Computational Optical Imaging - Optique Numerique

Size: px
Start display at page:

Download "Computational Optical Imaging - Optique Numerique"

Transcription

1 Computational Optical Imaging - Optique Numerique Autumn 2015 Ivo Ihrke

2 Organizational Issues Course schedule (tentative) 1. Intro / Recap: Img. Characteristics Monday HDR / Spectral / Polarization Monday Deblurring / Inverse Problems Monday Persp. Geometry and 3D Basics Monday Structure-from-Motion Tuesday Stereo Matching and Optical Flow Tuesday Active light 3D scanning Monday Volumetric 3D Tomography Mondayday Light Fields Tuesday Current topics Tuesday

3 Organizational Issues Written exam hours Personal notes allowed No computer / mobiles / books Active participation encouraged Send to ivo.ihrke@inria.fr to be added to course mailing list Slides will be available at

4 0. What this course is about Autumn 2015 Ivo Ihrke

5

6

7 The computational aspect Game Changer Computation Within last decade Inexpensive, powerful, small computers complete digitization of imaging and display pipeline Acquisition, transmission, storage, analysis, display

8 Human -> Silicon Observer

9 Computational Imaging acquisition computation perception scene

10 Course Contents Fast Forward Digital Imaging 2-dimensional

11 Course Contents Fast Forward Digital Imaging 2-dimensional Computational Preprocessing Handle sensor imperfections Dynamic range, Noise Raw image development Color correction, white balancing Digital correction of imaging imperfections Geometric distortions Aberration correction Compression (and why not to use it)

12 2D Imaging Demosaicking Undistortion [van der Jeught 11] [RAW Explorer]

13 RAW processing [Heide et al. 2013] [Schuler et al. 2011]

14 Course Contents Fast Forward Digital Imaging 2-dimensional Computational Preprocessing Several 2D images Stereo Reconstruction

15 Stereo Reconstruction Disparity estimation Disparity = apparent parallax Inversely related to depth stereo image (try cross-eye) disparity map/ depth map [Tsukuba]

16 Stereo Left Image [Middlebury Stereo Data Sets]

17 Stereo Right Image [Middlebury Stereo Data Sets]

18 Stereo Disparity Map (bright is close) [Middlebury Stereo Data Sets]

19 Course Contents Fast Forward Digital Imaging 2-dimensional Computational Preprocessing Several 2D images Stereo Reconstruction Multi-View Stereo

20 [Agrawal Ivo Ihrke et / Autumn al 10] 2015

21 [Agrawal Ivo Ihrke et / Autumn al 10] 2015

22 [Agrawal Ivo Ihrke et / Autumn al 10] 2015

23 [Agrawal Ivo Ihrke et / Autumn al 10] 2015

24 [Agrawal Ivo Ihrke et / Autumn al 10] 2015

25 Course Contents Fast Forward Digital Imaging 2-dimensional Computational Preprocessing Several 2D images Stereo Reconstruction Multi-View Stereo 3D Scanning (active) Laser range scanning Structured light Kinect I

26 Active Systems - Components acquisition computation Active illumination scene

27 3D Scanning [Lanman & Taubin 09] [DAVID Laser Scanner] [Digital Michelangelo Project, Stanford Univ.]

28 3D Scanning - Kinect [Matthew Fisher] [Andres Reza]

29 Course Contents Fast Forward Digital Imaging 2-dimensional Computational Preprocessing Several 2D images Stereo Reconstruction Multi-View Stereo 3D Scanning (active) Time-of-Flight (active)

30 Time-of-Flight Sensing LIDAR Phase-Based Measurements [SICK AG] [Mesa Imaging AG] [PMD Technologies GmbH] [Microsoft Kinect 2.0] [usgs.gov] [Groupe Info Consult]

31 Application - Google Street View [Anguelov et al. 10]

32 Course Contents Fast Forward Digital Imaging 2-dimensional Computational Preprocessing Several 2D images Stereo Reconstruction Multi-View Stereo 3D Scanning (active) Time-of-Flight (active) Focal Stacks

33 Focal Stacks

34 Focal Stack Extended depth-of-field image

35 Focal Stack

36 Extended Depth of Field

37 What is this course about? Imaging 2-dimensional Computational Preprocessing Several 2D images 3D Surfaces 3-dimensional Tomography Fourier Slice Theorem Filtered Back Projection Algebraic Reconstruction Techniques

38 Tomography [Stierstorfer 2003] [DSPGuide] [NIH] [MadisonRadiologists]

39 Tomography Applications Surface Characterization Engineering measurements 3D Displays [Trifonov et al. 06] [Atcheson et al. 08] [Wetzstein et al. 11]

40 What is this course about? Imaging 2-dimensional Computational Preprocessing Several 2D images 3D Surfaces 3-dimensional Tomography Direct Volume Slicing Confocal Microscopy

41 Volume Slicing Photograph Digital rendering [Hullin et al. 08]

42 Confocal Microscopy [University of Illinois] [Schürmann,Ramachandra, Uni Münster]

43 What is this course about? Imaging 2-dimensional Computational Preprocessing Several 2D images 3D Surfaces 3-dimensional 3D Volumes Multi-dimensional Plenoptic function Light fields

44 The 7D Plenoptic Function l(q, f, l, t) Q: What is the set of all things that one can ever see? A: The Plenoptic Function [Adelson and Bergen 1991] (from plenus, complete or full, and optic)

45 The 7D Plenoptic Function l(q, f, l, t) Q: What is the set of all things that one can ever see? A: The Plenoptic Function [Adelson and Bergen 1991] (from plenus, complete or full, and optic)

46 The 7D Plenoptic Function l(q, f, l, t, p x, p y, p z ) P(q, f, l, t, p x, p y, p z ) defines the intensity of light: as a function of viewpoint as a function of time as a function of wavelength

47 The 7D Plenoptic Function l(q, f, l, t, p x, p y, p z ) P(q, f, l, t, p x, p y, p z ) defines the intensity of light: as a function of viewpoint as a function of time as a function of wavelength

48 Example of digital refocusing [Ng 2005]

49 Example of moving the observer [Ng 2005]

50 START OF THE LECTURE

51 Properties of Digital Images

52 Digital Images - Limitations Digital Sensor noise Dynamic Range Tone Curve Recording Medium Monochromatic -> Color processing & interpolation Compression Optical Distortions Aberrations

53 Noise

54 Noise Sources [Reibel2003] photon shot noise dark current noise read noise

55 Dark Current Noise Removal cooling the chip noise removal techniques to separate image data from noise e.g. median filtering uncooled cooled 25 s exposure time

56 Discretization in Space and Intensity

57 Analog/Digital Conversion

58 Digital Images Images are now numbers (corrupted by noise)

59 Dynamic Range

60 Dynamic Range dr = max output swing noise in the dark = Saturation level dark current Dark shot noise + readout noise noise in the dark is random noise sources that cannot be corrected with circuit tricks Photon shot noise and read noise

61 Dynamic Range of Standard Sensors 13.5 EVs or f-stops = contrast 11,000:1 = color Ivo Ihrke negative / Autumn 2015

62 Color Calibration Toolbox Verify response curve the example is for jpg on the Canon 5D mark II Make sure the samples are fit well Response curves (R,G,B) samples Inverse response curves

63 Color

64 source: Kodak KAF-5101ce data sheet Sensing color Eye has 3 types of color receptors Therefore we need 3 different spectral sensitivities

65 Ways to sense color Color filter array cover each sensor with an individual filter requires just one chip but loses some spatial resolution demosaicing requires tricky image processing G R B G primary

66 White Balance capture the spectral characteristics of the light source to assure correct color reproduction tungsten daylight flourescent flash

67 White Balance Camera built-in function derive scale from white point infrared red green blue ultra violet wavelength

68 White Balance Camera built-in function derive scale from white point infrared red green blue ultra violet wavelength

69 Imperfections in Imaging

70 Lens Aberrations Spherical aberration Coma Astigmatism Curvature of field Distortion

71 Sharpness Related Aberrations

72 Chromatic Aberration Index of refraction varies with wavelength For convex lens, blue focal length is shorter Can correct using a two-element achromatic doublet, with a different glass (different n ) for the second lens Achromatic doublets only correct at two wavelengths Why don t humans see chromatic aberration? (check )

73 Chromatic Aberrations Longitudinal chromatic aberration (change in focus with wavelength) image: Smith 2000

74 Chromatic Aberrations Lateral color (change in magnification with wavelength) image: Smith 2000

75 Spherical Aberration Focus varies with radius on pupil images: Forsyth&Ponce and Hecht 1987

76 Aberrations Coma off-axis will focus to different locations depending on lens region (magnification varies with ray height) images: Smith 2000 and Hecht 1987

77 Coma

78 Astigmatism The shape of the lens for an of center point might look distorted, e.g. elliptical different focus for tangential and sagittal rays image: Smith 2000 Hardy&Perrin

79 Astigmatism

80 Astigmatism red - unsharp

81 Field Curvature focus plane is actually curved Object Image

82 Field Curvature

83 Field Curvature different image distance

84 Bad Optics curvature of field, coma, chromatic aberration

85 Aberration Correction By deconvolution or correcting optics Correcting optics example Hubble space telescope uncorrected optics corrected optics PFS before correction Deconvolution (lecture 3 for details) uncorrected optics deconvolved with APEX [Carasso06]

86 Geometric Aberrations Distortion

87 Distortion Ratios of lengths are no longer preserved. Object Image

88 Geometric distortion Change in magnification with image position image: Smith 2000

89 Radial Distortion image: Kingslake

90 Radial distortion Barrel distortion Pincushion distortion

91 Radial distortion Straight lines are no longer straight Violation of our linear camera model Must be compensated for computer vision applications Radial distortion function can be approximated by a Taylor expansion in radial direction Maps radius to a new radius One or two coefficients are usually sufficient

92 Radial distortion Barrel distortion Pincushion distortion c c

93 Radial Distortion Correction - Example Camera output Corrected Checkerboard serves as target for estimation Corner positions define line segments Minimize curvature

94 Reminder: Image warping T(x,y) y y x f(x,y) x g(x,y ) Knowing the transformation (x,y )=T(x,y) and the source image f(x,y), how to compute the transformed image g(x,y )=f(t(x,t))? 94

95 Reminder: Inverse warping y T -1 (x,y) y x x f(x,y) g(x,y ) Find the position of each pixel g(x,y ) in The source image: (x,y) = T -1 (x,y ) Interpolate between the sampled neighbor positions (nearest-neighbor, bilinear ) 95

96 Contrast Issues

97 Radial Falloff Vignetting your lens is basically a long tube. Cos^4 falloff rule of thumb. At an angle, area of aperture reduced by cos(a) 1/r^2: Falls off as 1/cos(a)^2 (due to increased distance to lens) Light falls on film plane at an angle, another cos(a) reduction.

98 Vignetting - Example a white diffuse target White field at different f-stops f/2.8 f/2.8 actual photograph f/4 f/8 Compensation: divide image by pre-acquired white field

99 Bibliography Holst, G. CCD Arrays, Cameras, and Displays. SPIE Optical Engineering Press, Bellingham, Washington, Theuwissen, A. Solid-State Imaging with Charge- Coupled Devices. Kluwer Academic Publishers, Boston, Curless, CSE558 lecture notes (UW, Spring 01). El Gamal et al., EE392b lecture notes (Spring 01). Several Kodak Application Notes at pplicationnotes.jhtml Reibel et al., CCD or CMOS camera noise characterization, Eur. Phys. J. AP 21, 2003

100 ICC Profiles and HDR Image Generation profile connection spaces CIELAB (perceptual linear) linear CIEXYZ color space can be used to create an high dynamic range image in the profile connection space allows for a color calibrated workflow... input device (e.g. camera) input profile profile connection space output profile output device (e.g. printer)

Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color --

Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color -- Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color -- Winter 2013 Ivo Ihrke Organizational Issues I received your email addresses Course announcements will be send via

More information

Image Formation and Capture

Image Formation and Capture Figure credits: B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, A. Theuwissen, and J. Malik Image Formation and Capture COS 429: Computer Vision Image Formation and Capture Real world Optics Sensor Devices

More information

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Real world Optics Sensor Devices Sources of Error

More information

Lenses, exposure, and (de)focus

Lenses, exposure, and (de)focus Lenses, exposure, and (de)focus http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 15 Course announcements Homework 4 is out. - Due October 26

More information

Acquisition Basics. How can we measure material properties? Goal of this Section. Special Purpose Tools. General Purpose Tools

Acquisition Basics. How can we measure material properties? Goal of this Section. Special Purpose Tools. General Purpose Tools Course 10 Realistic Materials in Computer Graphics Acquisition Basics MPI Informatik (moving to the University of Washington Goal of this Section practical, hands-on description of acquisition basics general

More information

Geometric optics & aberrations

Geometric optics & aberrations Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation

More information

IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

IMAGE SENSOR SOLUTIONS. KAC-96-1/5 Lens Kit. KODAK KAC-96-1/5 Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2 KODAK for use with the KODAK CMOS Image Sensors November 2004 Revision 2 1.1 Introduction Choosing the right lens is a critical aspect of designing an imaging system. Typically the trade off between image

More information

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Cameras Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Camera Focus Camera Focus So far, we have been simulating pinhole cameras with perfect focus Often times, we want to simulate more

More information

Computational Approaches to Cameras

Computational Approaches to Cameras Computational Approaches to Cameras 11/16/17 Magritte, The False Mirror (1935) Computational Photography Derek Hoiem, University of Illinois Announcements Final project proposal due Monday (see links on

More information

Applied Optics. , Physics Department (Room #36-401) , ,

Applied Optics. , Physics Department (Room #36-401) , , Applied Optics Professor, Physics Department (Room #36-401) 2290-0923, 019-539-0923, shsong@hanyang.ac.kr Office Hours Mondays 15:00-16:30, Wednesdays 15:00-16:30 TA (Ph.D. student, Room #36-415) 2290-0921,

More information

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing Chapters 1 & 2 Chapter 1: Photogrammetry Definitions and applications Conceptual basis of photogrammetric processing Transition from two-dimensional imagery to three-dimensional information Automation

More information

Coded photography , , Computational Photography Fall 2017, Lecture 18

Coded photography , , Computational Photography Fall 2017, Lecture 18 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 18 Course announcements Homework 5 delayed for Tuesday. - You will need cameras

More information

Cameras. CSE 455, Winter 2010 January 25, 2010

Cameras. CSE 455, Winter 2010 January 25, 2010 Cameras CSE 455, Winter 2010 January 25, 2010 Announcements New Lecturer! Neel Joshi, Ph.D. Post-Doctoral Researcher Microsoft Research neel@cs Project 1b (seam carving) was due on Friday the 22 nd Project

More information

LENSES. INEL 6088 Computer Vision

LENSES. INEL 6088 Computer Vision LENSES INEL 6088 Computer Vision Digital camera A digital camera replaces film with a sensor array Each cell in the array is a Charge Coupled Device light-sensitive diode that converts photons to electrons

More information

Goal of this Section. Capturing Reflectance From Theory to Practice. Acquisition Basics. How can we measure material properties? Special Purpose Tools

Goal of this Section. Capturing Reflectance From Theory to Practice. Acquisition Basics. How can we measure material properties? Special Purpose Tools Capturing Reflectance From Theory to Practice Acquisition Basics GRIS, TU Darmstadt (formerly University of Washington, Seattle Goal of this Section practical, hands-on description of acquisition basics

More information

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations Overview Pinhole camera Principles of operation Limitations 1 Terminology The pinhole camera The first camera - camera obscura - known to Aristotle. In 3D, we can visualize the blur induced by the pinhole

More information

Coded photography , , Computational Photography Fall 2018, Lecture 14

Coded photography , , Computational Photography Fall 2018, Lecture 14 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 14 Overview of today s lecture The coded photography paradigm. Dealing with

More information

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object.

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object. Camera trial #1 Cameras Digital Visual Effects Yung-Yu Chuang scene film with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Put a piece of film in front of an object. Pinhole camera

More information

CPSC 425: Computer Vision

CPSC 425: Computer Vision 1 / 55 CPSC 425: Computer Vision Instructor: Fred Tung ftung@cs.ubc.ca Department of Computer Science University of British Columbia Lecture Notes 2015/2016 Term 2 2 / 55 Menu January 7, 2016 Topics: Image

More information

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Acquisition Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Image Acquisition Digital Camera Film Outline Pinhole camera Lens Lens aberrations Exposure Sensors Noise

More information

Computational Optical Imaging - Optique Numerique. -- Noise, Dynamic Range and Color --

Computational Optical Imaging - Optique Numerique. -- Noise, Dynamic Range and Color -- Computational Optical Imaging - Optique Numerique -- Noise, Dynamic Range and Color -- Winter 2013 Ivo Ihrke Organizational Issues I received your email addresses Course announcements will be send via

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors

Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors Guido Gerig CS-GY 6643, Spring 2017 (slides modified from Marc Pollefeys, UNC Chapel Hill/ ETH Zurich, With content from Prof. Trevor

More information

Image Formation and Camera Design

Image Formation and Camera Design Image Formation and Camera Design Spring 2003 CMSC 426 Jan Neumann 2/20/03 Light is all around us! From London & Upton, Photography Conventional camera design... Ken Kay, 1969 in Light & Film, TimeLife

More information

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR)

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR) COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR) PAPER TITLE: BASIC PHOTOGRAPHIC UNIT - 3 : SIMPLE LENS TOPIC: LENS PROPERTIES AND DEFECTS OBJECTIVES By

More information

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor Image acquisition Digital images are acquired by direct digital acquisition (digital still/video cameras), or scanning material acquired as analog signals (slides, photographs, etc.). In both cases, the

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction

More information

Digital photography , , Computational Photography Fall 2017, Lecture 2

Digital photography , , Computational Photography Fall 2017, Lecture 2 Digital photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 2 Course announcements To the 14 students who took the course survey on

More information

Announcements. Image Formation: Outline. The course. How Cameras Produce Images. Earliest Surviving Photograph. Image Formation and Cameras

Announcements. Image Formation: Outline. The course. How Cameras Produce Images. Earliest Surviving Photograph. Image Formation and Cameras Announcements Image ormation and Cameras CSE 252A Lecture 3 Assignment 0: Getting Started with Matlab is posted to web page, due Tuesday, ctober 4. Reading: Szeliski, Chapter 2 ptional Chapters 1 & 2 of

More information

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens George Curatu a, Brent Binkley a, David Tinch a, and Costin Curatu b a LightPath Technologies, 2603

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

Optical basics for machine vision systems. Lars Fermum Chief instructor STEMMER IMAGING GmbH

Optical basics for machine vision systems. Lars Fermum Chief instructor STEMMER IMAGING GmbH Optical basics for machine vision systems Lars Fermum Chief instructor STEMMER IMAGING GmbH www.stemmer-imaging.de AN INTERNATIONAL CONCEPT STEMMER IMAGING customers in UK Germany France Switzerland Sweden

More information

Sensors and Sensing Cameras and Camera Calibration

Sensors and Sensing Cameras and Camera Calibration Sensors and Sensing Cameras and Camera Calibration Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 20.11.2014

More information

Color Digital Imaging: Cameras, Scanners and Monitors

Color Digital Imaging: Cameras, Scanners and Monitors Color Digital Imaging: Cameras, Scanners and Monitors H. J. Trussell Dept. of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695-79 hjt@ncsu.edu Color Imaging Devices

More information

The Importance of Wavelengths on Optical Designs

The Importance of Wavelengths on Optical Designs 1 The Importance of Wavelengths on Optical Designs Bad Kreuznach, Oct. 2017 2 Introduction A lens typically needs to be corrected for many different parameters as e.g. distortion, astigmatism, spherical

More information

ECC419 IMAGE PROCESSING

ECC419 IMAGE PROCESSING ECC419 IMAGE PROCESSING INTRODUCTION Image Processing Image processing is a subclass of signal processing concerned specifically with pictures. Digital Image Processing, process digital images by means

More information

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design Computer Aided Design Several CAD tools use Ray Tracing (see

More information

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera Outline Cameras Pinhole camera Film camera Digital camera Video camera Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/6 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

More information

AST Lab exercise: aberrations

AST Lab exercise: aberrations AST2210 - Lab exercise: aberrations 1 Introduction This lab exercise will take you through the most common types of aberrations. 2 Chromatic aberration Chromatic aberration causes lens to have dierent

More information

Image Formation: Camera Model

Image Formation: Camera Model Image Formation: Camera Model Ruigang Yang COMP 684 Fall 2005, CS684-IBMR Outline Camera Models Pinhole Perspective Projection Affine Projection Camera with Lenses Digital Image Formation The Human Eye

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

More information

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera High dynamic range imaging

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera High dynamic range imaging Outline Cameras Pinhole camera Film camera Digital camera Video camera High dynamic range imaging Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2006/3/1 with slides by Fedro Durand, Brian Curless,

More information

Modeling and Synthesis of Aperture Effects in Cameras

Modeling and Synthesis of Aperture Effects in Cameras Modeling and Synthesis of Aperture Effects in Cameras Douglas Lanman, Ramesh Raskar, and Gabriel Taubin Computational Aesthetics 2008 20 June, 2008 1 Outline Introduction and Related Work Modeling Vignetting

More information

GEOMETRICAL OPTICS AND OPTICAL DESIGN

GEOMETRICAL OPTICS AND OPTICAL DESIGN GEOMETRICAL OPTICS AND OPTICAL DESIGN Pantazis Mouroulis Associate Professor Center for Imaging Science Rochester Institute of Technology John Macdonald Senior Lecturer Physics Department University of

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

What will be on the midterm?

What will be on the midterm? What will be on the midterm? CS 178, Spring 2014 Marc Levoy Computer Science Department Stanford University General information 2 Monday, 7-9pm, Cubberly Auditorium (School of Edu) closed book, no notes

More information

Cameras, lenses and sensors

Cameras, lenses and sensors Cameras, lenses and sensors Marc Pollefeys COMP 256 Cameras, lenses and sensors Camera Models Pinhole Perspective Projection Affine Projection Camera with Lenses Sensing The Human Eye Reading: Chapter.

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

Limitations of lenses

Limitations of lenses Limitations of lenses CS 448A, Winter 2010 Marc Levoy Computer Science Department Stanford University Outline misfocus & depth of field aberrations & distortion veiling glare flare and ghost images vignetting

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision CS / ECE 181B Thursday, April 1, 2004 Course Details HW #0 and HW #1 are available. Course web site http://www.ece.ucsb.edu/~manj/cs181b Syllabus, schedule, lecture notes,

More information

Explanation of Aberration and Wavefront

Explanation of Aberration and Wavefront Explanation of Aberration and Wavefront 1. What Causes Blur? 2. What is? 4. What is wavefront? 5. Hartmann-Shack Aberrometer 6. Adoption of wavefront technology David Oh 1. What Causes Blur? 2. What is?

More information

Chapter 25 Optical Instruments

Chapter 25 Optical Instruments Chapter 25 Optical Instruments Units of Chapter 25 Cameras, Film, and Digital The Human Eye; Corrective Lenses Magnifying Glass Telescopes Compound Microscope Aberrations of Lenses and Mirrors Limits of

More information

Wavefront coding. Refocusing & Light Fields. Wavefront coding. Final projects. Is depth of field a blur? Frédo Durand Bill Freeman MIT - EECS

Wavefront coding. Refocusing & Light Fields. Wavefront coding. Final projects. Is depth of field a blur? Frédo Durand Bill Freeman MIT - EECS 6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Final projects Send your slides by noon on Thrusday. Send final report Refocusing & Light Fields Frédo Durand Bill Freeman

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics 1011CE Restricts rays: acts as a single lens: inverts

More information

Exam Preparation Guide Geometrical optics (TN3313)

Exam Preparation Guide Geometrical optics (TN3313) Exam Preparation Guide Geometrical optics (TN3313) Lectures: September - December 2001 Version of 21.12.2001 When preparing for the exam, check on Blackboard for a possible newer version of this guide.

More information

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy Bi177 Lecture 5 Adding the Third Dimension Wide-field Imaging Point Spread Function Deconvolution Confocal Laser Scanning Microscopy Confocal Aperture Optical aberrations Alternative Scanning Microscopy

More information

Coding and Modulation in Cameras

Coding and Modulation in Cameras Coding and Modulation in Cameras Amit Agrawal June 2010 Mitsubishi Electric Research Labs (MERL) Cambridge, MA, USA Coded Computational Imaging Agrawal, Veeraraghavan, Narasimhan & Mohan Schedule Introduction

More information

Be aware that there is no universal notation for the various quantities.

Be aware that there is no universal notation for the various quantities. Fourier Optics v2.4 Ray tracing is limited in its ability to describe optics because it ignores the wave properties of light. Diffraction is needed to explain image spatial resolution and contrast and

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

Building a Real Camera

Building a Real Camera Building a Real Camera Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible? Less light gets through Diffraction

More information

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2002 Final Exam Name: SID: CLOSED BOOK. FOUR 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

CSE 473/573 Computer Vision and Image Processing (CVIP)

CSE 473/573 Computer Vision and Image Processing (CVIP) CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu inwogu@buffalo.edu Lecture 4 Image formation(part I) Schedule Last class linear algebra overview Today Image formation and camera properties

More information

Building a Real Camera. Slides Credit: Svetlana Lazebnik

Building a Real Camera. Slides Credit: Svetlana Lazebnik Building a Real Camera Slides Credit: Svetlana Lazebnik Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible?

More information

Laboratory experiment aberrations

Laboratory experiment aberrations Laboratory experiment aberrations Obligatory laboratory experiment on course in Optical design, SK2330/SK3330, KTH. Date Name Pass Objective This laboratory experiment is intended to demonstrate the most

More information

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

More information

DIGITAL IMAGING. Handbook of. Wiley VOL 1: IMAGE CAPTURE AND STORAGE. Editor-in- Chief

DIGITAL IMAGING. Handbook of. Wiley VOL 1: IMAGE CAPTURE AND STORAGE. Editor-in- Chief Handbook of DIGITAL IMAGING VOL 1: IMAGE CAPTURE AND STORAGE Editor-in- Chief Adjunct Professor of Physics at the Portland State University, Oregon, USA Previously with Eastman Kodak; University of Rochester,

More information

VC 11/12 T2 Image Formation

VC 11/12 T2 Image Formation VC 11/12 T2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

Cameras, lenses, and sensors

Cameras, lenses, and sensors Cameras, lenses, and sensors Reading: Chapter 1, Forsyth & Ponce Optional: Section 2.1, 2.3, Horn. 6.801/6.866 Profs. Bill Freeman and Trevor Darrell Sept. 10, 2002 Today s lecture How many people would

More information

Background. Computer Vision & Digital Image Processing. Improved Bartlane transmitted image. Example Bartlane transmitted image

Background. Computer Vision & Digital Image Processing. Improved Bartlane transmitted image. Example Bartlane transmitted image Background Computer Vision & Digital Image Processing Introduction to Digital Image Processing Interest comes from two primary backgrounds Improvement of pictorial information for human perception How

More information

Digital photography , , Computational Photography Fall 2018, Lecture 2

Digital photography , , Computational Photography Fall 2018, Lecture 2 Digital photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 2 Course announcements To the 26 students who took the start-of-semester

More information

Unit 1: Image Formation

Unit 1: Image Formation Unit 1: Image Formation 1. Geometry 2. Optics 3. Photometry 4. Sensor Readings Szeliski 2.1-2.3 & 6.3.5 1 Physical parameters of image formation Geometric Type of projection Camera pose Optical Sensor

More information

VC 14/15 TP2 Image Formation

VC 14/15 TP2 Image Formation VC 14/15 TP2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems

INTRODUCTION THIN LENSES. Introduction. given by the paraxial refraction equation derived last lecture: Thin lenses (19.1) = 1. Double-lens systems Chapter 9 OPTICAL INSTRUMENTS Introduction Thin lenses Double-lens systems Aberrations Camera Human eye Compound microscope Summary INTRODUCTION Knowledge of geometrical optics, diffraction and interference,

More information

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

More information

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Cameras Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Camera trial #1 scene film Put a piece of film in front of

More information

WaveMaster IOL. Fast and accurate intraocular lens tester

WaveMaster IOL. Fast and accurate intraocular lens tester WaveMaster IOL Fast and accurate intraocular lens tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is a new instrument providing real time analysis

More information

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Reikan FoCal Aperture Sharpness Test Report

Reikan FoCal Aperture Sharpness Test Report Focus Calibration and Analysis Software Test run on: 26/01/2016 17:02:00 with FoCal 2.0.6.2416W Report created on: 26/01/2016 17:03:39 with FoCal 2.0.6W Overview Test Information Property Description Data

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian The Brownie Camera Lens Design OPTI 517 http://www.history.roch ester.edu/class/kodak/k odak.htm George Eastman (1854-1932), was an ingenious man who contributed greatly to the field of photography. He

More information

Reikan FoCal Aperture Sharpness Test Report

Reikan FoCal Aperture Sharpness Test Report Focus Calibration and Analysis Software Reikan FoCal Sharpness Test Report Test run on: 26/01/2016 17:14:35 with FoCal 2.0.6.2416W Report created on: 26/01/2016 17:16:16 with FoCal 2.0.6W Overview Test

More information

Imaging Overview. For understanding work in computational photography and computational illumination

Imaging Overview. For understanding work in computational photography and computational illumination Imaging Overview For understanding work in computational photography and computational illumination Light and Optics Optics The branch of physics that deals with light Ray optics Wave optics Photon optics

More information

Optical System Design

Optical System Design Phys 531 Lecture 12 14 October 2004 Optical System Design Last time: Surveyed examples of optical systems Today, discuss system design Lens design = course of its own (not taught by me!) Try to give some

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

Consumer digital CCD cameras

Consumer digital CCD cameras CAMERAS Consumer digital CCD cameras Leica RC-30 Aerial Cameras Zeiss RMK Zeiss RMK in aircraft Vexcel UltraCam Digital (note multiple apertures Lenses for Leica RC-30. Many elements needed to minimize

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Very short introduction to light microscopy and digital imaging

Very short introduction to light microscopy and digital imaging Very short introduction to light microscopy and digital imaging Hernan G. Garcia August 1, 2005 1 Light Microscopy Basics In this section we will briefly describe the basic principles of operation and

More information

Camera Image Processing Pipeline

Camera Image Processing Pipeline Lecture 13: Camera Image Processing Pipeline Visual Computing Systems Today (actually all week) Operations that take photons hitting a sensor to a high-quality image Processing systems used to efficiently

More information

Computer Graphics. - Display and Imaging Devices - Hendrik Lensch. Computer Graphics WS07/08 Display and Imaging Devices

Computer Graphics. - Display and Imaging Devices - Hendrik Lensch. Computer Graphics WS07/08 Display and Imaging Devices Computer Graphics - Display and Imaging Devices - Hendrik Lensch Overview Last Week Volume Rendering Today Display and Imaging Devices Exam Monday, 18 th please be there at 8:00 sharp starts at 8:15 will

More information

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester WaveMaster IOL Fast and Accurate Intraocular Lens Tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is an instrument providing real time analysis of

More information

Reikan FoCal Aperture Sharpness Test Report

Reikan FoCal Aperture Sharpness Test Report Focus Calibration and Analysis Software Reikan FoCal Sharpness Test Report Test run on: 10/02/2016 19:57:05 with FoCal 2.0.6.2416W Report created on: 10/02/2016 19:59:09 with FoCal 2.0.6W Overview Test

More information

DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY

DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY Prepared by Benjamin Mell 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's

More information

Reikan FoCal Aperture Sharpness Test Report

Reikan FoCal Aperture Sharpness Test Report Focus Calibration and Analysis Software Reikan FoCal Sharpness Test Report Test run on: 27/01/2016 00:35:25 with FoCal 2.0.6.2416W Report created on: 27/01/2016 00:41:43 with FoCal 2.0.6W Overview Test

More information

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy.

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy. Introduction Optics Application Lenses Design Basics a) Convex lenses Convex lenses are optical imaging components with positive focus length. After going through the convex lens, parallel beam of light

More information

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn Opti 415/515 Introduction to Optical Systems 1 Optical Systems Manipulate light to form an image on a detector. Point source microscope Hubble telescope (NASA) 2 Fundamental System Requirements Application

More information