Phenomena. Electromagnetic Radiation (EMR) Electromagnetic Energy A Basic Introduction to Remote Sensing (RS) ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland, Oregon 1 September 2015 Introduction

More information

Remote Sensing. Division C. Written Exam

Remote Sensing. Division C. Written Exam Remote Sensing Division C Written Exam Team Name: Team #: Team Members: _ Score: /132 A. Matching (10 points) 1. Nadir 2. Albedo 3. Diffraction 4. Refraction 5. Spatial Resolution 6. Temporal Resolution

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Dr. Mathias (Mat) Disney UCL Geography Office: 301, 3rd Floor, Chandler House Tel: 7670 4290 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney 1 Course outline Format

More information

Remote Sensing for Resource Management

Remote Sensing for Resource Management Remote Sensing for Resource Management Ebenezer Nyadjro US Naval Research Lab/UNO RMU Summer Program (July 31-AUG 4, 2017) Motivation Polluted Pra River Motivation. 3 Motivation Polluted Pra River Motivation.

More information

3/31/03. ESM 266: Introduction 1. Observations from space. Remote Sensing: The Major Source for Large-Scale Environmental Information

3/31/03. ESM 266: Introduction 1. Observations from space. Remote Sensing: The Major Source for Large-Scale Environmental Information Remote Sensing: The Major Source for Large-Scale Environmental Information Jeff Dozier Observations from space Sun-synchronous polar orbits Global coverage, fixed crossing, repeat sampling Typical altitude

More information

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes A condensed overview George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) The art and science

More information

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur.

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur. Basics of Remote Sensing Some literature references Franklin, SE 2001 Remote Sensing for Sustainable Forest Management Lewis Publishers 407p Lillesand, Kiefer 2000 Remote Sensing and Image Interpretation

More information

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments Lecture Notes Prepared by Prof. J. Francis Spring 2005 Remote Sensing Instruments Material from Remote Sensing Instrumentation in Weather Satellites: Systems, Data, and Environmental Applications by Rao,

More information

INF-GEO Introduction to remote sensing

INF-GEO Introduction to remote sensing INF-GEO 4310 Introduction to remote sensing Anne Solberg (anne@ifi.uio.no) Satellites, orbits and repeat cycles Optical remote sensings Based on a tutorial adapted from Canadian Center for Remote Sensing,

More information

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS REMOTE SENSING Topic 10 Fundamentals of Digital Multispectral Remote Sensing Chapter 5: Lillesand and Keifer Chapter 6: Avery and Berlin MULTISPECTRAL SCANNERS Record EMR in a number of discrete portions

More information

Introduction to Remote Sensing Part 1

Introduction to Remote Sensing Part 1 Introduction to Remote Sensing Part 1 A Primer on Electromagnetic Radiation Digital, Multi-Spectral Imagery The 4 Resolutions Displaying Images Corrections and Enhancements Passive vs. Active Sensors Radar

More information

Interpreting land surface features. SWAC module 3

Interpreting land surface features. SWAC module 3 Interpreting land surface features SWAC module 3 Interpreting land surface features SWAC module 3 Different kinds of image Panchromatic image True-color image False-color image EMR : NASA Echo the bat

More information

GIS Data Collection. Remote Sensing

GIS Data Collection. Remote Sensing GIS Data Collection Remote Sensing Data Collection Remote sensing Introduction Concepts Spectral signatures Resolutions: spectral, spatial, temporal Digital image processing (classification) Other systems

More information

Introduction to Remote Sensing of the Environment. Dr. Anne Nolin Department of Geosciences

Introduction to Remote Sensing of the Environment. Dr. Anne Nolin Department of Geosciences Introduction to Remote Sensing of the Environment Dr. Anne Nolin Department of Geosciences Overview of today s lecture Course overview Definitions How measurements are made Analog vs. digital The remote

More information

On the use of water color missions for lakes in 2021

On the use of water color missions for lakes in 2021 Lakes and Climate: The Role of Remote Sensing June 01-02, 2017 On the use of water color missions for lakes in 2021 Cédric G. Fichot Department of Earth and Environment 1 Overview 1. Past and still-ongoing

More information

Aerial photography and Remote Sensing. Bikini Atoll, 2013 (60 years after nuclear bomb testing)

Aerial photography and Remote Sensing. Bikini Atoll, 2013 (60 years after nuclear bomb testing) Aerial photography and Remote Sensing Bikini Atoll, 2013 (60 years after nuclear bomb testing) Computers have linked mapping techniques under the umbrella term : Geomatics includes all the following spatial

More information

Part I. The Importance of Image Registration for Remote Sensing

Part I. The Importance of Image Registration for Remote Sensing Part I The Importance of Image Registration for Remote Sensing 1 Introduction jacqueline le moigne, nathan s. netanyahu, and roger d. eastman Despite the importance of image registration to data integration

More information

Remote Sensing Exam 2 Study Guide

Remote Sensing Exam 2 Study Guide Remote Sensing Exam 2 Study Guide Resolution Analog to digital Instantaneous field of view (IFOV) f ( cone angle of optical system ) Everything in that area contributes to spectral response mixels Sampling

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Outline for today. Geography 411/611 Remote sensing: Principles and Applications. Remote sensing: RS for biogeochemical cycles

Outline for today. Geography 411/611 Remote sensing: Principles and Applications. Remote sensing: RS for biogeochemical cycles Geography 411/611 Remote sensing: Principles and Applications Thomas Albright, Associate Professor Laboratory for Conservation Biogeography, Department of Geography & Program in Ecology, Evolution, & Conservation

More information

Remote Sensing of the Environment

Remote Sensing of the Environment Remote Sensing of the Environment An Earth Resource Perspective John R. Jensen University of South Carolina Prentice Hall Upper Saddle River, New Jersey 07458 Brief Contents 1 Remote Sensing of the Environment

More information

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION F. Gao a, b, *, J. G. Masek a a Biospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA b Earth

More information

INF-GEO Introduction to remote sensing. Anne Solberg

INF-GEO Introduction to remote sensing. Anne Solberg INF-GEO 4310 Introduction to remote sensing Anne Solberg (anne@ifi.uio.no) Satellites, orbits and repeat cycles Optical remote sensing Useful links: Glossary for remote sensing terms: http://www.ccrs.nracn.gc.ca/glossary/index_e.php

More information

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Radiometric Resolution

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Radiometric Resolution CHARACTERISTICS OF REMOTELY SENSED IMAGERY Radiometric Resolution There are a number of ways in which images can differ. One set of important differences relate to the various resolutions that images express.

More information

Overview of how remote sensing is used by the wildland fire community.

Overview of how remote sensing is used by the wildland fire community. Overview of how remote sensing is used by the wildland fire community. Presented to the ASEN 6210 Remote Sensing Seminar on 2/18/04 by: Jeff Baranyi ESRI Denver Reported by Gary Fager. Images are from

More information

Remote Sensing. Measuring an object from a distance. For GIS, that means using photographic or satellite images to gather spatial data

Remote Sensing. Measuring an object from a distance. For GIS, that means using photographic or satellite images to gather spatial data Remote Sensing Measuring an object from a distance For GIS, that means using photographic or satellite images to gather spatial data Remote Sensing measures electromagnetic energy reflected or emitted

More information

Lecture 1 Introduction to Remote Sensing

Lecture 1 Introduction to Remote Sensing Lecture 1 Introduction to Remote Sensing Dr Ian Leiper School of Environmental and Life Sciences Bldg Purple 12.2.27 1 2 Lecture Outline Introductions Unit admin Learning outcomes Unit outline Practicals

More information

Digital Image Processing - A Remote Sensing Perspective

Digital Image Processing - A Remote Sensing Perspective ISSN 2278 0211 (Online) Digital Image Processing - A Remote Sensing Perspective D.Sarala Department of Physics & Electronics St. Ann s College for Women, Mehdipatnam, Hyderabad, India Sunita Jacob Head,

More information

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns)

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns) Spectral Signatures % REFLECTANCE VISIBLE NEAR INFRARED Vegetation Soil Water.5. WAVELENGTH (microns). Spectral Reflectance of Urban Materials 5 Parking Lot 5 (5=5%) Reflectance 5 5 5 5 5 Wavelength (nm)

More information

Satellite/Aircraft Imaging Systems Imaging Sensors Standard scanner designs Image data formats

Satellite/Aircraft Imaging Systems Imaging Sensors Standard scanner designs Image data formats CEE 6150: Digital Image Processing 1 Satellite/Aircraft Imaging Systems Imaging Sensors Standard scanner designs Image data formats CEE 6150: Digital Image Processing 2 CEE 6150: Digital Image Processing

More information

RADAR REMOTE SENSING

RADAR REMOTE SENSING RADAR REMOTE SENSING Jan G.P.W. Clevers & Steven M. de Jong Chapter 8 of L&K 1 Wave theory for the EMS: Section 1.2 of L&K E = electrical field M = magnetic field c = speed of light : propagation direction

More information

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010 APCAS/10/21 April 2010 Agenda Item 8 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION Siem Reap, Cambodia, 26-30 April 2010 The Use of Remote Sensing for Area Estimation by Robert

More information

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Contents Introduction GMES Copernicus Six thematic areas Infrastructure Space data An introduction to Remote Sensing In-situ data Applications

More information

From Proba-V to Proba-MVA

From Proba-V to Proba-MVA From Proba-V to Proba-MVA Fabrizio Niro ESA Sensor Performances Products and Algorithm (SPPA) ESA UNCLASSIFIED - For Official Use Proba-V extension in the Copernicus era Proba-V was designed with the main

More information

Earth s Gravitational Pull

Earth s Gravitational Pull Satellite & Sensors Space Countries Earth s Gravitational Pull The Earth's gravity pulls everything toward the Earth. In order to orbit the Earth, the velocity of a body must be great enough to overcome

More information

Solid Earth Timeline with a smattering of cryosphere technology

Solid Earth Timeline with a smattering of cryosphere technology Solid Earth Timeline with a smattering of cryosphere technology Muhammed Kabiru Hassan * Rebecca Boon Image from http://www.clipartheaven.com/show/clipart/technology_&_communication/satellites/satellite_23-gif.html

More information

LE/ESSE Payload Design

LE/ESSE Payload Design LE/ESSE4360 - Payload Design 3.2 Spacecraft Sensors Introduction to Sensors Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Professor of Space Engineering Department of Earth and Space Science and Engineering

More information

Chapter 8. Remote sensing

Chapter 8. Remote sensing 1. Remote sensing 8.1 Introduction 8.2 Remote sensing 8.3 Resolution 8.4 Landsat 8.5 Geostationary satellites GOES 8.1 Introduction What is remote sensing? One can describe remote sensing in different

More information

BASICS OF REMOTE SENSING

BASICS OF REMOTE SENSING BASICS OF REMOTE SENSING 23: Basics of Remote Sensing Shibendu Shankar Ray Mahalanobis National Crop Forecast Centre, Department of Agriculture & Cooperation, Krishi Vistar Sadan, Pusa Campus, New Delhi

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Introduction to Remote Sensing Michiel Damen (September 2011) damen@itc.nl 1 Overview Some definitions Remote

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Remote Sensing Platforms Michiel Damen (September 2011) damen@itc.nl 1 Overview Platforms & missions aerial surveys

More information

Environmental and Natural Resources Issues in Minnesota. A Remote Sensing Overview: Principles and Fundamentals. Outline. Challenges.

Environmental and Natural Resources Issues in Minnesota. A Remote Sensing Overview: Principles and Fundamentals. Outline. Challenges. A Remote Sensing Overview: Principles and Fundamentals Marvin Bauer Remote Sensing and Geospatial Analysis Laboratory College of Natural Resources University of Minnesota Remote Sensing for GIS Users Workshop,

More information

Textbook, Chapter 15 Textbook, Chapter 10 (only 10.6)

Textbook, Chapter 15 Textbook, Chapter 10 (only 10.6) AGOG 484/584/ APLN 551 Fall 2018 Concept definition Applications Instruments and platforms Techniques to process hyperspectral data A problem of mixed pixels and spectral unmixing Reading Textbook, Chapter

More information

INTRODUCTION TO REMOTE SENSING AND ITS APPLICATIONS

INTRODUCTION TO REMOTE SENSING AND ITS APPLICATIONS INTRODUCTION TO REMOTE SENSING AND ITS APPLICATIONS Prof. Dr. Abudeif A. Bakheit Geology Department. Faculty of Science Assiut University This representation was prepared from different power point representations

More information

A map says to you, 'Read me carefully, follow me closely, doubt me not.' It says, 'I am the Earth in the palm of your hand. Without me, you are alone

A map says to you, 'Read me carefully, follow me closely, doubt me not.' It says, 'I am the Earth in the palm of your hand. Without me, you are alone A map says to you, 'Read me carefully, follow me closely, doubt me not.' It says, 'I am the Earth in the palm of your hand. Without me, you are alone and lost. Beryl Markham (West With the Night, 1946

More information

Satellite Remote Sensing: Earth System Observations

Satellite Remote Sensing: Earth System Observations Satellite Remote Sensing: Earth System Observations Land surface Water Atmosphere Climate Ecosystems 1 EOS (Earth Observing System) Develop an understanding of the total Earth system, and the effects of

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

FOR 353: Air Photo Interpretation and Photogrammetry. Lecture 2. Electromagnetic Energy/Camera and Film characteristics

FOR 353: Air Photo Interpretation and Photogrammetry. Lecture 2. Electromagnetic Energy/Camera and Film characteristics FOR 353: Air Photo Interpretation and Photogrammetry Lecture 2 Electromagnetic Energy/Camera and Film characteristics Lecture Outline Electromagnetic Radiation Theory Digital vs. Analog (i.e. film ) Systems

More information

Remote Sensing. in Agriculture. Dr. Baqer Ramadhan CRP 514 Geographic Information System. Adel M. Al-Rebh G Term Paper.

Remote Sensing. in Agriculture. Dr. Baqer Ramadhan CRP 514 Geographic Information System. Adel M. Al-Rebh G Term Paper. Remote Sensing in Agriculture Term Paper to Dr. Baqer Ramadhan CRP 514 Geographic Information System By Adel M. Al-Rebh G199325390 May 2012 Table of Contents 1.0 Introduction... 4 2.0 Objective... 4 3.0

More information

Atmospheric interactions; Aerial Photography; Imaging systems; Intro to Spectroscopy Week #3: September 12, 2018

Atmospheric interactions; Aerial Photography; Imaging systems; Intro to Spectroscopy Week #3: September 12, 2018 GEOL 1460/2461 Ramsey Introduction/Advanced Remote Sensing Fall, 2018 Atmospheric interactions; Aerial Photography; Imaging systems; Intro to Spectroscopy Week #3: September 12, 2018 I. Quick Review from

More information

INF-GEO Introduction to remote sensing

INF-GEO Introduction to remote sensing INF-GEO 4310 Introduction to remote sensing Anne Solberg (anne@ifi.uio.no) Satellites, orbits and repeat cycles Optical remote sensing Based on a tutorialt adapted d from Canadian Center for Remote Sensing,

More information