Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color --

Size: px
Start display at page:

Download "Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color --"

Transcription

1 Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color -- Winter 2013 Ivo Ihrke

2 Organizational Issues I received your addresses Course announcements will be send via Course webpage at Teaching -> Computational Optical Imaging

3 Digital Images Images are now numbers (corrupted by noise) ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ

4 Digital Images - Limitations Digital Sensor noise Dynamic Range Tone Curve Recording Medium Monochromatic Optical Distortions Aberrations

5 Dynamic Range

6 Dynamic Range dr = max output swing noise in the dark = Saturation level dark current Dark shot noise + readout noise noise in the dark is random noise sources that cannot be corrected with circuit tricks Photon shot noise and read noise

7 Dynamic Range of Standard Sensors 13.5 EVs or f-stops = contrast 11,000:1 = color Ivo Ihrke negative / Winter 2013

8 Dependency of Dynamic Range on ISO Unity gain is where 1 digital unit (ADU) equals 1 electron (e-) This happens at different ISO settings for different sensors Above that, the gain only increases the voltage before A/D conversion (possibly reducing the relative effect of some of the read noise) digital gain multiplies the digital values All gain settings beyond unity gain reduce dynamic range

9 Dependency of Dynamic Range on ISO

10 Camera Response Curve

11 Radiometric Response Curve Raw sensor readings are usually linear (CCD), for CMOS it can be non-linear (depending on amplifier type) (linear) (log) On-chip processing may modify the relation #photons/digital number i.e. the mapping irradiance to digital value may become non-linear This mapping is called radiometric response curve

12 Pixel Value Log Encoding CMOS pixel amplifier output may be logarithmic Example: advertisement for IMSChips HDRC-MDC04 eye HDRC Log intensity

13 Programmable Response Curve Example: Photonfocus MDC-1024

14 Pixel Values Radiometric Calibration the process of determining the radiometric response curve g 1 : Use a color chart with precisely known reflectances. I E 255 g 1? g 90% 59.1% 36.2% 19.8% 9.0% 3.1% Irradiance = const * Reflectance? Use more camera exposures to fill up the curve. Method assumes constant lighting on all patches Works best when source is far away (example sunlight). Inverse exists (g is monotonic and smooth for all cameras)

15 Response Curve - Practice Measurement: ColorCalibrationToolbox Example: 29 exposures of Gretag-Macbeth color checker (uses EXIF info - exiftool)

16 Color Calibration Toolbox Zoom-in

17 Color Calibration Toolbox Mark the patch rectangle

18 Color Calibration Toolbox Make sure the patches are properly extracted

19 Color Calibration Toolbox Verify response curve the example is for jpg on the Canon 5D mark II Make sure the samples are fit well Response curves (R,G,B) samples Inverse response curves

20 Color Calibration Toolbox Check HDR image

21 Color Calibration Toolbox How is the curve estimated? Variant of Mitsunaga and Nayar, Radiometric Self Calibration, CVPR 1999 Polynomial fit to data samples Variations: enforce monotonicity (derivative > 0) Prevents wiggling enforce passing of curve through (0,0) and (1,1) map range to range Perform a weighted fit accounts for sample non-uniformity

22 Response Curve Take Home Points Usually linear for RAW images Don t rely on it verify Usually non-linear (gamma) for jpg or other compressed/processed formats Estimation from random images may be unstable Use well defined target (color checker) Prefer continuous-curve algorithms, especially for high bit depths

23 Gamma Mapping/Correction Account for properties of human vision Logarithmic, similar to hearing Approximated by Gamma curve

24 Gamma Mapping: Effect Emphasizes contrast on lower end of linear intensity range for γ<1 Emphasizes contrast on higher end of linear intensity range for γ>1

25 Textbook HDR image / video encoding capture, display, tone reproduction visible difference predictors image based lighting, etc.

26 Color

27 Spectrum to Image not a huge problem: humans have only three types of cones (color vision) and one type of rod (night vision) cones 6-7 million rods ~120 million rods more sensitive

28 Color Vision color vision by cones significant overlap of the response functions L = long M = mid S = short

29 Color Vision L ~63%, M ~31%, S ~6% of cones eye least sensitive to blue, most sensitive to yellowishgreen spectral region outside of support of the response functions cannot be perceived

30 Spectral response of human eye reproducing color is tricky color matching experiments use light source with known spectral distribution (i.e. assume uniform spectral distribution, can e.g. be achieved by normalization) filtered by a narrow band filter additionally, use monochromatic 700,546,435 nm let human observers adjust apparent brightness of one of the sources to match the other Color matching functions

31 Color Spaces RGB matching functions negative!

32 XYZ space The CIE (1931) standard observer

33 How to compute a tristimulus image from a spectral representation? We have to integrate with the spectrum with the appropriate color matching function I ( x) f ( )ˆ l ( x, ) d X X I ( x) f ( )ˆ l ( x, ) d Y Y I ( x) f ( )ˆ l ( x, ) d Z Z

34 Now to RGB convert XYZ to RGB Possibly to srgb (non-linear space, gamma) Where C = {R,G,B}

35 Other Color Spaces Many linearly related spaces exist have different separation properties example: YCbCr (JPEG) Cr Cb Y=0 Y=0.5 Y=1.0 [Wikipedia]

36 source: Kodak KAF-5101ce data sheet Sensing color Eye has 3 types of color receptors Therefore we need 3 different spectral sensitivities

37 Ways to sense color Field-sequential color simplest to implement only still scenes Proudkin-Gorskii, 1911 (Library of Congress exhibition)

38 Ways to sense color Field-sequential color simplest to implement only still scenes Proudkin-Gorskii, 1911 (Library of Congress exhibition)

39 Ways to sense color Field-sequential color simplest to implement only still scenes Proudkin-Gorskii, 1911 (Library of Congress exhibition)

40 Ways to sense color Field-sequential color simplest to implement only still scenes Proudkin-Gorskii, 1911 (Library of Congress exhibition)

41 Examples - Prokudin-Gorskij Self-portrait 1915

42 Examples - Prokudin-Gorskij Photograph 1910, Emir of Bukhara, Prokudin-Gorskii

43 Examples - Lew Tolstoy 1887 painting, Ilya Repin 1910 photograph, Sergey Prokudin-Gorskii

44 Color Wheel one color channel is captured at one shot 3 times the acquisition time static images only

45 Ways to sense color 3-Chip Camera dichroic mirrors divide light into wavelength bands does not remove light: excellent quality but expensive interacts with lens design problem with polarization image: Theuwissen

46 Foveon Technology 3 layers capture RGB at the same location takes advantage of silicon s wavelength selectivity light decays at different rates for different wavelengths multilayer CMOS sensor gets 3 different spectral sensitivities don t get to choose the curves

47 Ways to sense color Color filter array cover each sensor with an individual filter requires just one chip but loses some spatial resolution demosaicing requires tricky image processing G R B G primary

48 Multi-Shot (example Jenoptik C14) take four images, moving the sensor by one pixel (use fourth image for noise reduction) can be used for supersampling (move by ½, ¼ pixel)

49 Demosaicing bilinear interpolation sampling theory edge-directed/pattern-based interpolation correlation-based

50 Settings: f/8 1/25s ISO: 800, no noise reduction Example raw image (Canon 5D markii) Processed image Raw image

51 Example raw image (Canon 5D markii) Processed image Raw image

52 Example raw image (Canon 5D markii) Processed image Raw image

53 Colors assigned Raw image Processed image Example raw image (Canon 5D markii)

54 Demosaicing Original image Bilinear interpolation Ron Kimmel,

55 Demosaicing Bilinear interpolation Edge-weighted interpolation Ron Kimmel,

56 Bilinear Interpolation G R B G = + + perform interpolation for each color channel separately

57 Bilinear Interpolation G R B G = + + R 23 R 12 R 14 4 R 32 R 34

58 Bilinear Interpolation G R B G = + + R 23 R 12 R 14 4 R 32 R 34 R 33 R 32 2 R 34

59 Bilinear Interpolation set all non-measured values to zero then convolve G R B G = / , B R F 4 / F G

60 Color White Balancing

61 White Balance Colors appear different under different illumination conditions tungsten daylight flourescent flash

62 White Balance Why is there a constant appearance for human observers? Human perception adapts to illumination condition Practice: division of RGB values

63 White Balance Camera built-in function derive scale from white point sun infrared red green blue tungsten incandescent ultra violet wavelength

64 White Balance Camera built-in function derive scale from white point infrared red green blue ultra violet wavelength

65 White Balance Camera built-in function derive scale from white point infrared red green blue ultra violet wavelength

66 Horseshoe Diagram

67 White Point for Different Color Temperatures Planckian Locus: - convert black body temperature to XYZ and put intohorseshoe diagram L_\lambda = spectral radiance [W/m^2/m] lambda = wavelength [m] h = Planck s constant [J.s] k = Boltzmann constant [J/K] c = speed of light [m/s] T = temperature of black body [K]

68 White Balance Human perception adapts to illumination condition Practice: division of RGB values Theory: achieve a neutral spectrum (only works for broad band sources and broad band reflectance) Conversion to RGB is an integral over the divided spectrum + linear transformation + gamma

69 White Balance capture the spectral characteristics of the light source to assure correct color reproduction tungsten daylight flourescent flash

70 Textbook Physical principles color spaces, encoding chromatic adaption, perceptual issues Display technology, color management

71 Compression

72 Compression Lossless Entropy coding based (e.g. Huffmann coding) Popular example: zip/gzip (used in png format) reproduces exact copy of bit signals Lossy Takes advantage of the fact that information is an image (removes inperceptual data) Popular example: jpeg

73 Compression Example: Jpeg Selectable compression ratio Picture: gradually varying compression ratio from left to right [Wikipedia]

74 Compression JPEG: Convert image to YCbCr Subsample chroma channels (Cb,Cr) Split into 8x8 blocks Apply discrete cosine transform Remove small coefficients Color channels are treated independently 8x8 DCT basis

75 Bibliography Holst, G. CCD Arrays, Cameras, and Displays. SPIE Optical Engineering Press, Bellingham, Washington, Theuwissen, A. Solid-State Imaging with Charge- Coupled Devices. Kluwer Academic Publishers, Boston, Curless, CSE558 lecture notes (UW, Spring 01). El Gamal et al., EE392b lecture notes (Spring 01). Several Kodak Application Notes at pplicationnotes.jhtml Reibel et al., CCD or CMOS camera noise characterization, Eur. Phys. J. AP 21, 2003

76 ICC Profiles (ICC international color consortium) color management system capture the properties of all devices camera and lighting monitor settings output properties display device (e.g. monitor) common interchange space srgb standard as a definition of RGB monitor profile input device (e.g. camera) input profile profile connection space output profile output device (e.g. printer)

77 ICC Profiles and HDR Image Generation profile connection spaces CIELAB (perceptual linear) linear CIEXYZ color space can be used to create an high dynamic range image in the profile connection space allows for a color calibrated workflow... input device (e.g. camera) input profile profile connection space output profile output device (e.g. printer)

78 Other HDR approaches Determine for each pixel when enough photons haven been collected. Logarithmic timings yields floating point representation (mantissa + exponent).

79 PMD measured distance in each pixel exploit interference emit light (modulated) at each pixel compare reflected light to reference light computation in a smart pixel

80 Next week Signal Processing

81

82 What is High Dynamic Range (HDR)?

83 HDR Acquisition Exposure Brackets Radiance Map Tonemapped HDR Image Exposure Sequence [Debevec & Malik 97]

84 Ways to vary the exposure Shutter Speed F/stop (aperture) Neutral Density (ND) Filters Gain / ISO / Film Speed (DOF) (noise)

85 Combining the image radiance I ( x) l( x, t) dt scene constant over exposure time (or ND-filter) I ( x) t l( x, ) assumes linear response (radiometric calibration!) have several measurements with different t

86 Combining the image introduce a weighting function for the pixels: centered at the sensor mean value, e.g. Gaussian (image data in [0,1]) w( I ( x)) e ( I ( x) 0.5) compute final image as I final ( x) i w( I i i ( x)) I w( I i i ( x) ( x)) / t i

Computational Optical Imaging - Optique Numerique. -- Noise, Dynamic Range and Color --

Computational Optical Imaging - Optique Numerique. -- Noise, Dynamic Range and Color -- Computational Optical Imaging - Optique Numerique -- Noise, Dynamic Range and Color -- Winter 2013 Ivo Ihrke Organizational Issues I received your email addresses Course announcements will be send via

More information

Computational Optical Imaging - Optique Numerique

Computational Optical Imaging - Optique Numerique Computational Optical Imaging - Optique Numerique Autumn 2015 Ivo Ihrke Organizational Issues Course schedule (tentative) 1. Intro / Recap: Img. Characteristics Monday 09.09.2015 2. HDR / Spectral / Polarization

More information

Acquisition Basics. How can we measure material properties? Goal of this Section. Special Purpose Tools. General Purpose Tools

Acquisition Basics. How can we measure material properties? Goal of this Section. Special Purpose Tools. General Purpose Tools Course 10 Realistic Materials in Computer Graphics Acquisition Basics MPI Informatik (moving to the University of Washington Goal of this Section practical, hands-on description of acquisition basics general

More information

Color , , Computational Photography Fall 2018, Lecture 7

Color , , Computational Photography Fall 2018, Lecture 7 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 7 Course announcements Homework 2 is out. - Due September 28 th. - Requires camera and

More information

Camera Image Processing Pipeline: Part II

Camera Image Processing Pipeline: Part II Lecture 14: Camera Image Processing Pipeline: Part II Visual Computing Systems Today Finish image processing pipeline Auto-focus / auto-exposure Camera processing elements Smart phone processing elements

More information

Camera Image Processing Pipeline: Part II

Camera Image Processing Pipeline: Part II Lecture 13: Camera Image Processing Pipeline: Part II Visual Computing Systems Today Finish image processing pipeline Auto-focus / auto-exposure Camera processing elements Smart phone processing elements

More information

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation.

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation. From light to colour spaces Light and colour Advanced Graphics Rafal Mantiuk Computer Laboratory, University of Cambridge 1 2 Electromagnetic spectrum Visible light Electromagnetic waves of wavelength

More information

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor Image acquisition Digital images are acquired by direct digital acquisition (digital still/video cameras), or scanning material acquired as analog signals (slides, photographs, etc.). In both cases, the

More information

Goal of this Section. Capturing Reflectance From Theory to Practice. Acquisition Basics. How can we measure material properties? Special Purpose Tools

Goal of this Section. Capturing Reflectance From Theory to Practice. Acquisition Basics. How can we measure material properties? Special Purpose Tools Capturing Reflectance From Theory to Practice Acquisition Basics GRIS, TU Darmstadt (formerly University of Washington, Seattle Goal of this Section practical, hands-on description of acquisition basics

More information

A simulation tool for evaluating digital camera image quality

A simulation tool for evaluating digital camera image quality A simulation tool for evaluating digital camera image quality Joyce Farrell ab, Feng Xiao b, Peter Catrysse b, Brian Wandell b a ImagEval Consulting LLC, P.O. Box 1648, Palo Alto, CA 94302-1648 b Stanford

More information

A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications

A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications A Kalman-Filtering Approach to High Dynamic Range Imaging for Measurement Applications IEEE Transactions on Image Processing, Vol. 21, No. 2, 2012 Eric Dedrick and Daniel Lau, Presented by Ran Shu School

More information

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera High dynamic range imaging

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera High dynamic range imaging Outline Cameras Pinhole camera Film camera Digital camera Video camera High dynamic range imaging Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2006/3/1 with slides by Fedro Durand, Brian Curless,

More information

High dynamic range imaging and tonemapping

High dynamic range imaging and tonemapping High dynamic range imaging and tonemapping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 12 Course announcements Homework 3 is out. - Due

More information

Digital photography , , Computational Photography Fall 2017, Lecture 2

Digital photography , , Computational Photography Fall 2017, Lecture 2 Digital photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 2 Course announcements To the 14 students who took the course survey on

More information

Camera Requirements For Precision Agriculture

Camera Requirements For Precision Agriculture Camera Requirements For Precision Agriculture Radiometric analysis such as NDVI requires careful acquisition and handling of the imagery to provide reliable values. In this guide, we explain how Pix4Dmapper

More information

Image Formation and Capture

Image Formation and Capture Figure credits: B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, A. Theuwissen, and J. Malik Image Formation and Capture COS 429: Computer Vision Image Formation and Capture Real world Optics Sensor Devices

More information

Camera Image Processing Pipeline

Camera Image Processing Pipeline Lecture 13: Camera Image Processing Pipeline Visual Computing Systems Today (actually all week) Operations that take photons hitting a sensor to a high-quality image Processing systems used to efficiently

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

Camera Requirements For Precision Agriculture

Camera Requirements For Precision Agriculture Camera Requirements For Precision Agriculture Radiometric analysis such as NDVI requires careful acquisition and handling of the imagery to provide reliable values. In this guide, we explain how Pix4Dmapper

More information

Computer Graphics. - Display and Imaging Devices - Hendrik Lensch. Computer Graphics WS07/08 Display and Imaging Devices

Computer Graphics. - Display and Imaging Devices - Hendrik Lensch. Computer Graphics WS07/08 Display and Imaging Devices Computer Graphics - Display and Imaging Devices - Hendrik Lensch Overview Last Week Volume Rendering Today Display and Imaging Devices Exam Monday, 18 th please be there at 8:00 sharp starts at 8:15 will

More information

DIGITAL IMAGING. Handbook of. Wiley VOL 1: IMAGE CAPTURE AND STORAGE. Editor-in- Chief

DIGITAL IMAGING. Handbook of. Wiley VOL 1: IMAGE CAPTURE AND STORAGE. Editor-in- Chief Handbook of DIGITAL IMAGING VOL 1: IMAGE CAPTURE AND STORAGE Editor-in- Chief Adjunct Professor of Physics at the Portland State University, Oregon, USA Previously with Eastman Kodak; University of Rochester,

More information

Digital Media. Lecture 4: Bitmapped images: Compression & Convolution Georgia Gwinnett College School of Science and Technology Dr.

Digital Media. Lecture 4: Bitmapped images: Compression & Convolution Georgia Gwinnett College School of Science and Technology Dr. Digital Media Lecture 4: Bitmapped images: Compression & Convolution Georgia Gwinnett College School of Science and Technology Dr. Mark Iken Bitmapped image compression Consider this image: With no compression...

More information

Images. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 38

Images. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 38 Images CS 4620 Lecture 38 w/ prior instructor Steve Marschner 1 Announcements A7 extended by 24 hours w/ prior instructor Steve Marschner 2 Color displays Operating principle: humans are trichromatic match

More information

Color , , Computational Photography Fall 2017, Lecture 11

Color , , Computational Photography Fall 2017, Lecture 11 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 11 Course announcements Homework 2 grades have been posted on Canvas. - Mean: 81.6% (HW1:

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

Digital Cameras The Imaging Capture Path

Digital Cameras The Imaging Capture Path Manchester Group Royal Photographic Society Imaging Science Group Digital Cameras The Imaging Capture Path by Dr. Tony Kaye ASIS FRPS Silver Halide Systems Exposure (film) Processing Digital Capture Imaging

More information

Digital photography , , Computational Photography Fall 2018, Lecture 2

Digital photography , , Computational Photography Fall 2018, Lecture 2 Digital photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 2 Course announcements To the 26 students who took the start-of-semester

More information

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al.

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. Capturing Light in man and machine Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Image Formation Digital

More information

HDR images acquisition

HDR images acquisition HDR images acquisition dr. Francesco Banterle francesco.banterle@isti.cnr.it Current sensors No sensors available to consumer for capturing HDR content in a single shot Some native HDR sensors exist, HDRc

More information

High Dynamic Range Images : Rendering and Image Processing Alexei Efros. The Grandma Problem

High Dynamic Range Images : Rendering and Image Processing Alexei Efros. The Grandma Problem High Dynamic Range Images 15-463: Rendering and Image Processing Alexei Efros The Grandma Problem 1 Problem: Dynamic Range 1 1500 The real world is high dynamic range. 25,000 400,000 2,000,000,000 Image

More information

Overview. Charge-coupled Devices. MOS capacitor. Charge-coupled devices. Charge-coupled devices:

Overview. Charge-coupled Devices. MOS capacitor. Charge-coupled devices. Charge-coupled devices: Overview Charge-coupled Devices Charge-coupled devices: MOS capacitors Charge transfer Architectures Color Limitations 1 2 Charge-coupled devices MOS capacitor The most popular image recording technology

More information

Realistic Image Synthesis

Realistic Image Synthesis Realistic Image Synthesis - HDR Capture & Tone Mapping - Philipp Slusallek Karol Myszkowski Gurprit Singh Karol Myszkowski LDR vs HDR Comparison Various Dynamic Ranges (1) 10-6 10-4 10-2 100 102 104 106

More information

Color Reproduction. Chapter 6

Color Reproduction. Chapter 6 Chapter 6 Color Reproduction Take a digital camera and click a picture of a scene. This is the color reproduction of the original scene. The success of a color reproduction lies in how close the reproduced

More information

Computer Graphics. Si Lu. Fall er_graphics.htm 10/02/2015

Computer Graphics. Si Lu. Fall er_graphics.htm 10/02/2015 Computer Graphics Si Lu Fall 2017 http://www.cs.pdx.edu/~lusi/cs447/cs447_547_comput er_graphics.htm 10/02/2015 1 Announcements Free Textbook: Linear Algebra By Jim Hefferon http://joshua.smcvt.edu/linalg.html/

More information

Prof. Feng Liu. Winter /09/2017

Prof. Feng Liu. Winter /09/2017 Prof. Feng Liu Winter 2017 http://www.cs.pdx.edu/~fliu/courses/cs410/ 01/09/2017 Today Course overview Computer vision Admin. Info Visual Computing at PSU Image representation Color 2 Big Picture: Visual

More information

CS559: Computer Graphics. Lecture 2: Image Formation in Eyes and Cameras Li Zhang Spring 2008

CS559: Computer Graphics. Lecture 2: Image Formation in Eyes and Cameras Li Zhang Spring 2008 CS559: Computer Graphics Lecture 2: Image Formation in Eyes and Cameras Li Zhang Spring 2008 Today Eyes Cameras Light Why can we see? Visible Light and Beyond Infrared, e.g. radio wave longer wavelength

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour CS 565 Computer Vision Nazar Khan PUCIT Lecture 4: Colour Topics to be covered Motivation for Studying Colour Physical Background Biological Background Technical Colour Spaces Motivation Colour science

More information

Introduction to Video Forgery Detection: Part I

Introduction to Video Forgery Detection: Part I Introduction to Video Forgery Detection: Part I Detecting Forgery From Static-Scene Video Based on Inconsistency in Noise Level Functions IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5,

More information

Computer Graphics Si Lu Fall /27/2016

Computer Graphics Si Lu Fall /27/2016 Computer Graphics Si Lu Fall 2017 09/27/2016 Announcement Class mailing list https://groups.google.com/d/forum/cs447-fall-2016 2 Demo Time The Making of Hallelujah with Lytro Immerge https://vimeo.com/213266879

More information

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object.

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object. Camera trial #1 Cameras Digital Visual Effects Yung-Yu Chuang scene film with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Put a piece of film in front of an object. Pinhole camera

More information

OFFSET AND NOISE COMPENSATION

OFFSET AND NOISE COMPENSATION OFFSET AND NOISE COMPENSATION AO 10V 8.1 Offset and fixed pattern noise reduction Offset variation - shading AO 10V 8.2 Row Noise AO 10V 8.3 Offset compensation Global offset calibration Dark level is

More information

Color Management for Digital Photography

Color Management for Digital Photography Color Management for Digital Photography A Presentation for the Akron Camera Club By Tom Noe Bonnie Janelle Lou Janelle What Is Color Management? An attempt to accurately depict color from initial camera

More information

High Dynamic Range Imaging

High Dynamic Range Imaging High Dynamic Range Imaging 1 2 Lecture Topic Discuss the limits of the dynamic range in current imaging and display technology Solutions 1. High Dynamic Range (HDR) Imaging Able to image a larger dynamic

More information

Color Digital Imaging: Cameras, Scanners and Monitors

Color Digital Imaging: Cameras, Scanners and Monitors Color Digital Imaging: Cameras, Scanners and Monitors H. J. Trussell Dept. of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695-79 hjt@ncsu.edu Color Imaging Devices

More information

Announcements. The appearance of colors

Announcements. The appearance of colors Announcements Introduction to Computer Vision CSE 152 Lecture 6 HW1 is assigned See links on web page for readings on color. Oscar Beijbom will be giving the lecture on Tuesday. I will not be holding office

More information

Images and Displays. Lecture Steve Marschner 1

Images and Displays. Lecture Steve Marschner 1 Images and Displays Lecture 2 2008 Steve Marschner 1 Introduction Computer graphics: The study of creating, manipulating, and using visual images in the computer. What is an image? A photographic print?

More information

VU Rendering SS Unit 8: Tone Reproduction

VU Rendering SS Unit 8: Tone Reproduction VU Rendering SS 2012 Unit 8: Tone Reproduction Overview 1. The Problem Image Synthesis Pipeline Different Image Types Human visual system Tone mapping Chromatic Adaptation 2. Tone Reproduction Linear methods

More information

Color & Compression. Robin Strand Centre for Image analysis Swedish University of Agricultural Sciences Uppsala University

Color & Compression. Robin Strand Centre for Image analysis Swedish University of Agricultural Sciences Uppsala University Color & Compression Robin Strand Centre for Image analysis Swedish University of Agricultural Sciences Uppsala University Outline Color Color spaces Multispectral images Pseudocoloring Color image processing

More information

>--- UnSorted Tag Reference [ExifTool -a -m -u -G -sort ] ExifTool Ver: 10.07

>--- UnSorted Tag Reference [ExifTool -a -m -u -G -sort ] ExifTool Ver: 10.07 From Image File C:\AEB\RAW_Test\_MG_4376.CR2 Total Tags = 433 (Includes Composite Tags) and Duplicate Tags >------ SORTED Tag Position >--- UnSorted Tag Reference [ExifTool -a -m -u -G -sort ] ExifTool

More information

CS6640 Computational Photography. 6. Color science for digital photography Steve Marschner

CS6640 Computational Photography. 6. Color science for digital photography Steve Marschner CS6640 Computational Photography 6. Color science for digital photography 2012 Steve Marschner 1 What visible light is One octave of the electromagnetic spectrum (380-760nm) NASA/Wikimedia Commons 2 What

More information

Introduction to Computer Vision CSE 152 Lecture 18

Introduction to Computer Vision CSE 152 Lecture 18 CSE 152 Lecture 18 Announcements Homework 5 is due Sat, Jun 9, 11:59 PM Reading: Chapter 3: Color Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

What will be on the final exam?

What will be on the final exam? What will be on the final exam? CS 178, Spring 2009 Marc Levoy Computer Science Department Stanford University Trichromatic theory (1 of 2) interaction of light with matter understand spectral power distributions

More information

CS 89.15/189.5, Fall 2015 ASPECTS OF DIGITAL PHOTOGRAPHY COMPUTATIONAL. Image Processing Basics. Wojciech Jarosz

CS 89.15/189.5, Fall 2015 ASPECTS OF DIGITAL PHOTOGRAPHY COMPUTATIONAL. Image Processing Basics. Wojciech Jarosz CS 89.15/189.5, Fall 2015 COMPUTATIONAL ASPECTS OF DIGITAL PHOTOGRAPHY Image Processing Basics Wojciech Jarosz wojciech.k.jarosz@dartmouth.edu Domain, range Domain vs. range 2D plane: domain of images

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2015 Etymology PHOTOGRAPHY light drawing / writing Image Formation Digital Camera

More information

Chapter 9 Image Compression Standards

Chapter 9 Image Compression Standards Chapter 9 Image Compression Standards 9.1 The JPEG Standard 9.2 The JPEG2000 Standard 9.3 The JPEG-LS Standard 1IT342 Image Compression Standards The image standard specifies the codec, which defines how

More information

Wavelengths and Colors. Ankit Mohan MAS.131/531 Fall 2009

Wavelengths and Colors. Ankit Mohan MAS.131/531 Fall 2009 Wavelengths and Colors Ankit Mohan MAS.131/531 Fall 2009 Epsilon over time (Multiple photos) Prokudin-Gorskii, Sergei Mikhailovich, 1863-1944, photographer. Congress. Epsilon over time (Bracketing) Image

More information

High-Dynamic-Range Imaging & Tone Mapping

High-Dynamic-Range Imaging & Tone Mapping High-Dynamic-Range Imaging & Tone Mapping photo by Jeffrey Martin! Spatial color vision! JPEG! Today s Agenda The dynamic range challenge! Multiple exposures! Estimating the response curve! HDR merging:

More information

Visibility of Uncorrelated Image Noise

Visibility of Uncorrelated Image Noise Visibility of Uncorrelated Image Noise Jiajing Xu a, Reno Bowen b, Jing Wang c, and Joyce Farrell a a Dept. of Electrical Engineering, Stanford University, Stanford, CA. 94305 U.S.A. b Dept. of Psychology,

More information

icam06, HDR, and Image Appearance

icam06, HDR, and Image Appearance icam06, HDR, and Image Appearance Jiangtao Kuang, Mark D. Fairchild, Rochester Institute of Technology, Rochester, New York Abstract A new image appearance model, designated as icam06, has been developed

More information

Assistant Lecturer Sama S. Samaan

Assistant Lecturer Sama S. Samaan MP3 Not only does MPEG define how video is compressed, but it also defines a standard for compressing audio. This standard can be used to compress the audio portion of a movie (in which case the MPEG standard

More information

ICC Profiling for Digital Cameras

ICC Profiling for Digital Cameras ICC Profiling for Digital Cameras Tak Auyeung, Ph.D. June 21, 2005 1 Problems to be Solved by Profiling So you bit the bullet and purchased an expensive digital camera. You also bit the bullet to purchase

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 4: Color Instructor: Kate Ching-Ju Lin ( 林靖茹 ) Chap. 4 of Fundamentals of Multimedia Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15f/ 1 Outline

More information

Camera Post-Processing Pipeline

Camera Post-Processing Pipeline Camera Post-Processing Pipeline Kari Pulli Senior Director Topics Filtering blurring sharpening bilateral filter Sensor imperfections (PNU, dark current, vignetting, ) ISO (analog digital conversion with

More information

Tonemapping and bilateral filtering

Tonemapping and bilateral filtering Tonemapping and bilateral filtering http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 6 Course announcements Homework 2 is out. - Due September

More information

Lecture Notes 11 Introduction to Color Imaging

Lecture Notes 11 Introduction to Color Imaging Lecture Notes 11 Introduction to Color Imaging Color filter options Color processing Color interpolation (demozaicing) White balancing Color correction EE 392B: Color Imaging 11-1 Preliminaries Up till

More information

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Real world Optics Sensor Devices Sources of Error

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

SYSTEMATIC NOISE CHARACTERIZATION OF A CCD CAMERA: APPLICATION TO A MULTISPECTRAL IMAGING SYSTEM

SYSTEMATIC NOISE CHARACTERIZATION OF A CCD CAMERA: APPLICATION TO A MULTISPECTRAL IMAGING SYSTEM SYSTEMATIC NOISE CHARACTERIZATION OF A CCD CAMERA: APPLICATION TO A MULTISPECTRAL IMAGING SYSTEM A. Mansouri, F. S. Marzani, P. Gouton LE2I. UMR CNRS-5158, UFR Sc. & Tech., University of Burgundy, BP 47870,

More information

CERTIFIED PROFESSIONAL PHOTOGRAPHER (CPP) TEST SPECIFICATIONS CAMERA, LENSES AND ATTACHMENTS (12%)

CERTIFIED PROFESSIONAL PHOTOGRAPHER (CPP) TEST SPECIFICATIONS CAMERA, LENSES AND ATTACHMENTS (12%) CERTIFIED PROFESSIONAL PHOTOGRAPHER (CPP) TEST SPECIFICATIONS CAMERA, LENSES AND ATTACHMENTS (12%) Items relating to this category will include digital cameras as well as the various lenses, menu settings

More information

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Acquisition Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Image Acquisition Digital Camera Film Outline Pinhole camera Lens Lens aberrations Exposure Sensors Noise

More information

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading:

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Announcements Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Chapter 3: Color CSE 252A Lecture 18 Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

Sunderland, NE England

Sunderland, NE England Sunderland, NE England Robert Grosseteste (1175-1253) Bishop of Lincoln Teacher of Francis Bacon Exhibit featuring color ideas of Robert Grosseteste Closes Saturday! Exactly 16 colors: (unnamed) White

More information

Color and perception Christian Miller CS Fall 2011

Color and perception Christian Miller CS Fall 2011 Color and perception Christian Miller CS 354 - Fall 2011 A slight detour We ve spent the whole class talking about how to put images on the screen What happens when we look at those images? Are there any

More information

Digital Files File Format Storage Color Temperature

Digital Files File Format Storage Color Temperature Digital Files Digital Files File Format Storage Color Temperature PIXELS Pixel = picture element - smallest component of a digital image - MEGAPIXEL 1 million pixels = MEGAPIXEL PIXELS more pixels per

More information

Visual Perception. Overview. The Eye. Information Processing by Human Observer

Visual Perception. Overview. The Eye. Information Processing by Human Observer Visual Perception Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Class Introduction to DIP/DVP applications and examples Image as a function Concepts

More information

Color image processing

Color image processing Color image processing Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..)

More information

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera Outline Cameras Pinhole camera Film camera Digital camera Video camera Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/6 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

More information

Digital Imaging Rochester Institute of Technology

Digital Imaging Rochester Institute of Technology Digital Imaging 1999 Rochester Institute of Technology So Far... camera AgX film processing image AgX photographic film captures image formed by the optical elements (lens). Unfortunately, the processing

More information

Computer Graphics. Rendering. Rendering 3D. Images & Color. Scena 3D rendering image. Human Visual System: the retina. Human Visual System

Computer Graphics. Rendering. Rendering 3D. Images & Color. Scena 3D rendering image. Human Visual System: the retina. Human Visual System Rendering Rendering 3D Scena 3D rendering image Computer Graphics Università dell Insubria Corso di Laurea in Informatica Anno Accademico 2014/15 Marco Tarini Images & Color M a r c o T a r i n i C o m

More information

Learning the image processing pipeline

Learning the image processing pipeline Learning the image processing pipeline Brian A. Wandell Stanford Neurosciences Institute Psychology Stanford University http://www.stanford.edu/~wandell S. Lansel Andy Lin Q. Tian H. Blasinski H. Jiang

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Filter Design Circularly symmetric 2-D low-pass filter Pass-band radial frequency: ω p Stop-band radial frequency: ω s 1 δ p Pass-band tolerances: δ

More information

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Cameras Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Camera trial #1 scene film Put a piece of film in front of

More information

Digital camera. Sensor. Memory card. Circuit board

Digital camera. Sensor. Memory card. Circuit board Digital camera Circuit board Memory card Sensor Detector element (pixel). Typical size: 2-5 m square Typical number: 5-20M Pixel = Photogate Photon + Thin film electrode (semi-transparent) Depletion volume

More information

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University 2011-10-26 Bettina Selig Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Electromagnetic Radiation Illumination - Reflection - Detection The Human Eye Digital

More information

Color II: applications in photography

Color II: applications in photography Color II: applications in photography CS 178, Spring 2014 Begun 5/15/14, finished 5/20. Marc Levoy Computer Science Department Stanford University Outline spectral power distributions color response in

More information

Aperture. The lens opening that allows more, or less light onto the sensor formed by a diaphragm inside the actual lens.

Aperture. The lens opening that allows more, or less light onto the sensor formed by a diaphragm inside the actual lens. PHOTOGRAPHY TERMS: AE - Auto Exposure. When the camera is set to this mode, it will automatically set all the required modes for the light conditions. I.e. Shutter speed, aperture and white balance. The

More information

Prof. Feng Liu. Fall /02/2018

Prof. Feng Liu. Fall /02/2018 Prof. Feng Liu Fall 2018 http://www.cs.pdx.edu/~fliu/courses/cs447/ 10/02/2018 1 Announcements Free Textbook: Linear Algebra By Jim Hefferon http://joshua.smcvt.edu/linalg.html/ Homework 1 due in class

More information

Introduction to Color Science (Cont)

Introduction to Color Science (Cont) Lecture 24: Introduction to Color Science (Cont) Computer Graphics and Imaging UC Berkeley Empirical Color Matching Experiment Additive Color Matching Experiment Show test light spectrum on left Mix primaries

More information

EE 392B: Course Introduction

EE 392B: Course Introduction EE 392B Course Introduction About EE392B Goals Topics Schedule Prerequisites Course Overview Digital Imaging System Image Sensor Architectures Nonidealities and Performance Measures Color Imaging Recent

More information

Noise Characteristics of a High Dynamic Range Camera with Four-Chip Optical System

Noise Characteristics of a High Dynamic Range Camera with Four-Chip Optical System Journal of Electrical Engineering 6 (2018) 61-69 doi: 10.17265/2328-2223/2018.02.001 D DAVID PUBLISHING Noise Characteristics of a High Dynamic Range Camera with Four-Chip Optical System Takayuki YAMASHITA

More information

Quantitative Analysis of ICC Profile Quality for Scanners

Quantitative Analysis of ICC Profile Quality for Scanners Quantitative Analysis of ICC Profile Quality for Scanners Xiaoying Rong, Paul D. Fleming, and Abhay Sharma Keywords: Color Management, ICC Profiles, Scanners, Color Measurement Abstract ICC profiling software

More information

Simulation of film media in motion picture production using a digital still camera

Simulation of film media in motion picture production using a digital still camera Simulation of film media in motion picture production using a digital still camera Arne M. Bakke, Jon Y. Hardeberg and Steffen Paul Gjøvik University College, P.O. Box 191, N-2802 Gjøvik, Norway ABSTRACT

More information

WHITE PAPER. Guide to CCD-Based Imaging Colorimeters

WHITE PAPER. Guide to CCD-Based Imaging Colorimeters Guide to CCD-Based Imaging Colorimeters How to choose the best imaging colorimeter CCD-based instruments offer many advantages for measuring light and color. When configured effectively, CCD imaging systems

More information

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD) Color Science CS 4620 Lecture 15 1 2 What light is Measuring light Light is electromagnetic radiation Salient property is the spectral power distribution (SPD) [Lawrence Berkeley Lab / MicroWorlds] exists

More information

HDR is a process for increasing the range of tonal values beyond what a single frame (either film or digital) can produce.

HDR is a process for increasing the range of tonal values beyond what a single frame (either film or digital) can produce. HDR HDR is a process for increasing the range of tonal values beyond what a single frame (either film or digital) can produce. It can be used to create more realistic views, or wild extravagant ones What

More information

Colour Management Workflow

Colour Management Workflow Colour Management Workflow The Eye as a Sensor The eye has three types of receptor called 'cones' that can pick up blue (S), green (M) and red (L) wavelengths. The sensitivity overlaps slightly enabling

More information

WebHDR. 5th International Radiance Scientific Workshop September 2006 De Montfort University Leicester

WebHDR. 5th International Radiance Scientific Workshop September 2006 De Montfort University Leicester Luisa Brotas & Axel Jacobs LEARN Low Energy Architecture Research unit London Metropolitan University Contents: Reasons Background theory Engines hdrgen HDR daemon Webserver Apache Radiance RGBE HTML Example

More information

Sampling and Reconstruction. Today: Color Theory. Color Theory COMP575

Sampling and Reconstruction. Today: Color Theory. Color Theory COMP575 and COMP575 Today: Finish up Color Color Theory CIE XYZ color space 3 color matching functions: X, Y, Z Y is luminance X and Z are color values WP user acdx Color Theory xyy color space Since Y is luminance,

More information

05 Color. Multimedia Systems. Color and Science

05 Color. Multimedia Systems. Color and Science Multimedia Systems 05 Color Color and Science Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures Adapted From: Digital Multimedia

More information

Images and Colour COSC342. Lecture 2 2 March 2015

Images and Colour COSC342. Lecture 2 2 March 2015 Images and Colour COSC342 Lecture 2 2 March 2015 In this Lecture Images and image formats Digital images in the computer Image compression and formats Colour representation Colour perception Colour spaces

More information