The Importance of Wavelengths on Optical Designs

Size: px
Start display at page:

Download "The Importance of Wavelengths on Optical Designs"

Transcription

1 1 The Importance of Wavelengths on Optical Designs Bad Kreuznach, Oct. 2017

2 2 Introduction A lens typically needs to be corrected for many different parameters as e.g. distortion, astigmatism, spherical aberration, coma and relative illumination. Another very important parameter is the correction of color aberration, meaning the optimization of the lens for a pre-defined spectral range. Following we present: o o o o what is meant by the correction of color aberration why it is so important what is necessary for a good correction why it may be different for different applications

3 3 Electromagnetic Spectrum WAVE LENGTHS IN MICROMETERS COSMIC RAYS GAMMA RAYS X-RAYS UV RAYS IR RAYS MICRO WAVE TV AM RADIO WAVES VISIBLE SPECTRUM (nanometers) Visible Wavelengths = 400 to 700nm Near Infrared = 700 to 1000nm Short Wave Infrared (SWIR) = 900 to 1800nm

4 4 What Happens Without Optical Correction Longitudinal Color Aberration Each color has its own focal plane. There is a focal shift between the individual colors. Blue Green Red Sensor Lateral Color Aberration Green Red Sensor Each individual color creates an image with a different magnification. This causes color fringes at dark and bright transitions. Blue

5 5 First Basic Optical Correction Single lens element without any correction Blue Green Red Correction of primary axial color by using 2 different lens shapes and glass types. Blue Green Red

6 6 How It Looks Object Image Object Sensor Response

7 7 Get Together White light is seperated in the complete spectrum at the first lens surface. One task of the optical design is to get all the rays back to one single point on the sensor. first surface last surface Sensor Lens

8 8 Hundreds Of Different Glass Types In order to correct the color aberration of a lens the right choice of glass types is very important. There are hundreds of different glass types available, every single one with its own special color characteristics. Very special glasses for color correction are available, often known as ED glass, but they are very expensive (>1000 /kg), very sensitive in manufacturing and often hard to procure.

9 9 Complex Lens Designs For Aberration Correction

10 10 Typical Applications In Specific Spectral Bands 3D-Measurement Very often a laser or a narrow band LED is used for illumination. So the lens is used more or less monochromatically. narrow band, but somewhere in the nm range Traffic Traffic applications very often work with available daylight or/and near infrared flash in order not to distract the car driver when flashing nm + near infrared Color Print Inspection Only the visible light is required to ensure correct color reproduction nm

11 11 Typical Applications In Specific Spectral Bands Food Inspection Defects in e.g. fruits and vegetables are easily detectable when using SWIR illumination SWIR nm Hyperspectral Imaging In order to determine spectral characteristics of objects very often a very wide spectral band is used nm

12 12 The Universal Lens Generally it is possible to design and build a lens which has practically no color shift even in a very wide spectral range. But this would be a very special design with individually selected expensive glasses, requiring a zero tolerance production. Since this is practically not feasible a reasonable spectral performance has to be defined in the lens specification based on the intended use of the lens. Super Achromat with a focus shift < 20µ in the nm range

13 13 Standard Machine Vision Lens A standard lens for Machine Vision is typically designed for the visible range of nm. The longitudinal color aberration is so well controlled that it does not affect the image quality in a negative way. It can be used for the full nm range but also for every small band within this range. If the coating is suitable for infrared light, such a lens might also work for a narrow band application in the NIR - but only in the NIR. There are also standard lenses available which are corrected for the full nm range, the typical spectral sensitivity range of a CCD-/CMOS-sensor. The longitudinal color requires a better correction so that the lens can be used in the visible nm range and NIR simultaneously without re-focussing.

14 14 Examples LED 850nm nm nm suitable for nm without re-focussing suitable for nm or NIR with re-focussing Focus Shift < 200µm Focus Shift < 200µm in both bands

15 15 SWIR SWIR (Short wave infrared) means the range of nm. It does not only require special sensors but also special lens designs and coatings. Lenses which are designed for the visible range or even the full nm range usually don t work in the SWIR range. SWIR 2.8/50 9/17/35 Lp/mm M 1: nm XNP 2.8/50 9/17/35 Lp/mm M 1: nm

16 16 Customized Lenses While standard lenses need to serve several different applications a customized lens can always be optimized for the specific application. For a monochromatic or small bandwith application the lens design of a customized lens can be much simpler compared to a standard lens. Also the coating can be optimized for the small spectral range with optimized transmission in the required band not only increasing light on the sensor but also reducing ghosting and flare. Standard lens Customized Lens for 660nm

17 17 Influence Of Spectral Bandwidth On Performance Color aberrations are reducing the performance if a lens is used in a wide spectral range. A limitation of the spectral range, e.g. by a high quality bandpass filter, increases very often the image quality. Xenoplan 2.8/50 f/ / 25 / 50 Lp/mm M 1: nm 465nm +/-35nm IFG BP HT

18 18 Coating Not only the optical correction but also the coating is a very important factor already during the design phase of the lens for a specific spectral range. If the coating is not suited to the spectral range the transmission drops and increased stray light will reduce the image quality. Visible ( nm) Near IR ( nm) SWIR ( nm) Single layer coating + +/- - Multicoating Broadband coating SWIR coating -- +/- ++

19 19 Coatings and Stray Light 10 R 7,5 Multi Coating 5 Single Layer 2,5 Broadband nm without stray light Reflection characteristics of different coatings with stray light

20 20 Summary o There is no general solution for all spectral applications. o The right lens needs to be chosen depending on the spectral requirements of the application. o The broader the spectral range the more complex is the lens design and more special, expensive and sensitive glass types are needed for the color correction. o Not only the lens design but also the lens coating has to be suited to the spectral range of the application.

21 21 Thank You For Your Attention We welcome you at our booth!

22 22 Jos. Schneider Optische Werke GmbH, Copyright 2010

COLOUR INSPECTION, INFRARED AND UV

COLOUR INSPECTION, INFRARED AND UV COLOUR INSPECTION, INFRARED AND UV TIPS, SPECIAL FEATURES, REQUIREMENTS LARS FERMUM, CHIEF INSTRUCTOR, STEMMER IMAGING THE PROPERTIES OF LIGHT Light is characterized by specifying the wavelength, amplitude

More information

Xenon-Diamond 2.9/106 With beam splitter

Xenon-Diamond 2.9/106 With beam splitter Xenon-Diamond 2.9/16 This high resolution 2.6x line scan lens with beam splitter is optimized for the use with 12k (62.5 mm) line scan sensors with 5 µm pixel, but can also be used with 16k / 5 µm (82

More information

Xenon-Zirconia 3.3/92

Xenon-Zirconia 3.3/92 This lens with.2x magnification is optimized for the use with 12k (62.5 mm) line scan sensors with 5 µm pixel, but can also be used with 16k (82 mm) lines. It is broadband coated and can be used in the

More information

Macro Varon 4.5/85. Key features. Applications. Web and surface inspections

Macro Varon 4.5/85. Key features. Applications. Web and surface inspections The Macro Varon lens has been designed for high resolution 12k line scan cameras with 3.5 µm pixel pitch. They are optimized for an optical magnification range of.5x to 2.x. CAS-lens technology produces

More information

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR)

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR) COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR) PAPER TITLE: BASIC PHOTOGRAPHIC UNIT - 3 : SIMPLE LENS TOPIC: LENS PROPERTIES AND DEFECTS OBJECTIVES By

More information

Choosing the Best Optical Filter for Your Application. Georgy Das Midwest Optical Systems, Inc.

Choosing the Best Optical Filter for Your Application. Georgy Das Midwest Optical Systems, Inc. Choosing the Best Optical Filter for Your Application Georgy Das Midwest Optical Systems, Inc. Filters are a Necessity, Not an Accessory. Key Terms Transmission (%) 100 90 80 70 60 50 40 30 20 10 OUT-OF-BAND

More information

Optical basics for machine vision systems. Lars Fermum Chief instructor STEMMER IMAGING GmbH

Optical basics for machine vision systems. Lars Fermum Chief instructor STEMMER IMAGING GmbH Optical basics for machine vision systems Lars Fermum Chief instructor STEMMER IMAGING GmbH www.stemmer-imaging.de AN INTERNATIONAL CONCEPT STEMMER IMAGING customers in UK Germany France Switzerland Sweden

More information

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember Günter Toesko - Laserseminar BLZ im Dezember 2009 1 Aberrations An optical aberration is a distortion in the image formed by an optical system compared to the original. It can arise for a number of reasons

More information

Where Image Quality Begins

Where Image Quality Begins Where Image Quality Begins Filters are a Necessity Not an Accessory Inexpensive Insurance Policy for the System The most cost effective way to improve repeatability and stability in any machine vision

More information

Optical and mechanical parameters. 100 mm N. of elements 20.5 mm Dimensions 11.7 degrees Weight F/N = 4 (fixed) N.A.

Optical and mechanical parameters. 100 mm N. of elements 20.5 mm Dimensions 11.7 degrees Weight F/N = 4 (fixed) N.A. OB SWIR 100 LENS OB-SWIR100/4 P/N C0416 General Description This family of high resolution SWIR lenses image from 0.9 2.3 µmm making them especially well-suited for PCB inspection, special laser applications,

More information

7x P/N C1601. General Description

7x P/N C1601. General Description METRICZOOM SWIR 7x METRIC ZOOM-SWIR ZOOM 7x P/N C1601 C General Description This family of high resolution METRIC ZOOM SWIR lenses image from 0.9 to 2.3 µm making them especially well-suited well for surveillance,

More information

LENS OB-SWIR500/7 P/N C0615

LENS OB-SWIR500/7 P/N C0615 LENS OB-SWIR500/7 P/N C0615 General Description This family of high resolution SWIR lenses image from 0.9 2.3 m making them especially well-suited for PCB inspection, special laser applications, surveillance

More information

IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

IMAGE SENSOR SOLUTIONS. KAC-96-1/5 Lens Kit. KODAK KAC-96-1/5 Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2 KODAK for use with the KODAK CMOS Image Sensors November 2004 Revision 2 1.1 Introduction Choosing the right lens is a critical aspect of designing an imaging system. Typically the trade off between image

More information

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Exam 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mirages are a result of which physical phenomena a. interference c. reflection

More information

DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY

DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY Prepared by Benjamin Mell 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's

More information

LENS ZOOM-SWIR 7x P/N C0628

LENS ZOOM-SWIR 7x P/N C0628 ZOOM SWIR 7x LENS ZOOM-SWIR 7x P/N C0628 General Description This family of high resolution SWIR lenses image from 0.9 2.3 m making them especially well-suited for PCB inspection, special laser applications,

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Measuring intensity in watts rather than lumens

Measuring intensity in watts rather than lumens Specialist Article Appeared in: Markt & Technik Issue: 43 / 2013 Measuring intensity in watts rather than lumens Authors: David Schreiber, Developer Lighting and Claudius Piske, Development Engineer Hardware

More information

Absentee layer. A layer of dielectric material, transparent in the transmission region of

Absentee layer. A layer of dielectric material, transparent in the transmission region of Glossary of Terms A Absentee layer. A layer of dielectric material, transparent in the transmission region of the filter, due to a phase thickness of 180. Absorption curve, absorption spectrum. The relative

More information

Optical design of a high resolution vision lens

Optical design of a high resolution vision lens Optical design of a high resolution vision lens Paul Claassen, optical designer, paul.claassen@sioux.eu Marnix Tas, optical specialist, marnix.tas@sioux.eu Prof L.Beckmann, l.beckmann@hccnet.nl Summary:

More information

Imaging Optics Fundamentals

Imaging Optics Fundamentals Imaging Optics Fundamentals Gregory Hollows Director, Machine Vision Solutions Edmund Optics Why Are We Here? Topics for Discussion Fundamental Parameters of your system Field of View Working Distance

More information

Bandpass Edge Dichroic Notch & More

Bandpass Edge Dichroic Notch & More Edmund Optics BROCHURE Filters COPYRIGHT 217 EDMUND OPTICS, INC. ALL RIGHTS RESERVED 1/17 Bandpass Edge Dichroic Notch & More Contact us for a Stock or Custom Quote Today! USA: +1-856-547-3488 EUROPE:

More information

Telecentric Imaging Object space telecentricity stop source: edmund optics The 5 classical Seidel Aberrations First order aberrations Spherical Aberration (~r 4 ) Origin: different focal lengths for different

More information

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2002 Final Exam Name: SID: CLOSED BOOK. FOUR 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

Understanding Optical Specifications

Understanding Optical Specifications Understanding Optical Specifications Optics can be found virtually everywhere, from fiber optic couplings to machine vision imaging devices to cutting-edge biometric iris identification systems. Despite

More information

Guide to SPEX Optical Spectrometer

Guide to SPEX Optical Spectrometer Guide to SPEX Optical Spectrometer GENERAL DESCRIPTION A spectrometer is a device for analyzing an input light beam into its constituent wavelengths. The SPEX model 1704 spectrometer covers a range from

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

Introduction to the operating principles of the HyperFine spectrometer

Introduction to the operating principles of the HyperFine spectrometer Introduction to the operating principles of the HyperFine spectrometer LightMachinery Inc., 80 Colonnade Road North, Ottawa ON Canada A spectrometer is an optical instrument designed to split light into

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 33 Geometric Optics Spring 2013 Semester Matthew Jones Aberrations We have continued to make approximations: Paraxial rays Spherical lenses Index of refraction

More information

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers.

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers. Copyright by the Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of Optical Microlithography XIII, SPIE Vol. 4, pp. 658-664. It is made available as an electronic

More information

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations Overview Pinhole camera Principles of operation Limitations 1 Terminology The pinhole camera The first camera - camera obscura - known to Aristotle. In 3D, we can visualize the blur induced by the pinhole

More information

Practice Problems for Chapter 25-26

Practice Problems for Chapter 25-26 Practice Problems for Chapter 25-26 1. What are coherent waves? 2. Describe diffraction grating 3. What are interference fringes? 4. What does monochromatic light mean? 5. What does the Rayleigh Criterion

More information

AST Lab exercise: aberrations

AST Lab exercise: aberrations AST2210 - Lab exercise: aberrations 1 Introduction This lab exercise will take you through the most common types of aberrations. 2 Chromatic aberration Chromatic aberration causes lens to have dierent

More information

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy.

Lenses Design Basics. Introduction. RONAR-SMITH Laser Optics. Optics for Medical. System. Laser. Semiconductor Spectroscopy. Introduction Optics Application Lenses Design Basics a) Convex lenses Convex lenses are optical imaging components with positive focus length. After going through the convex lens, parallel beam of light

More information

Exam 3--PHYS 102--S10

Exam 3--PHYS 102--S10 ame: Exam 3--PHYS 02--S0 Multiple Choice Identify the choice that best completes the statement or answers the question.. At an intersection of hospital hallways, a convex mirror is mounted high on a wall

More information

Choosing the Best Optical Filter for your Application. 1

Choosing the Best Optical Filter for your Application.   1 Choosing the Best Optical Filter for your Application www.midopt.com 1 Filters are an essential tool for increasing: Contrast Resolution Image Quality www.midopt.com 2 Choose a machine vision filter that:

More information

FOR 353: Air Photo Interpretation and Photogrammetry. Lecture 2. Electromagnetic Energy/Camera and Film characteristics

FOR 353: Air Photo Interpretation and Photogrammetry. Lecture 2. Electromagnetic Energy/Camera and Film characteristics FOR 353: Air Photo Interpretation and Photogrammetry Lecture 2 Electromagnetic Energy/Camera and Film characteristics Lecture Outline Electromagnetic Radiation Theory Digital vs. Analog (i.e. film ) Systems

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

Optical design of Dark Matter Telescope: improving manufacturability of telescope

Optical design of Dark Matter Telescope: improving manufacturability of telescope Optical design of Dark Matter Telescope: improving manufacturability of telescope Lynn G. Seppala November 5, 2001 The attached slides contain some talking point that could be useful during discussions

More information

General Imaging System

General Imaging System General Imaging System Lecture Slides ME 4060 Machine Vision and Vision-based Control Chapter 5 Image Sensing and Acquisition By Dr. Debao Zhou 1 2 Light, Color, and Electromagnetic Spectrum Penetrate

More information

MicroSpot FOCUSING OBJECTIVES

MicroSpot FOCUSING OBJECTIVES OFR P R E C I S I O N O P T I C A L P R O D U C T S MicroSpot FOCUSING OBJECTIVES APPLICATIONS Micromachining Microlithography Laser scribing Photoablation MAJOR FEATURES For UV excimer & high-power YAG

More information

Using Stock Optics. ECE 5616 Curtis

Using Stock Optics. ECE 5616 Curtis Using Stock Optics What shape to use X & Y parameters Please use achromatics Please use camera lens Please use 4F imaging systems Others things Data link Stock Optics Some comments Advantages Time and

More information

Physics 1520, Spring 2013 Quiz 2, Form: A

Physics 1520, Spring 2013 Quiz 2, Form: A Physics 1520, Spring 2013 Quiz 2, Form: A Name: Date: Section 1. Exercises 1. The index of refraction of a certain type of glass for red light is 1.52. For violet light, it is 1.54. Which color of light,

More information

Optical Design of Full View Lens based on Energy Luminance Analysis Chart of Stray Light

Optical Design of Full View Lens based on Energy Luminance Analysis Chart of Stray Light International Journal of Engineering and Technology Innovation, vol. 1, no. 1, 2011, pp. 27-34 Optical Design of Full View Lens based on Energy Luminance Analysis Chart of Stray Light Jen-Yu Shieh 1,*,

More information

"SIMPLE MEASUREMENT, ADVANCED RESULTS"

SIMPLE MEASUREMENT, ADVANCED RESULTS "SIMPLE MEASUREMENT, ADVANCED RESULTS" 1 Phasics offers the most innovative solutions for lens and objectives quality control in R&D and production. Relying on a unique wavefront technology, the quadriwave

More information

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

More information

Introduction. Lighting

Introduction. Lighting &855(17 )8785(75(1'6,10$&+,1(9,6,21 5HVHDUFK6FLHQWLVW0DWV&DUOLQ 2SWLFDO0HDVXUHPHQW6\VWHPVDQG'DWD$QDO\VLV 6,17()(OHFWURQLFV &\EHUQHWLFV %R[%OLQGHUQ2VOR125:$< (PDLO0DWV&DUOLQ#HF\VLQWHIQR http://www.sintef.no/ecy/7210/

More information

AN INTRODUCTION TO CHROMATIC ABERRATION IN REFRACTORS

AN INTRODUCTION TO CHROMATIC ABERRATION IN REFRACTORS AN INTRODUCTION TO CHROMATIC ABERRATION IN REFRACTORS The popularity of high-quality refractors draws attention to color correction in such instruments. There are several point of confusion and misconceptions.

More information

Supplementary Materials

Supplementary Materials Supplementary Materials In the supplementary materials of this paper we discuss some practical consideration for alignment of optical components to help unexperienced users to achieve a high performance

More information

Why is There a Black Dot when Defocus = 1λ?

Why is There a Black Dot when Defocus = 1λ? Why is There a Black Dot when Defocus = 1λ? W = W 020 = a 020 ρ 2 When a 020 = 1λ Sag of the wavefront at full aperture (ρ = 1) = 1λ Sag of the wavefront at ρ = 0.707 = 0.5λ Area of the pupil from ρ =

More information

Optoliner NV. Calibration Standard for Sighting & Imaging Devices West San Bernardino Road West Covina, California 91790

Optoliner NV. Calibration Standard for Sighting & Imaging Devices West San Bernardino Road West Covina, California 91790 Calibration Standard for Sighting & Imaging Devices 2223 West San Bernardino Road West Covina, California 91790 Phone: (626) 962-5181 Fax: (626) 962-5188 www.davidsonoptronics.com sales@davidsonoptronics.com

More information

Improved Spectra with a Schmidt-Czerny-Turner Spectrograph

Improved Spectra with a Schmidt-Czerny-Turner Spectrograph Improved Spectra with a Schmidt-Czerny-Turner Spectrograph Abstract For years spectra have been measured using traditional Czerny-Turner (CT) design dispersive spectrographs. Optical aberrations inherent

More information

CCAM Microscope Objectives

CCAM Microscope Objectives CCAM Microscope Objectives Things to consider when selecting an objective Magnification Numerical Aperture (NA) resolving power and light intensity of the objective Working Distance distance between the

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

Optical Systems. in Image Processing

Optical Systems. in Image Processing Optical Systems in Image Processing Introduction When introducing an image processing system, the performance and functions of the system or the board are naturally important, but selection and setup

More information

WELCOME TO EO ISRAEL EVENT

WELCOME TO EO ISRAEL EVENT WELCOME TO EO ISRAEL EVENT WHO WE ARE 2 Edmund Optics is a global OPTICS and IMAGING company that manufactures and supplies the worldwide technical community with precision optical components and subassemblies.

More information

Explanation of Aberration and Wavefront

Explanation of Aberration and Wavefront Explanation of Aberration and Wavefront 1. What Causes Blur? 2. What is? 4. What is wavefront? 5. Hartmann-Shack Aberrometer 6. Adoption of wavefront technology David Oh 1. What Causes Blur? 2. What is?

More information

CORPORATE PRESENTATION

CORPORATE PRESENTATION CORPORATE PRESENTATION WHO WE ARE Edmund Optics is a global OPTICS and IMAGING company that manufactures and supplies the worldwide technical community with precision optical components and subassemblies.

More information

capabilities Infrared Contact us for a Stock or Custom Quote Today!

capabilities Infrared Contact us for a Stock or Custom Quote Today! Infrared capabilities o 65+ Stock Components Available for Immediate Delivery o Design Expertise in SWIR, Mid-Wave, and Long-Wave Assemblies o Flat, Spherical, and Aspherical Manufacturing Expertise Edmund

More information

Compact Multispectral and Hyperspectral Imagers based on a Wide Field of View TMA

Compact Multispectral and Hyperspectral Imagers based on a Wide Field of View TMA Compact Multispectral and Hyperspectral Imagers based on a Wide Field of View TMA M. Taccola (AOES),S. Grabarnik (AOES), L. Maresi (ESA/ESTEC), V. Moreau (AMOS), L. de Vos (OIP), Y. Versluys (OIP), G.

More information

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner Introduction to Optical Modeling Friedrich-Schiller-University Jena Institute of Applied Physics Lecturer: Prof. U.D. Zeitner The Nature of Light Fundamental Question: What is Light? Newton Huygens / Maxwell

More information

WaveMaster IOL. Fast and accurate intraocular lens tester

WaveMaster IOL. Fast and accurate intraocular lens tester WaveMaster IOL Fast and accurate intraocular lens tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is a new instrument providing real time analysis

More information

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing Chapters 1 & 2 Chapter 1: Photogrammetry Definitions and applications Conceptual basis of photogrammetric processing Transition from two-dimensional imagery to three-dimensional information Automation

More information

Why select a BOS zoom lens over a COTS lens?

Why select a BOS zoom lens over a COTS lens? Introduction The Beck Optronic Solutions (BOS) range of zoom lenses are sometimes compared to apparently equivalent commercial-off-the-shelf (or COTS) products available from the large commercial lens

More information

mm F2.6 6MP IR-Corrected. Sensor size

mm F2.6 6MP IR-Corrected. Sensor size 1 1 inch and 1/1.2 inch image size spec. Sensor size 1-inch 1/1.2-inch 2/3-inch Image circle OK OK OK OK 1/1.8-inch OK 1/2-inch OK 1/2.5-inch 1 1-inch CMV4000 PYTHON5000 KAI-02150 KAI-2020 KAI-2093 KAI-4050

More information

The spectral colours of nanometers

The spectral colours of nanometers Reprint from the journal Mikroproduktion 3/2005 Berthold Michelt and Jochen Schulze The spectral colours of nanometers Precitec Optronik GmbH Raiffeisenstraße 5 D-63110 Rodgau Phone: +49 (0) 6106 8290-14

More information

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Real world Optics Sensor Devices Sources of Error

More information

Exam 4--PHYS 102--S15

Exam 4--PHYS 102--S15 Name: Class: Date: Exam 4--PHYS 102--S15 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A mirror produces an upright image. The object is 2 cm high; the

More information

TECHSPEC COMPACT FIXED FOCAL LENGTH LENS

TECHSPEC COMPACT FIXED FOCAL LENGTH LENS Designed for use in machine vision applications, our TECHSPEC Compact Fixed Focal Length Lenses are ideal for use in factory automation, inspection or qualification. These machine vision lenses have been

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

Optical System Design

Optical System Design Phys 531 Lecture 12 14 October 2004 Optical System Design Last time: Surveyed examples of optical systems Today, discuss system design Lens design = course of its own (not taught by me!) Try to give some

More information

e2v Launches New Onyx 1.3M for Premium Performance in Low Light Conditions

e2v Launches New Onyx 1.3M for Premium Performance in Low Light Conditions e2v Launches New Onyx 1.3M for Premium Performance in Low Light Conditions e2v s Onyx family of image sensors is designed for the most demanding outdoor camera and industrial machine vision applications,

More information

Imaging Overview. For understanding work in computational photography and computational illumination

Imaging Overview. For understanding work in computational photography and computational illumination Imaging Overview For understanding work in computational photography and computational illumination Light and Optics Optics The branch of physics that deals with light Ray optics Wave optics Photon optics

More information

G1 THE NATURE OF EM WAVES AND LIGHT SOURCES

G1 THE NATURE OF EM WAVES AND LIGHT SOURCES G1 THE NATURE OF EM WAVES AND LIGHT SOURCES G2 OPTICAL INSTRUMENTS HW/Study Packet Required: READ Tsokos, pp 598-620 SL/HL Supplemental: Hamper, pp 411-450 DO Questions p 605 #1,3 pp 621-623 #6,8,15,18,19,24,26

More information

Advanced Camera and Image Sensor Technology. Steve Kinney Imaging Professional Camera Link Chairman

Advanced Camera and Image Sensor Technology. Steve Kinney Imaging Professional Camera Link Chairman Advanced Camera and Image Sensor Technology Steve Kinney Imaging Professional Camera Link Chairman Content Physical model of a camera Definition of various parameters for EMVA1288 EMVA1288 and image quality

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. Just over two hundred years ago Thomas Young demonstrated the interference of light by illuminating two closely spaced narrow slits with light from a single light source.

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

Improving the Collection Efficiency of Raman Scattering

Improving the Collection Efficiency of Raman Scattering PERFORMANCE Unparalleled signal-to-noise ratio with diffraction-limited spectral and imaging resolution Deep-cooled CCD with excelon sensor technology Aberration-free optical design for uniform high resolution

More information

Micro-Optics. Competence,Capabilities and Products

Micro-Optics. Competence,Capabilities and Products Micro-Optics Competence,Capabilities and Products 1 2 Company Profile Qioptiq, an Excelitas Technologies Company, designs and manufactures photonic products and solutions that serve a wide range of markets

More information

Design, calibration and assembly of an Offner imaging spectrometer

Design, calibration and assembly of an Offner imaging spectrometer Journal of Physics: Conference Series Design, calibration and assembly of an Offner imaging spectrometer To cite this article: Héctor González-Núñez et al 2011 J. Phys.: Conf. Ser. 274 012106 View the

More information

Hyperspectral Sensor

Hyperspectral Sensor Hyperspectral Sensor Detlev Even 733 Bishop Street, Suite 2800 Honolulu, HI 96813 phone: (808) 441-3610 fax: (808) 441-3601 email: detlev@nova-sol.com Arleen Velasco 15150 Avenue of Science San Diego,

More information

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics 1011CE Restricts rays: acts as a single lens: inverts

More information

Hyperspectral Imager for Coastal Ocean (HICO)

Hyperspectral Imager for Coastal Ocean (HICO) Hyperspectral Imager for Coastal Ocean (HICO) Detlev Even 733 Bishop Street, Suite 2800 phone: (808) 441-3610 fax: (808) 441-3601 email: detlev@nova-sol.com Arleen Velasco 15150 Avenue of Science phone:

More information

Aberrations of a lens

Aberrations of a lens Aberrations of a lens 1. What are aberrations? A lens made of a uniform glass with spherical surfaces cannot form perfect images. Spherical aberration is a prominent image defect for a point source on

More information

Powerful DMD-based light sources with a high throughput virtual slit Arsen R. Hajian* a, Ed Gooding a, Thomas Gunn a, Steven Bradbury a

Powerful DMD-based light sources with a high throughput virtual slit Arsen R. Hajian* a, Ed Gooding a, Thomas Gunn a, Steven Bradbury a Powerful DMD-based light sources with a high throughput virtual slit Arsen R. Hajian* a, Ed Gooding a, Thomas Gunn a, Steven Bradbury a a Hindsight Imaging Inc., 233 Harvard St. #316, Brookline MA 02446

More information

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1)

1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) Exam 3 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) An electromagnetic wave is a result of electric and magnetic fields acting together. T 1) 2) Electromagnetic

More information

PHY385H1F Introductory Optics. Practicals Session 7 Studying for Test 2

PHY385H1F Introductory Optics. Practicals Session 7 Studying for Test 2 PHY385H1F Introductory Optics Practicals Session 7 Studying for Test 2 Entrance Pupil & Exit Pupil A Cooke-triplet consists of three thin lenses in succession, and is often used in cameras. It was patented

More information

LENSES. INEL 6088 Computer Vision

LENSES. INEL 6088 Computer Vision LENSES INEL 6088 Computer Vision Digital camera A digital camera replaces film with a sensor array Each cell in the array is a Charge Coupled Device light-sensitive diode that converts photons to electrons

More information

The Xiris Glossary of Machine Vision Terminology

The Xiris Glossary of Machine Vision Terminology X The Xiris Glossary of Machine Vision Terminology 2 Introduction Automated welding, camera technology, and digital image processing are all complex subjects. When you combine them in a system featuring

More information

PHYSICS OPTICS. Mr Rishi Gopie

PHYSICS OPTICS. Mr Rishi Gopie OPTICS Mr Rishi Gopie Ray Optics II Images formed by lens maybe real or virtual and may have different characteristics and locations that depend on: i) The type of lens involved, whether converging or

More information

Wallace Hall Academy Physics Department. Waves. Pupil Notes Name:

Wallace Hall Academy Physics Department. Waves. Pupil Notes Name: Wallace Hall Academy Physics Department Waves Pupil Notes Name: Learning intentions for this unit? Be able to state that waves transfer energy. Be able to describe the difference between longitudinal and

More information

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves and Optics Waves A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves Some waves do not need a medium

More information

Compact Dual Field-of-View Telescope for Small Satellite Payloads

Compact Dual Field-of-View Telescope for Small Satellite Payloads Compact Dual Field-of-View Telescope for Small Satellite Payloads James C. Peterson Space Dynamics Laboratory 1695 North Research Park Way, North Logan, UT 84341; 435-797-4624 Jim.Peterson@sdl.usu.edu

More information

ULS24 Frequently Asked Questions

ULS24 Frequently Asked Questions List of Questions 1 1. What type of lens and filters are recommended for ULS24, where can we source these components?... 3 2. Are filters needed for fluorescence and chemiluminescence imaging, what types

More information

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester WaveMaster IOL Fast and Accurate Intraocular Lens Tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is an instrument providing real time analysis of

More information

why TECHSPEC? From Design to Prototype to Volume Production

why TECHSPEC? From Design to Prototype to Volume Production high volume stock optics Lenses From Design to Prototype to Volume Production Prisms Filters why TECHSPEC? Volume Discounts from 6 to 100,000 Pieces Certified Edmund Optics Quality Continual Availability

More information

Optical Coherence: Recreation of the Experiment of Thompson and Wolf

Optical Coherence: Recreation of the Experiment of Thompson and Wolf Optical Coherence: Recreation of the Experiment of Thompson and Wolf David Collins Senior project Department of Physics, California Polytechnic State University San Luis Obispo June 2010 Abstract The purpose

More information

a) How big will that physical image of the cells be your camera sensor?

a) How big will that physical image of the cells be your camera sensor? 1. Consider a regular wide-field microscope set up with a 60x, NA = 1.4 objective and a monochromatic digital camera with 8 um pixels, properly positioned in the primary image plane. This microscope is

More information

MULTI-ELEMENT LENSES. Don t see exactly what you are looking for? CVI Laser Optics specializes in prototype to volume production manufacturing!

MULTI-ELEMENT LENSES. Don t see exactly what you are looking for? CVI Laser Optics specializes in prototype to volume production manufacturing! MULTI-ELEMENT LENSES Mirrors Multi-element lenses are an ideal solution for applications requiring specialized performance and/or a high degree of aberration correction. Our line of multi-element lenses

More information