Training Guide for Carl Zeiss LSM 510 META Confocal Microscope

Size: px
Start display at page:

Download "Training Guide for Carl Zeiss LSM 510 META Confocal Microscope"

Transcription

1 Training Guide for Carl Zeiss LSM 510 META Confocal Microscope AIM 4.2 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017)

2 Power ON Routine 1 2 Turn ON Components and System/PC switches on remote paddle. 2 LSM 510 META Training Guide 3 Turn ON X-Cite epifluorescence light source. Turn ON System PC. Wait for PC to boot into Windows OS and login to LSM User account.

3 Power ON Routine Double click LSM 510 icon from desktop to start AIM software. From the Switchboard, select toggle for Scan New Images and then click Start Expert Mode. Wait for system to complete its initialization. 3 LSM 510 META Training Guide

4 Getting Started with AIM 4.2 The AIM software is contained within the stand-alone toolbar illustrated below. The first two buttons along the top row of options are the main functions used for image collection. They are: File The File Menu contains tools necessary for creating image databases as well as importing/exporting native.lsm files to other formats such as TIFF or JPEG. By default, the AIM software saves natively scanned image data to the.lsm file format. The LSM file format is essentially a TIFF file, but the header of the file contains all the proprietary detail about the settings used to collect the image. When you save a file, not only is an LSM file saved but also a reference to a MS Access database, which defines the location where the image is stored as well as provides a catalog of images and a display of their information. 4 LSM 510 META Training Guide

5 Getting Started with AIM 4.2 Acquire The Acquire menu contains all the functions for defining your microscope settings, configuring your imaging conditions, defining your scan settings and collecting your image(s). It reads left-to-right in the order that you utilize the tools. 5 LSM 510 META Training Guide

6 Power On Lasers The first thing we need to do before we mount our sample or configure any settings is to power on all the lasers we will require for our experiment. The LSM 510 META has 4 lasers; an Argon laser (458, 488, 514nm), 2 HeNe lasers (543, 633nm) and a diode (405nm). The Argon laser has a very specific power routine listed below. All other lasers can be quickly switched on/off. 1. From the Acquire mode on the main toolbar, click Laser. 2. Select the Argon laser from the Laser Control dialog. 3. Click Standby. 4. Wait for laser to warm up and reach a standby tube current of between A. 5. Click On. 6. Increase Output (%) until Tube Current reads 6.1A. Note: 6.1A is the nominal working current recommended by the laser manufacturer. Running the tube current higher or lower will directly affect the output power and may reduce the lifetime of the laser. 7. Select HeNe543 laser. 8. Click On. 9. Repeat steps 7 and 8 for remaining lasers if required. 6 LSM 510 META Training Guide

7 Mounting Sample on the Microscope Once the system has been powered on, we can mount our specimen on the stage above the microscope objective. 1. From the Acquire menu on the main toolbar, switch microscope mode to VIS from the default LSM. Note: Changing the microscope over to VIS mode will close the shutters for all laser lines and put the microscope in a state where you can visualize fluorescence in the eyepieces. 2. Click Micro to open the Microscope Control dialog. 3. Mount your sample on the stage carrier. 7 LSM 510 META Training Guide

8 Mounting Sample on the Microscope 4. From the Microscope Control dialog, use the shortcut buttons to turn on the fluorescence light path to the desired color. GFP generic green filter set DAPI generic UV filter set RFP generic red filter set OFF all light sources off Note: Alternatively, you can select the filter set (A) manually as well as open/close the epifluorescence shutter (B). There is also control over the transmitted light should you require this (C). Note: If you open the Reflected Light shutter and no light comes through the objective, make sure to toggle Start/Stop button on front of X-Cite power supply (see Power ON Routine Step 3). 5. Via the microscope eyepieces, visualize your sample and adjust the focus (Z) and stage position (X,Y) accordingly. 6. Once your imaging location is found, place it in the center of the field of view. 7. To begin imaging, switch back to LSM from VIS in the main toolbar. 8 LSM 510 META Training Guide

9 Beam Path Configuration The LSM 510 META is equipped with 3 detectors (including a 32 channel spectral array) for up to 8 color simultaneous or sequential image collection. 1. Click Config from the main toolbar to open the light path configuration tool. 9 LSM 510 META Training Guide

10 Beam Path Configuration The Configuration Control dialog is where we configure our beam path for collecting fluorescence signal. It consists of two modes, Channel Mode and Lambda Mode. Channel mode is used for collecting traditional confocal images. Lambda mode is used for spectral imaging of fluorophores with heavily overlapping emissions. In this example, we will design a 2 channel simultaneous image acquisition for Alexa 568 and Alexa 488 dyes. 2. The system defaults to Single Track which allows image collection of up to 8 dyes simultaneously. 3. Click Excitation to expand the laser line selection box. 4. Choose laser line(s) by placing a check in the box next to the laser wavelength. In this example, we will use 488 for Alexa 488 and 543 for Alexa Set Transmission % to reasonable starting value: Argon 5-10% HeNe % HeNe % Diode % 10 LSM 510 META Training Guide

11 Beam Path Configuration 6. Select primary beamsplitter (HFT) to match laser line combinations used. Note: HFT primary beamsplitter will reflect wavelengths of light noted on the filter. In this example, the HFT 488/543 will reflect wavelengths at 488 and 543nm and transmit all other wavelengths. 7. Select secondary beamsplitter(s) to direct fluorescence emission to desired detector. In this example, we use a Mirror to direct all emission to Ch2 & Ch3 then use an NFT 545 to split the Alexa 488 (Ch2) from the Alexa 568 (Ch3). Note: NFT secondary beamsplitters will reflect all wavelengths < cutoff number and transmit all wavelengths > cutoff number. For example, the NFT 545 will reflect wavelengths < 545nm and transmit wavelengths > 545nm. 8. Select emission filter for each channel. Note: Emission filters come in two varieties. BP (band pass) filters transmit only the wavelengths within their range while LP (long pass) filters transmit all wavelengths > the cutoff number. 9. Place a check in the box next to each detector to activate it for imaging. 10. Choose pseudo-color for each resulting image. 11 LSM 510 META Training Guide

12 Acquisition Setup 1. Once your configuration has been established, click on the Scan button from the main toolbar. 12 LSM 510 META Training Guide

13 Acquisition Setup The Scan dialog contains 2 areas, Mode and Channels, which are selected from the top of the dialog. Mode This dialog controls static image settings such as: Objective displays currently selected objective as programmed into microscope. Frame Size image size in pixels. Default is 512x512, however this can be optimized based on objective and zoom settings. Ideal sampling frequency can be quickly selected with the Optimal button. Scan Speed overall speed of the scan during acquisition. Reports pixel dwell time and total scan time. Increasing dwell time (slowing down the scan) will improve signal-to-noise ratio. Bit Depth the number of bits used to indicate the range of signal level in the sample. The default A/D conversion is 12 bit. Averaging selecting Number >1 will scan each X line the number of times and average the result. Used to reduce image noise. Scan Area allows scan area adjustments such as X,Y displacement and rotation of scan in 360 degrees. Zoom can be used to increase magnification without signal loss or objective change. 13 LSM 510 META Training Guide

14 Acquisition Setup The Channels menu contains the three components used to dynamically control image quality. They are (1) Laser Power, (2) Detector Sensitivity, and (3) Pinhole or Confocal Aperture Diameter. For further discussion on these parameters and how they affect image quality please see Understanding Image Quality starting on page 19. Channels Functions available in the Channels dialog: Lasers controls laser power (%) and wavelength selection. Pinhole confocal aperture diameter that controls optical section thickness. Reports section thickness and pinhole diameter. Detector Gain controls the analog amplification voltage for the PMT (in Volts). The higher this value the more sensitive the detector becomes to the signal. Noise is also amplified by gain, albeit at a slower rate. Amplifier Offset controls the dark current offset for the imaging system. When scanning an image with all lasers off this value set to 0 should report background grey values close to/at 0 grey levels. Amplifier Gain is a digital amplification of signal that is applied post A/D conversion. This amplifies signal at the same rate as it amplifies noise. Leave this value set to 1 there are other locations to control image brightness that are more efficient and less destructive. 14 LSM 510 META Training Guide

15 Scanning an Image Once the laser(s) have been turned on and the detector(s) have been selected, we can scan an image and begin adjusting our signal level. 1. From the Channels dialog, set the Pinhole to 1 AU for the longest wavelength channel. Note: Setting the pinhole to 1 AU is a compromise between axial resolution and signal level. When you start with an open pinhole, you are at a point where your signal is the highest but your axial resolution is at its lowest. As you reduce the aperture diameter you are increasing your Z resolution but reducing your signal level. This is a reasonable trade off until you reach 1 AU. Reducing the pinhole lower than 1 AU will still linearly increase your Z resolution but now signal will start to drop exponentially. 2. Click Find to have the system scan the image and automatically adjust the gain and offset. Note: The automatic exposure setting works reasonably well with very bright signals. It is not intended as a final optimization, just as a baseline before fine tuning. 15 LSM 510 META Training Guide

16 Fine Tuning Image Quality In order to find the optimal settings for a particular condition, you must first be able to identify the thresholds of the signal level in the image. From the new image window that is generated with the scan, there are a series of tools along the righthand side of the Image Display. Here you will find a button labeled Palette. In the Color Palette list, you will find Range Indicator which is a lookup table (LUT) that assigns red pixels to areas in the image that are overexposed and blue pixels to background areas that are underexposed. 1. Click on Palette. 2. Select Range Indicator from the list of lookup tables (LUT). Close Color Palette dialog when selection is complete. 3. From the options along the right-hand side of the Image Display, choose Split-xy to view each channel independently. Note: Split-xy is the only way to view the range indicator table on images that have more than one channel. 16 LSM 510 META Training Guide

17 Fine Tuning Image Quality To fine tune the image intensity to ideal levels for final image acquisition use the following steps: 1. Select one channel at a time begin by selecting the first channel in your list. 2. Click Fast XY to start scanning. 3. Turn on Range Indicator LUT as shown on the previous page. 4. Deselect laser checkbox for that channel. 5. Adjust Amplifier Offset until background areas are just above the display of any blue pixels. 6. While still scanning, reselect the laser line (4). 7. Increase Detector Gain until the brightest areas in the image are just below the display of any red pixels. 8. Stop Scan. 9. Repeat steps 4-7 for each channel independently. 10. Click Single to collect final image. 17 LSM 510 META Training Guide

18 Fine Tuning Image Quality Ideally, you do not want any area in the final image to contain red or blue pixels with this LUT. For maximum contrast, have the brightest areas fall just below overexposure (red) and the background areas fall just above underexposure limit (blue). In a properly balanced image you should see no red or blue pixels with this LUT. Example of Overexposed (red) and Underexposed (blue) Areas in Image Example of Properly Exposed Image Solution? Reduce Gain (Master) and increase Digital Offset 18 LSM 510 META Training Guide

19 Understanding Image Quality The result of the final scan above may or may not produce acceptable image quality. Therefore, it is important to have an understanding of the three key factors that play a role in image quality. Pinhole (Confocal Aperture) The confocal aperture controls both axial resolution and signal level. Opening the aperture reduces axial (Z) resolution but increases signal level reported to the detector. Closing this aperture will reduce the signal level but increase axial resolution. Laser Intensity The intensity of the laser illumination source has obvious effects on the signal level. Increasing laser power will increase signal levels but may also introduce nonlinear effects such as phototoxicity and photobleaching. Detector Sensitivity The detector sensitivity is regulated by the high voltage gain applied to the detector. Increasing the gain directly increases detected signal but also amplifies the inherent noise in the system. 19 LSM 510 META Training Guide

20 Understanding Image Quality Pinhole (Confocal Aperture) Ideally, the confocal aperture should be set to the size of the structure(s) you are trying to resolve. However, for example, some sub-cellular structures of interest may be beyond Abbe s diffraction limit and therefore beyond the microscope s capability to resolve. The confocal aperture has some practical limits that can be used to guide the usage of this setting. Start by closing down the confocal aperture to 1 AU. You can certainly close the confocal aperture below this value and continue to improve resolution, just understand that below 1 AU you will lose signal level at an exponential rate. Conversely, you can increase the confocal aperture diameter to improve the detected signal level if you can sacrifice axial resolution. In some cases, the signal level may be so low that increasing the aperture diameter is the only way to lower the gain enough to get a usable image. In other cases, if the gain is too high (causing excess noise) and the laser power cannot be increased due to photo effects then increasing the confocal aperture is the only option to improve image quality. 20 LSM 510 META Training Guide

21 Understanding Image Quality Laser Intensity The overall power of the laser will directly affect image quality but most importantly it will have the greatest impact on the health of your sample and fluorophore(s). Increasing laser power will yield more signal but it will also induce negative photo effects such as phototoxicity and photobleaching that can harm the sample. Lasers also generate considerable heat when used at higher powers and that may have unforeseen effects on the sample. For most lasers on this microscope, we recommend laser power settings between 1% and 5% to start. It is recommended to start as low as you can possibly go and still get an image. Then it can be increased as necessary to help balance image quality. The exception are the HeNe laser(s) these are very low power lasers that can be used safely at 100% output. To discover your fluorophore(s) saturation level (i.e. how much laser power you can use before your fluorophore stops absorbing additional photons) you can start imaging at a low laser power and gradually increase the power slider until you reach a point where your image stops getting brighter. Continual increases in laser power will stop yielding more signal. The point where additional laser power stops increasing signal intensity is the practical laser power limit for that particular fluorophore. 21 LSM 510 META Training Guide

22 Understanding Image Quality Detector Sensitivity The sensitivity of the PMT is a function of the high voltage gain applied to it. The gain setting (as discussed elsewhere in this manual) controls the sensitivity of the detector to photons of light emitted from the sample fluorescence. Increasing gain provides the most flexible and impactful way of improving image quality, but it has some drawbacks. The most obvious is when you increase the gain you also increase the noise in the resulting image. There are various forms of noise that we won t discuss here, but they are readily apparent when using a gain value > 500V. Below 500V it is very difficult to detect much noise at faster scan speeds, however when using the detector above this value you will find that you will need to make some adjustments to reduce this. If laser power is high and the confocal aperture cannot be compromised there are a few methods to dealing with noisy signal due to high detector gain. There are 2 main methods for dealing with high image noise other than laser power and confocal aperture. The first is reducing the scan speed to a slower rate. This will increase the pixel dwell time which will improve the signal-to-noise ratio. The second is signal averaging which will scan the same image multiple times and average the result to produce an image that has an improved signal-to-noise ratio. 22 LSM 510 META Training Guide

23 Understanding Image Quality Depending on the quality of the signal level in the final optimized image, you may find that the image is somewhat noisy. To compensate for this, the system has averaging functions in the Acquisition Mode tab (page 13) that can be used to clean up the image. Simply select the rate of averaging (1, 2, 4, 8, or 16x) and rescan. No Averaging 2x Averaging 4x Averaging 8x Averaging 16x Averaging Note: Averaging signal will increase the acquisition time by the factor of averaging. For example, a 4x average will increase the time to scan the image by a factor of LSM 510 META Training Guide

24 Sequential Image Acquisition The example beam path configuration illustrates how to collect 2 fluorophores simultaneously. Often, simultaneous acquisition will cause unwanted cross excitation of fluorophores leading to the effect known as Emission Crosstalk. Emission Crosstalk manifests as the signal from the lower wavelength fluorophore appearing in the image corresponding to the longer wavelength. In our example, we would see the signal corresponding to the Alexa 488 (green) showing up in the channel designated to the Alexa 568 (red) illustrated below: Example of Simultaneous Image Acquisition 24 LSM 510 META Training Guide

25 Sequential Image Acquisition Emission Crosstalk can be corrected by sequentially acquiring images or via spectral imaging. On the LSM 5 series, sequential imaging is known as Multi-Tracking. Multi-Tracking collects each channel independently, taking twice the amount of time for a 2 channel image as the simultaneous acquisition. Below you can see an example of sequential imaging. Compare this to the same area taken in the simultaneous acquisition above. Example of Sequential Image Acquisition 25 LSM 510 META Training Guide

26 Sequential Image Acquisition Sequential imaging (or Multi-Tracking) can be accomplished on the LSM 5 series by changing the configuration mode. 1. Select MultiTrack from the Channel Mode in the configuration dialog. 2. Select Switch tracks after each to Line. Note: Choosing Line will allow the system to switch imaging tracks between each X line, minimizing the potential for any sample drift during the scan. Note: By default, the configuration we programmed into the Single Track mode will transfer to the first track of the MultiTrack mode. 3. Give your first track a name. In this example, Alexa 568 will be our first track. 4. Turn on ONLY the detector that corresponds to the fluorophore for the current track. 5. Turn on ONLY the laser line that corresponds to the fluorophore for the current track. 6. Click Add Track. 7. Repeat steps 3-5 for the second track with the settings required for the additional fluorophore. 26 LSM 510 META Training Guide

27 Sequential Image Acquisition Example of beam path configurations for 2 channel sequential acquisition. Example of Alexa 568 beam path Example of Alexa 488 beam path 27 LSM 510 META Training Guide

28 Collecting a Z-Stack In order to collect serial sections (Z) we need to first activate the Z-Stack tools in AIM from the Scan button on the main toolbar. 1. Click Z-Stack from top of the Scan Control dialog. This will activate the Z Stack settings. 2. Select Mark First/Last from the Z options. 3. Click XY cont. to begin scanning an actively updated image. 4. Focus the drive in one direction (does not matter which direction you start with) until the image of your sample just goes out of focus. 5. Click Mark First to mark the start position. 6. While continuing to scan, focus the drive in the opposite direction until your sample comes back into focus, then continue focusing until it goes out of focus again. This time on the other side of the sample. 7. Click Mark Last. 8. Click Z Slice to open the slice thickness dialog. 9. From the Z Slice dialog, click Optimal Interval to set the interval size to be equal to ½ the optical section thickness. 10. Click Start to initiate your Z-Stack. 28 LSM 510 META Training Guide

29 Collecting a Time Series In order to collect a time series (T), we need to first activate the Time Series tools in AIM from the main toolbar. 1. Open the Time Series dialog from the main toolbar. The default mode for Start Series and Stop Series is Manual, which means that the Time Series will start immediately when the user clicks Start T and end when the Number of images has been scanned. To calculate the required number of time points, divide the duration you require for the series by the interval. For example, if we wish to collect for 6 hours in total with an interval of 5 minutes between images we would use the following equation (6x60) / 5 = 72 images. 2. Adjust Number of images to match your required calculations. 3. Adjust Time Interval to match your required calculations. 4. Click Start T to begin collecting the time series. 29 LSM 510 META Training Guide

30 Saving Images Once your image collection is complete you can save your data to the local hard drive. 1. From the Image Display window, click Save As in the lower right corner of the image. This will open the Save Image and Parameter As dialog. 2. From the Save dialog, select a database from the list of recently opened databases. Note: If you have not yet created a database click Create New Database and navigate to D:\ and create a folder with your name. Give your database a name and click Create to save the newly created database into your folder. 3. Give your file a Name and enter any description or notes you wish to have saved with the file and click OK. Note: The image file is saved into the same location as the database by default. Note: The default format for the AIM system is LSM 5. This file format is essentially a TIFF file that contains all the requisite system information in the file header. This will allow functions such as Reuse to work correctly. 30 LSM 510 META Training Guide

31 Shutting Down the System 1. Open the Laser Control dialog (See page 6, Power On Lasers) and select each laser you have powered on and turn them off. 2. Close AIM application. 3. Exit from Switchboard. 4. Shut down Windows operating system. Note: Please wait for operating system to shut down completely before proceeding to next steps. 5. Turn off X-Cite epifluorescence lamp (see Power On Routine Step 2). 6. Turn off Systems PC and Components power switches (see Power On Routine Step 1). 31 LSM 510 META Training Guide

Training Guide for Carl Zeiss LSM 5 LIVE Confocal Microscope

Training Guide for Carl Zeiss LSM 5 LIVE Confocal Microscope Training Guide for Carl Zeiss LSM 5 LIVE Confocal Microscope AIM 4.2 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017) Power ON Routine 1 2 Verify that main power switches on the

More information

Training Guide for Leica SP8 Confocal/Multiphoton Microscope

Training Guide for Leica SP8 Confocal/Multiphoton Microscope Training Guide for Leica SP8 Confocal/Multiphoton Microscope LAS AF v3.3 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017) Power ON Routine 1 2 Turn ON power switch for epifluorescence

More information

Training Guide for Carl Zeiss LSM 7 MP Multiphoton Microscope

Training Guide for Carl Zeiss LSM 7 MP Multiphoton Microscope Training Guide for Carl Zeiss LSM 7 MP Multiphoton Microscope ZEN 2009 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017) Power ON Routine 1 2 Turn Chameleon TiS laser key from Standby

More information

Training Guide for Carl Zeiss LSM 880 with AiryScan FAST

Training Guide for Carl Zeiss LSM 880 with AiryScan FAST Training Guide for Carl Zeiss LSM 880 with AiryScan FAST ZEN 2.3 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2018) Power ON Routine 1 2 Turn ON Main Switch from the remote control

More information

LSM 510 Meta Training Notes

LSM 510 Meta Training Notes LSM 510 Meta Training Notes Turning on the system Turn on X-Cite power supply. This supplies light for epifluorescence for viewing your samples through the microscope. Turn on the remote control switch.

More information

Zeiss LSM 510 Confocor III Training Notes. Center for Cell Analysis & Modeling

Zeiss LSM 510 Confocor III Training Notes. Center for Cell Analysis & Modeling Zeiss LSM 510 Confocor III Training Notes Center for Cell Analysis & Modeling Confocor 3 Start Up Go to System Module Turn on Main Switch, System/ PC, and Components Switches Do you need the arc lamp?

More information

LSM 510 Training Notes

LSM 510 Training Notes LSM 510 Training Notes Turning on the system Turn on the arc lamp, found on the bench top left of the microscope. This supplies light for epifluorescence for viewing your samples through the microscope.

More information

ZEISS LSM510META confocal manual

ZEISS LSM510META confocal manual ZEISS LSM510META confocal manual Switching on the system 1) Switch on the Remote Control button located on the table to the right of the microscope. This is the main switch for the whole system including

More information

Zeiss 780 Training Notes

Zeiss 780 Training Notes Zeiss 780 Training Notes Turn on Main Switch, System PC and Components Switches 780 Start up sequence Do you need the argon laser (458, 488, 514 nm lines)? Yes Turn on the laser s main power switch and

More information

Zeiss 880 Training Notes Zen 2.3

Zeiss 880 Training Notes Zen 2.3 Zeiss 880 Training Notes Zen 2.3 1 Turn on the HXP 120V Lamp 2 Turn on Main Power Switch Turn on the Systems PC Switch Turn on the Components Switch. 3 4 5 Turn on the PC and log into your account. Start

More information

Quick Guide. LSM 5 MP, LSM 510 and LSM 510 META. Laser Scanning Microscopes. We make it visible. M i c r o s c o p y f r o m C a r l Z e i s s

Quick Guide. LSM 5 MP, LSM 510 and LSM 510 META. Laser Scanning Microscopes. We make it visible. M i c r o s c o p y f r o m C a r l Z e i s s LSM 5 MP, LSM 510 and LSM 510 META M i c r o s c o p y f r o m C a r l Z e i s s Quick Guide Laser Scanning Microscopes LSM Software ZEN 2007 August 2007 We make it visible. Contents Page Contents... 1

More information

Operating Instructions for Zeiss LSM 510

Operating Instructions for Zeiss LSM 510 Operating Instructions for Zeiss LSM 510 Location: GNL 6.312q (BSL3) Questions? Contact: Maxim Ivannikov, maivanni@utmb.edu 1 Attend A Complementary Training Before Using The Microscope All future users

More information

LSM 710 Confocal Microscope Standard Operation Protocol

LSM 710 Confocal Microscope Standard Operation Protocol LSM 710 Confocal Microscope Standard Operation Protocol Basic Operation Turning on the system 1. Switch on Main power switch 2. Switch on System / PC power button 3. Switch on Components power button 4.

More information

Things to check before start-up.

Things to check before start-up. Byeong Cha Page 1 11/24/2009 Manual for Leica SP2 Confocal Microscope Enter you name, the date, the time, and the account number in the user log book. Things to check before start-up. Make sure that your

More information

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO TRAINING MANUAL Multiphoton Microscopy LSM 510 META-NLO September 2010 Multiphoton Microscopy Training Manual Multiphoton microscopy is only available on the LSM 510 META-NLO system. This system is equipped

More information

Microscope Confocal LSM510 META

Microscope Confocal LSM510 META Microscope Confocal LSM510 META Welcome to the Zeiss LSM 510 Meta Confocal tutorial. Before using the LSM 510 META, Log off any other computer that is open with your personal login. You will need to put

More information

Training Guide for Carl Zeiss AxioZoom V16 Stereo Microscope

Training Guide for Carl Zeiss AxioZoom V16 Stereo Microscope Training Guide for Carl Zeiss AxioZoom V16 Stereo Microscope ZEN 2012 Optical Imaging & Vital Microscopy Core Baylor College of Medicine (2017) Power ON Routine 1 2 If you require fluorescence imaging,

More information

OPERATING INSTRUCTIONS

OPERATING INSTRUCTIONS Zeiss LSM 510 M eta Confocal M icroscope OPERATING INSTRUCTIONS Starting the System: 1. Turn the black knob on the laser box one-quarter turn from Off to On. You will hear the laser cooling mechanisms

More information

Microscopy from Carl Zeiss

Microscopy from Carl Zeiss Microscopy from Carl Zeiss Contents Page Contents... 1 Introduction... 1 Starting the System... 2 Introduction to ZEN Efficient Navigation... 5 Setting up the microscope... 10 Configuring the beam path

More information

LSM 780 Confocal Microscope Standard Operation Protocol

LSM 780 Confocal Microscope Standard Operation Protocol LSM 780 Confocal Microscope Standard Operation Protocol Basic Operation Turning on the system 1. Sign on log sheet according to Actual start time 2. Check Compressed Air supply for the air table 3. Switch

More information

Internal Medicine Imaging Core Emory University Department of Medicine

Internal Medicine Imaging Core Emory University Department of Medicine Internal Medicine Imaging Core Emory University Department of Medicine 1 OPERATION OF THE ZEISS LSM 510 META YOU MUST SIGN UP TO USE THE MICROSCOPE OR COMPUTER EVERY TIME NO EXCEPTIONS Before attempting

More information

Contents. Introduction

Contents. Introduction Contents Page Contents... 1 Introduction... 1 Starting the System... 2 Introduction to ZEN Efficient Navigation... 5 Setting up the microscope... 10 Configuring the beam path and lasers... 12 Scanning

More information

Title: Leica SP5 Confocal User Manual

Title: Leica SP5 Confocal User Manual Title: Leica SP5 Confocal User Manual Date of first issue: 23/10/2015 Date of review: Version: Admin For assistance or to report an issue Office: CG07 or 05 Email: Igmm-imaginghelpdesk@igmm.ed.ac.uk Website:

More information

Practical work no. 3: Confocal Live Cell Microscopy

Practical work no. 3: Confocal Live Cell Microscopy Practical work no. 3: Confocal Live Cell Microscopy Course Instructor: Mikko Liljeström (MIU) 1 Background Confocal microscopy: The main idea behind confocality is that it suppresses the signal outside

More information

ZEISS LSM 710 NLO Multiphoton microscope Manual/Quick guide

ZEISS LSM 710 NLO Multiphoton microscope Manual/Quick guide ZEISS LSM 710 NLO Multiphoton microscope Manual/Quick guide Matyas Molnar, Biovis 2016 Starting the microscpe 1. Check the microscope if everything looks clean and normal. If not, report it in the logbook.

More information

Quick Guide for Zeiss 710 Laser Scanning Confocal MGH Cancer Center

Quick Guide for Zeiss 710 Laser Scanning Confocal MGH Cancer Center Quick Guide for Zeiss 710 Laser Scanning Confocal MGH Cancer Center For any questions or concerns, please contact: Linda Nieman lnieman@mgh.harvard.edu Office: (617) 643-9684 Cell: (512) 565-8076 Chenyue

More information

Quick Guide for Zeiss 710 Laser Scanning Confocal MGH Cancer Center

Quick Guide for Zeiss 710 Laser Scanning Confocal MGH Cancer Center Quick Guide for Zeiss 710 Laser Scanning Confocal MGH Cancer Center For any questions or concerns, please contact: Linda Nieman lnieman@mgh.harvard.edu Office: (617) 643-9684 Cell: (512) 565-8076 Chenyue

More information

CONFOCAL MICROSCOPE (Zeiss LSM 510 META v4.2)

CONFOCAL MICROSCOPE (Zeiss LSM 510 META v4.2) Wellcome Trust Centre for Human Genetics Molecular Cytogenetics and Microscopy Core CONFOCAL MICROSCOPE (Zeiss LSM 510 META v4.2) 1) STARTING THE SYSTEM Abridged INSTRUCTIONS Switch on the mercury bulb

More information

ZEISS LSM 710 CONFOCAL MICROSCOPE USER MANUAL

ZEISS LSM 710 CONFOCAL MICROSCOPE USER MANUAL ZEISS LSM 710 CONFOCAL MICROSCOPE USER MANUAL START THE SYSTEM... 2 START ZEN SOFTWARE... 3 SET THE TEMPERATURE AND THE CO2 CONTROLLERS... OBSERVATION AT OCULARS... 5 STATIF PRESENTATION... 6 ACQUIRE ONE

More information

Leica SP8 TCS Users Manual

Leica SP8 TCS Users Manual Leica SP8 TCS Users Manual Follow the procedure for start up and log on as posted in the lab. Please log on with your account only and do not share your password with anyone. We track and confirm usage

More information

Leica SP8 TCS Users Manual

Leica SP8 TCS Users Manual Version : 07/08/0 Leica SP8 TCS Users Manual Start up:. Turn the PC Microscope, Scanner Power, Laser Power, and the Laser Emission key to on (bottom right of desk).. Turn on the fluorescent lamp (top left

More information

Cell Biology and Bioimaging Core

Cell Biology and Bioimaging Core Cell Biology and Bioimaging Core Leica TCS SP5 Operating Instructions Starting up the instrument 1. First, log in the log book located on the confocal desk. Include your name, your lab s PI, an account

More information

Leica TCS SP8 Quick Start Guide

Leica TCS SP8 Quick Start Guide Leica TCS SP8 Quick Start Guide Leica TCS SP8 System Overview Start-Up Procedure 1. Turn on the CTR Control Box, Fluorescent Light for the microscope stand. 2. Turn on the Scanner Power (1) on the front

More information

TRAINING MANUAL. Olympus FV1000

TRAINING MANUAL. Olympus FV1000 TRAINING MANUAL Olympus FV1000 September 2014 TABLE OF CONTENTS A. Start-Up Procedure... 1 B. Visual Observation under the Microscope... 1 C. Image Acquisition... 4 A brief Overview of the Settings...

More information

LEICA TCS SP5 AOBS TANDEM USER MANUAL

LEICA TCS SP5 AOBS TANDEM USER MANUAL LEICA TCS SP5 AOBS TANDEM USER MANUAL STARTING THE SYSTEM...2 THE LAS AF SOFTWARE...3 THE «ACQUIRE» MENU...5 CHOOSE AND CREATE A SETTING...6 THE CONTROL PANEL...8 THE DMI6000B MICROSCOPE...10 ACQUIRE ONE

More information

MIF ZEISS LSM510 CONFOCAL USER PROTOCOL

MIF ZEISS LSM510 CONFOCAL USER PROTOCOL MIF ZEISS LSM510 CONFOCAL USER PROTOCOL START-UP Turn on the Mercury Bulb Power Supply (if needed). Power-on the Control Box. Turn on the computer. Open the LSM 510 software. Choose Scan New Images and

More information

Operating Checklist for using the Laser Scanning Confocal Microscope. Leica TCS SP5.

Operating Checklist for using the Laser Scanning Confocal Microscope. Leica TCS SP5. Smith College August 2010 Operating Checklist for using the Laser Scanning Confocal Microscope Leica TCS SP5. CONTENT, page no. Startup, 1 Initial set-up, 1 Software, 2 Microscope Specimen observation

More information

Quick Start Guide. Leica SP5 X

Quick Start Guide. Leica SP5 X Quick Start Guide Leica SP5 X Please note: Some of the information in this guide was taken from Leica Microsystems Leica TCS SP5 LAS AF Guide for New Users. This work is licensed under the Creative Commons

More information

The Zeiss AiryScan System, Confocal Four.

The Zeiss AiryScan System, Confocal Four. The Zeiss AiryScan System, Confocal Four. Overview. The Zeiss AiryScan module is a segmented, radially stacked GaASP detector and collector system designed to subsample the airy disk of a point emission

More information

1 Co Localization and Working flow with the lsm700

1 Co Localization and Working flow with the lsm700 1 Co Localization and Working flow with the lsm700 Samples -1 slide = mousse intestine, Dapi / Ki 67 with Cy3/ BrDU with alexa 488. -1 slide = mousse intestine, Dapi / Ki 67 with Cy3/ no BrDU (but with

More information

Leica TCS SP8 Quick Start Guide

Leica TCS SP8 Quick Start Guide Leica TCS SP8 Quick Start Guide Leica TCS SP8 System Overview Start-Up Procedure 1. Turn on the CTR Control Box, EL6000 fluorescent light source for the microscope stand. 2. Turn on the Scanner Power

More information

Zeiss LSM880 Operating Instructions. UTMB Optical Microscopy Core Jan. 16, 2018

Zeiss LSM880 Operating Instructions. UTMB Optical Microscopy Core Jan. 16, 2018 Zeiss LSM880 Operating Instructions UTMB Optical Microscopy Core Jan. 16, 2018 1 1. Power up the microscope Sing the LOGBOOK Steps below will provide power to the computer and all of the microscope components.

More information

Leica SPEII confocal microscope. Short Manual

Leica SPEII confocal microscope. Short Manual Leica SPEII confocal microscope Short Manual Switching ON sequence: 1. Turn on the Workstation under the bench (top, far right). 2. Turn on the Supply Unit - Laser box (big green switch first and then

More information

Bi/BE 227 Winter Assignment #3. Adding the third dimension: 3D Confocal Imaging

Bi/BE 227 Winter Assignment #3. Adding the third dimension: 3D Confocal Imaging Bi/BE 227 Winter 2016 Assignment #3 Adding the third dimension: 3D Confocal Imaging Schedule: Jan 20: Assignment Jan 20-Feb 8: Work on assignment Feb 10: Student PowerPoint presentations. Goals for this

More information

Zeiss LSM 780 Protocol

Zeiss LSM 780 Protocol Zeiss LSM 780 Protocol 1) System Startup F Please note the sign-up policy. You must inform the facility at least 24 hours beforehand if you can t come; otherwise, you will receive a charge for unused time.

More information

Operation Guide for the Leica SP2 Confocal Microscope Bio-Imaging Facility Hunter College October 2009

Operation Guide for the Leica SP2 Confocal Microscope Bio-Imaging Facility Hunter College October 2009 Operation Guide for the Leica SP2 Confocal Microscope Bio-Imaging Facility Hunter College October 2009 Introduction of Fluoresence Confocal Microscopy The first confocal microscope was invented by Princeton

More information

Zeiss LSM 510 Multiphoton Confocal Microscope

Zeiss LSM 510 Multiphoton Confocal Microscope Zeiss LSM 510 Multiphoton Confocal Microscope Quick Start User Guide LSU Health Sciences Research Core Facility Table of Contents 1 Safety... Page 3 2 Turn On the System... Page 4 3 Start Up the ZEN Software.

More information

SHORT INSTRUCTIONS FOR OPERATING LSM1/2 (Zeiss LSM510) AT CIAN Version 1.4, September 2014

SHORT INSTRUCTIONS FOR OPERATING LSM1/2 (Zeiss LSM510) AT CIAN Version 1.4, September 2014 CIAN LSM1 or LSM2 short instructions, version 1.4, September 2014 page 1 of 6 SHORT INSTRUCTIONS FOR OPERATING LSM1/2 (Zeiss LSM510) AT CIAN Version 1.4, September 2014 Before starting To work with LSM1

More information

LSM 800 Confocal Microscope Standard Operation Protocol

LSM 800 Confocal Microscope Standard Operation Protocol LSM 800 Confocal Microscope Standard Operation Protocol Turning on the system 1. Switch on the Main switch (labeled 1 and 2 ) mounted on the wall. 2. Turn the Laser Key (labeled 3 ) 90 clockwise for power

More information

Supplemental Method Information Zeiss LSM710

Supplemental Method Information Zeiss LSM710 Supplemental Method Information Zeiss LSM710 1 Under the Light Path window set up the confocal for imaging a green dye (Alexa488-EGFP). For example, set up the light path as shown here using the 488 nm

More information

Zeiss LSM 880 Protocol

Zeiss LSM 880 Protocol Zeiss LSM 880 Protocol 1) System Startup Please note put sign-up policy. You must inform the facility at least 24 hours beforehand if you can t come; otherwise, you will receive a charge for unused time.

More information

Nikon A1R. Multi-Photon & Laser Scanning Confocal Microscope. Kyle Marchuk Adam Fries Jordan Briscoe Kaitlin Corbin. April 2017.

Nikon A1R. Multi-Photon & Laser Scanning Confocal Microscope. Kyle Marchuk Adam Fries Jordan Briscoe Kaitlin Corbin. April 2017. Nikon A1R Multi-Photon & Laser Scanning Confocal Microscope Kyle Marchuk Adam Fries Jordan Briscoe Kaitlin Corbin April 2017 Contents 1 Introduction 2 2 Start-Up 2 3 Imaging 4 3.1 Sample Alignment...........................................

More information

Confocal imaging on the Leica TCS SP8. 1) Turn the system on. 2) Use TCS user account. 3) Start LAS X software:

Confocal imaging on the Leica TCS SP8. 1) Turn the system on. 2) Use TCS user account. 3) Start LAS X software: Confocal imaging on the Leica TCS SP8 1) Turn the system on. 2) Use TCS user account. 3) Start LAS X software: 4) Do not touch the microscope while the software is initializing. Choose your options: Turn

More information

Multifluorescence The Crosstalk Problem and Its Solution

Multifluorescence The Crosstalk Problem and Its Solution Multifluorescence The Crosstalk Problem and Its Solution If a specimen is labeled with more than one fluorochrome, each image channel should only show the emission signal of one of them. If, in a specimen

More information

3 Choose the Channels button and set the Channel Settings. Set the Pinhole to 1 Airy unit.

3 Choose the Channels button and set the Channel Settings. Set the Pinhole to 1 Airy unit. 1 Set up the confocal light path for imaging a green dye (e.g. Alexa488-EGFP). For example, under the Configuration Control window the light path could be set up as shown here using the 488 nm LASER (found

More information

Zeiss LSM 510 Multiphoton Confocal Microscope

Zeiss LSM 510 Multiphoton Confocal Microscope Zeiss LSM 510 Multiphoton Confocal Microscope User Guide LSU Health Sciences Center-Shreveport Research Core Facility Table of Contents 1 Safety... Page 3 2 Turn On the System... Page 4 3 Start Up the

More information

Nikon. King s College London. Imaging Centre. N-SIM guide NIKON IMAGING KING S COLLEGE LONDON

Nikon. King s College London. Imaging Centre. N-SIM guide NIKON IMAGING KING S COLLEGE LONDON N-SIM guide NIKON IMAGING CENTRE @ KING S COLLEGE LONDON Starting-up / Shut-down The NSIM hardware is calibrated after system warm-up occurs. It is recommended that you turn-on the system for at least

More information

Swept-Field User Guide

Swept-Field User Guide Swept-Field User Guide Note: for more details see the Prairie user manual at http://www.prairietechnologies.com/resources/software/prairieview.html Please report any problems to Julie Last (jalast@wisc.edu)

More information

Nikon AZ100. Laser Scanning Macro Confocal Microscope. Jordan Briscoe Adam Fries Kyle Marchuk Kaitlin Corbin. May 2017.

Nikon AZ100. Laser Scanning Macro Confocal Microscope. Jordan Briscoe Adam Fries Kyle Marchuk Kaitlin Corbin. May 2017. Nikon AZ100 Laser Scanning Macro Confocal Microscope Jordan Briscoe Adam Fries Kyle Marchuk Kaitlin Corbin May 2017 Contents 1 Introduction 2 2 Hardware - Startup 2 3 Software/Operation 4 3.1 Multidimensional

More information

Confocal 510 Tutorial

Confocal 510 Tutorial Confocal 510 Tutorial You will have to log on in order to use the microscope. You will be charged according the time you are logged in, so please don t forget to log out after you are done. If you don

More information

Nikon Eclipse Ti A1-A Confocal Operating Manual. Start-up. Microscope

Nikon Eclipse Ti A1-A Confocal Operating Manual. Start-up. Microscope Nikon Eclipse Ti A1-A Confocal Operating Manual Start-up 1. Turn on Excite Fluorescent light power supply- metal halide. a. Cool down as for mercury bulb b. Wheel closed liquid light guide 2. Turn on power

More information

Guide to Confocal 5. Starting session

Guide to Confocal 5. Starting session Guide to Confocal 5 Remember that when booking and before starting session you can check for any problems at https://www.bris.ac.uk/biochemistry/uobonly/cif/index.html Starting session Switch on microscope

More information

MIF ZEISS VIOLET CONFOCAL ZEN 2009 PROTOCOL

MIF ZEISS VIOLET CONFOCAL ZEN 2009 PROTOCOL MIF ZEISS VIOLET CONFOCAL ZEN 2009 PROTOCOL START-UP On the Switchbox, turn both black switches to the ON position. Wait for the microscope to boot up completely (watch the screen on the side of the microscope).

More information

Supplemental Figure 1: Histogram of 63x Objective Lens z axis Calculated Resolutions. Results from the MetroloJ z axis fits for 5 beads from each

Supplemental Figure 1: Histogram of 63x Objective Lens z axis Calculated Resolutions. Results from the MetroloJ z axis fits for 5 beads from each Supplemental Figure 1: Histogram of 63x Objective Lens z axis Calculated Resolutions. Results from the MetroloJ z axis fits for 5 beads from each lens with a 1 Airy unit pinhole setting. Many water lenses

More information

Leica Sp5 II Confocal User Guide

Leica Sp5 II Confocal User Guide Leica Sp5 II Confocal User Guide Turning on the Confocal System (instructions are posted in the room) 1. Turn on Laser Power Button 2. Turn Key to On position 3. Turn on Scanner Power Button 4. Turn on

More information

Why and How? Daniel Gitler Dept. of Physiology Ben-Gurion University of the Negev. Microscopy course, Michmoret Dec 2005

Why and How? Daniel Gitler Dept. of Physiology Ben-Gurion University of the Negev. Microscopy course, Michmoret Dec 2005 Why and How? Daniel Gitler Dept. of Physiology Ben-Gurion University of the Negev Why use confocal microscopy? Principles of the laser scanning confocal microscope. Image resolution. Manipulating the

More information

REMEMBER: You have 5GB of disk space on this microscope. Check before you start if you have room for your experiment. If not delete your old data.

REMEMBER: You have 5GB of disk space on this microscope. Check before you start if you have room for your experiment. If not delete your old data. 1 Use of the Zeiss LSM 510 Inverted Firstly please be aware that this microscope should be treated with respect and care at all times. Rules of use: This Microscope can only be used by Masters by Research

More information

Nikon SIM-E & A1-R System

Nikon SIM-E & A1-R System Nikon SIM-E & A1-R System USER GUIDE LSU Health Sciences Center Shreveport Research Core Facility June 01 2017 Chaowei Shang 1 Table of Content 1. Start Up the System... Page 3 Hardware and microscope

More information

User Guide to the IBIF Leica TCS SP8 MP Confocal Microscope

User Guide to the IBIF Leica TCS SP8 MP Confocal Microscope User Guide to the IBIF Leica TCS SP8 MP Confocal Microscope This version: 7.24.14. Introduction The IBIF confocal microscope is made available on a fee-for-use-hour basis to all users who have been trained.

More information

START-UP PROCEDURE 1 THE MICROSCOPE STAND 3 OBJECTIVES 5 STARTING WITH LAS (SOFTWARE) AND SETTING UP THE MICROSCOPE STAND 7

START-UP PROCEDURE 1 THE MICROSCOPE STAND 3 OBJECTIVES 5 STARTING WITH LAS (SOFTWARE) AND SETTING UP THE MICROSCOPE STAND 7 Leica DMI AF6000LX Table of contents START-UP PROCEDURE 1 THE MICROSCOPE STAND 3 OBJECTIVES 5 STARTING WITH LAS (SOFTWARE) AND SETTING UP THE MICROSCOPE STAND 7 ACQUIRE MODULE 6 SETTING THE LIGHTPATH 6

More information

ZEN 2012 SP5 black edition Hotfix 12

ZEN 2012 SP5 black edition Hotfix 12 Information about the software ZEN 2012 SP5 black edition Hotfix 12 Software name: ZEN 2012 Service Pack 5 black edition Hotfix 12 Software version: The software version in ZEN Help About changes to 14.0.12.201

More information

Nikon A1Rsi Confocal Start-Up Sequence

Nikon A1Rsi Confocal Start-Up Sequence 1. Turn the key on the Nikon LUN-V Laser Launch. Nikon A1Rsi Confocal Start-Up Sequence 2. Press the button the left side of the A1Rsi Controller unit. 3. Turn on the power strip underneath the microscope.

More information

Imaging Beyond the Basics: Optimizing Settings on the Leica SP8 Confocal

Imaging Beyond the Basics: Optimizing Settings on the Leica SP8 Confocal Imaging Beyond the Basics: Optimizing Settings on the Leica SP8 Confocal Todays Goal: Introduce some additional functionalities of the Leica SP8 confocal HyD vs. PMT detectors Dye Assistant Scanning By

More information

Boulevard du Temple Daguerrotype (Paris,1838) a busy street? Nyquist sampling for movement

Boulevard du Temple Daguerrotype (Paris,1838) a busy street? Nyquist sampling for movement Boulevard du Temple Daguerrotype (Paris,1838) a busy street? Nyquist sampling for movement CONFOCAL MICROSCOPY BioVis Uppsala, 2017 Jeremy Adler Matyas Molnar Dirk Pacholsky Widefield & Confocal Microscopy

More information

Leica SP8 Resonant Confocal. Quick-Start Guide

Leica SP8 Resonant Confocal. Quick-Start Guide Leica SP8 Resonant Confocal Quick-Start Guide Contents Start-up Preparing for Imaging Part 1 On the scope Part 2 Software interface Part 3 Heat & CO2 incubation Part 4 Other hardware options Shut-down

More information

Horiba LabRAM ARAMIS Raman Spectrometer Revision /28/2016 Page 1 of 11. Horiba Jobin-Yvon LabRAM Aramis - Raman Spectrometer

Horiba LabRAM ARAMIS Raman Spectrometer Revision /28/2016 Page 1 of 11. Horiba Jobin-Yvon LabRAM Aramis - Raman Spectrometer Page 1 of 11 Horiba Jobin-Yvon LabRAM Aramis - Raman Spectrometer The Aramis Raman system is a software selectable multi-wavelength Raman system with mapping capabilities with a 400mm monochromator and

More information

ScanArray Overview. Principle of Operation. Instrument Components

ScanArray Overview. Principle of Operation. Instrument Components ScanArray Overview The GSI Lumonics ScanArrayÒ Microarray Analysis System is a scanning laser confocal fluorescence microscope that is used to determine the fluorescence intensity of a two-dimensional

More information

Title: Nikon A1R Confocal User Manual

Title: Nikon A1R Confocal User Manual Title: Nikon A1R Confocal User Manual Date of first issue: 23/10/2015 Date of review: Version: Admin For assistance or to report an issue Office: CG.07 or CG.05 Email: Igmm-imaginghelpdesk@igmm.ed.ac.uk

More information

Simplified Instructions: Olympus Widefield Microscope S1230

Simplified Instructions: Olympus Widefield Microscope S1230 Contents General Microscope Operation Simple Image Capture Multi-Wavelength Capture Z-Series Timelapse Combining Capture Modes Synopsis of Other Functions Pages 2-23 24-40 41-47 48-56 57-59 60-68 69-83

More information

Contents STARTUP MICROSCOPE CONTROLS CAMERA CONTROLS SOFTWARE CONTROLS EXPOSURE AND CONTRAST MONOCHROME IMAGE HANDLING

Contents STARTUP MICROSCOPE CONTROLS CAMERA CONTROLS SOFTWARE CONTROLS EXPOSURE AND CONTRAST MONOCHROME IMAGE HANDLING Operations Guide Contents STARTUP MICROSCOPE CONTROLS CAMERA CONTROLS SOFTWARE CONTROLS EXPOSURE AND CONTRAST MONOCHROME IMAGE HANDLING Nikon Eclipse 90i Operations Guide STARTUP Startup Powering Up Fluorescence

More information

DIC Imaging using Laser Scanning Microscopes (LSMs) on Axio Imager Stands

DIC Imaging using Laser Scanning Microscopes (LSMs) on Axio Imager Stands DIC Imaging using Laser Scanning Microscopes (LSMs) on Axio Imager Stands Differential Interference Contrast (DIC) imaging is a technique used to increase contrast in brightfield images. In confocal systems,

More information

Microscope Confocal Sp2 Upright.

Microscope Confocal Sp2 Upright. Microscope Confocal Sp2 Upright. Welcome to the Leica Sp2 Confocal Upright tutorial. Before using the Sp2 Invert, You will need to put down your name on the reservation system = http://svintranet.epfl.ch/index.php?optio

More information

Leica TCS SL Confocal Training. Neuroscience Imaging Core Staff. Core Director. Facility Manager

Leica TCS SL Confocal Training. Neuroscience Imaging Core Staff. Core Director. Facility Manager Leica TCS SL Confocal Training Neuroscience Imaging Facility The Ohio State University Rightmire Hall 614-292-1367 Staff Core Director Anthony Brown, Ph. D. 060 Rightmire Hall 614-292-1205 brown.2302@osu.edu

More information

b. Turn the power switch and key to on position for blue laser.

b. Turn the power switch and key to on position for blue laser. OLYMPUS FLUOVIEW 300 CONFOCAL MICOSCOPE OPERATION PROCEDURE 1. Turn ON microscope in this order: 1) Turn on mercury lamp (Note: once the mercury lamp is turned off, DO NOT turn it back on for at least

More information

Zeiss Axio Imager.A1 manual

Zeiss Axio Imager.A1 manual Zeiss Axio Imager.A1 manual Power-up protocol 1. Mercury lamp 2. Power strip on shelf 3. Computer The Mercury lamp should always be first-on and last-off. This prevents any electrical surges caused by

More information

Overview. About other software. Administrator password. 58. UltraVIEW VoX Getting Started Guide

Overview. About other software. Administrator password. 58. UltraVIEW VoX Getting Started Guide Operation 58. UltraVIEW VoX Getting Started Guide Overview This chapter outlines the basic methods used to operate the UltraVIEW VoX system. About other software Volocity places great demands on the computer

More information

Using the Nikon TE2000 Inverted Microscope

Using the Nikon TE2000 Inverted Microscope Wellcome Trust Centre for Human Genetics Molecular Cytogenetics and Microscopy Core Using the Nikon TE2000 Inverted Microscope Fluorescence image acquisition using Scanalytic s IPLab software and the B&W

More information

Use of the HSW5 Spinning Disk Confocal Microscope Updated last May 25, 2010 OK

Use of the HSW5 Spinning Disk Confocal Microscope Updated last May 25, 2010 OK Use of the HSW5 Spinning Disk Confocal Microscope Updated last May 25, 2010 OK Getting Started: 2 Starting Micromanager and Loading a Configuration 3 The Main Micromanager GUI 3 Configuration Settings

More information

Olympus Fluoview 1000S Spectral Confocal Microscope Introduction to the NRI-MCDB Microscopy Facility Spectral Confocal Microscope

Olympus Fluoview 1000S Spectral Confocal Microscope Introduction to the NRI-MCDB Microscopy Facility Spectral Confocal Microscope Olympus Fluoview 1000S Spectral Confocal Microscope Introduction to the NRI-MCDB Microscopy Facility Spectral Confocal Microscope Improved Optics More Lasers 405 diode 440 diode 488 Argon 515 Argon 559

More information

3. are adherent cells (ie. cells in suspension are too far away from the coverslip)

3. are adherent cells (ie. cells in suspension are too far away from the coverslip) Before you begin, make sure your sample... 1. is seeded on #1.5 coverglass (thickness = 0.17) 2. is an aqueous solution (ie. fixed samples mounted on a slide will not work - not enough difference in refractive

More information

Zeiss Deconvolution Microscope: A Quick Guide

Zeiss Deconvolution Microscope: A Quick Guide Zeiss Deconvolution Microscope: A Quick Guide Start-up Uncover microscope. Do not put dust cover on the floor. Plug in both cameras. The default camera is the AxioCam HRm (monochrome camera) for fluorescence

More information

Confocal Application Notes Vol. 5 July 2010

Confocal Application Notes Vol. 5 July 2010 Tile Scan Prepared by Myriam Gastard, PhD Application and Technical Support Group, Leica Microsystems, Inc. In this issue of our Confocal Application Notes, proper set up of the Tile function enables you

More information

Topics. - How to calibrate the LSM scanner. - How to clean the microscope. - How to adjust the pinhole alignment. - How to adjust the Collimator

Topics. - How to calibrate the LSM scanner. - How to clean the microscope. - How to adjust the pinhole alignment. - How to adjust the Collimator Topics - How to calibrate the LSM scanner - How to measure the PSF - How to clean the microscope - How to adjust the pinhole alignment - How to adjust the Collimator How to calibrate the LSM scanner The

More information

Nikon C1si Spectral Laser Scanning Confocal Microscope. User Guide

Nikon C1si Spectral Laser Scanning Confocal Microscope. User Guide Nikon C1si Spectral Laser Scanning Confocal Microscope User Guide Contents: C1Si Turn-On/ShutDown Procedures... 2 Overview... 4 Setup for epi-illumination to view through the eyepieces:... 5 Setup for

More information

Zeiss LSM 510 META Guide

Zeiss LSM 510 META Guide Zeiss LSM 50 META Guide Ge#ng Started. Ensure the main power is switched on (black knob on the far le; of the laser module box).. Turn on the System/PC and Components switches (located on the grey switch

More information

DIC Imaging using Laser Scanning Microscopes (LSM) on Inverted Stands

DIC Imaging using Laser Scanning Microscopes (LSM) on Inverted Stands DIC Imaging using Laser Scanning Microscopes (LSM) on Inverted Stands Differential Interference Contrast (DIC) imaging is a technique used to increase contrast in brightfield images. In confocal systems,

More information

Confocal Microscopy. Kristin Jensen

Confocal Microscopy. Kristin Jensen Confocal Microscopy Kristin Jensen 17.11.05 References Cell Biological Applications of Confocal Microscopy, Brian Matsumoto, chapter 1 Studying protein dynamics in living cells,, Jennifer Lippincott-Schwartz

More information

Renishaw InVia Raman microscope

Renishaw InVia Raman microscope Laser Spectroscopy Labs Renishaw InVia Raman microscope Operation instructions 1. Turn On the power switch, system power switch is located towards the back of the system on the right hand side. Wait ~10

More information

Widefield 1. Switching on

Widefield 1. Switching on Widefield 1 Switching on 1. Ignite DG5 lamp - must be switched on first (if previous user has switched off, wait 30 min before igniting) 2. Wait 5s and then turn on the main DG5 controller switch. 3. DG5

More information

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy Bi177 Lecture 5 Adding the Third Dimension Wide-field Imaging Point Spread Function Deconvolution Confocal Laser Scanning Microscopy Confocal Aperture Optical aberrations Alternative Scanning Microscopy

More information