Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera High dynamic range imaging

Size: px
Start display at page:

Download "Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera High dynamic range imaging"

Transcription

1 Outline Cameras Pinhole camera Film camera Digital camera Video camera High dynamic range imaging Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2006/3/1 with slides by Fedro Durand, Brian Curless, Steve Seitz and Alexei Efros Camera trial #1 Pinhole camera pinhole camera scene film scene barrier film Put a piece of film in front of an object. Add a barrier to block off most of the rays. It reduces blurring The pinhole is known as the aperture The image is inverted

2 Shrinking the aperture Shrinking the aperture Why not making the aperture as small as possible? Less light gets through Diffraction effect High-end commercial pinhole cameras Adding a lens circle of confusion scene lens film $200~$700 A lens focuses light onto the film There is a specific distance at which objects are in focus other points project to a circle of confusion in the image

3 Lenses Exposure = aperture + shutter speed F Thin lens equation: Any object point satisfying this equation is in focus Thin lens applet: Aperture of diameter D restricts the range of rays (aperture may be on either side of the lens) Shutter speed is the amount of time that light is allowed to pass through the aperture Exposure Two main parameters: Aperture (in f stop) Effect of shutter speed Longer shutter speed => more light, but more motion blur Shutter speed (in fraction of a second) Faster shutter speed freezes motion

4 Aperture Aperture is the diameter of the lens opening, usually specified by f-stop, f/d, a fraction of the focal length. f/2.0 on a 50mm means that the aperture is 25mm f/2.0 on a 100mm means that the aperture is 50mm When a change in f-stop occurs, the light is either doubled or cut in half. Lower f-stop, more light (larger lens opening) Higher f-stop, less light (smaller lens opening) Depth of field Changing the aperture size affects depth of field. A smaller aperture increases the range in which the object is approximately in focus See Exposure & metering The camera metering system measures how bright the scene is In Aperture priority mode, the photographer sets the aperture, the camera sets the shutter speed In Shutter-speed priority mode, the photographers sets the shutter speed and the camera deduces the aperture In Program mode, the camera decides both exposure and shutter speed (middle value more or less) In Manual mode, the user decides everything (but can get feedback) Pros and cons of various modes Aperture priority Direct depth of field control Cons: can require impossible shutter speed (e.g. with f/1.4 for a bright scene) Shutter speed priority Direct motion blur control Cons: can require impossible aperture (e.g. when requesting a 1/1000 speed for a dark scene) Note that aperture is somewhat more restricted Program Almost no control, but no need for neurons Manual Full control, but takes more time and thinking

5 Distortion Correcting radial distortion No distortion Pin cushion Barrel Radial distortion of the image Caused by imperfect lenses Deviations are most noticeable for rays that pass through the edge of the lens from Helmut Dersch Film camera Digital camera aperture & shutter aperture & shutter scene lens & motor film scene lens & motor sensor array A digital camera replaces film with a sensor array Each cell in the array is a light-sensitive diode that converts photons to electrons

6 CCD v.s. CMOS CCD is less susceptible to noise (special process, higher fill factor) CMOS is more flexible, less expensive (standard process), less power consumption Sensor noise Blooming Diffusion Dark current Photon shot noise Amplifier readout noise CCD CMOS SLR (Single-Lens Reflex) Reflex (R in SLR) means that we see through the same lens used to take the image. Not the case for compact cameras SLR view finder Prism Your eye Mirror (flipped for exposure) Film/sensor Light from scene Mirror (when viewing) lens

7 Color Field sequential So far, we ve only talked about monochrome sensors. Color imaging has been implemented in a number of ways: Field sequential Multi-chip Color filter array X3 sensor Field sequential Field sequential

8 Prokudin-Gorskii (early 1900 s) Prokudin-Gorskii (early 1990 s) Lantern projector Multi-chip Embedded color filters wavelength dependent Color filters can be manufactured directly onto the photodetectors.

9 Color filter array Color filter array Kodak DCS620x Bayer pattern Color filter arrays (CFAs)/color filter mosaics Color filter arrays (CFAs)/color filter mosaics Bayer s pattern Demosaicking CFA s bilinear interpolation original input linear interpolation

10 Demosaicking CFA s Demosaicking CFA s Constant hue-based interpolation (Cok) Hue: Interpolate G first Median-based interpolation (Freeman) 1. Linear interpolation 2. Median filter on color differences Demosaicking CFA s Demosaicking CFA s Median-based interpolation (Freeman) Gradient-based interpolation (LaRoche-Prescott) 1. Interpolation on G original input linear interpolation color difference median filter reconstruction

11 Demosaicking CFA s Demosaicking CFA s Gradient-based interpolation (LaRoche-Prescott) 2. Interpolation of color differences bilinear Cok Freeman LaRoche Demosaicking CFA s Foveon X3 sensor light penetrates to different depths for different wavelengths multilayer CMOS sensor gets 3 different spectral sensitivities Generally, Freeman s is the best, especially for natural images.

12 Color filter array X3 technology red green blue output red green blue output Foveon X3 sensor Cameras with X3 Bayer CFA X3 sensor Sigma SD10, SD9 Polaroid X530

13 Sigma SD9 vs Canon D30 Color processing After color values are recorded, more color processing usually happens: White balance Non-linearity to approximate film response or match TV monitor gamma White Balance Manual white balance warmer +3 automatic white balance white balance with the white book white balance with the red book

14 Autofocus Active Sonar Infrared Passive Digital camera review website A cool video of digital camera illustration Camcorder Interlacing without interlacing with interlacing

15 Deinterlacing Deinterlacing blend weave Discard (even field only or odd filed only) Progressive scan Hard cases High dynamic range imaging

16 Camera pipeline High dynamic range image Short exposure Real world radiance Picture intensity dynamic range Pixel value 0 to 255 Long exposure Real world radiance Picture intensity dynamic range Pixel value 0 to 255

17 Real-world response functions Camera calibration Geometric How pixel coordinates relate to directions in the world Photometric How pixel values relate to radiance amounts in the world Camera is not a photometer Limited dynamic range Perhaps use multiple exposures? Unknown, nonlinear response Not possible to convert pixel values to radiance Solution: Recover response curve from multiple exposures, then reconstruct the radiance map Varying exposure Ways to change exposure Shutter speed Aperture Natural density filters

18 Shutter speed Varying shutter speeds Note: shutter times usually obey a power series each stop is a factor of 2 ¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec Usually really is: ¼, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec Math for recovering response curve Idea behind the math

19 Idea behind the math Idea behind the math Recovering response curve The solution can be only up to a scale, add a constraint Add a hat weighting function Recovering response curve We want If P=11, N~50 We want selected pixels well distributed and sampled from constant region. They pick points by hand. It is an overdetermined system of linear equations and can be solved using SVD

20 Matlab code Matlab code Matlab code Recovered response function

21 Constructing HDR radiance map Reconstructed radiance map combine pixels to reduce noise and obtain a more reliable estimation What is this for? Easier HDR reconstruction Human perception Vision/graphics applications raw image = 12-bit CCD snapshot

22 Easier HDR reconstruction exposure Portable floatmap (.pfm) 12 bytes per pixel, 4 for each channel sign exponent mantissa exposure=radiance* Δt Δt Text header similar to Jeff Poskanzer s.ppm image format: Floating Point TIFF similar PF <binary image data> Radiance format (.pic,.hdr,.rad) ILM s OpenEXR (.exr) 6 bytes per pixel, 2 for each channel, compressed 32 bits / pixel Red Green Blue Exponent (145, 215, 87, 149) = (145, 215, 87) * 2^( ) = ( , , ) (145, 215, 87, 103) = (145, 215, 87) * 2^( ) = ( , , ) sign exponent mantissa Several lossless compression options, 2:1 typical Compatible with the half datatype in NVidia's Cg Supported natively on GeForce FX and Quadro FX Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994 Available at

23 Radiometric self calibration Space of response curves Assume that any response function can be modeled as a high-order polynomial Space of response curves Assorted pixel

24 Assorted pixel Assorted pixel Assignment #1 HDR image assemble It you have not subscribed the mailing list, please do so. Will be announced around Friday through the mailing list You will use a tripod to take multiple photos with different shutter speeds. Write a program to recover the response curve and radiance map. We will provide image I/O library. Furthermore, apply some tone mapping operation on your photograph. References Ramanath, Snyder, Bilbro, and Sander. Demosaicking Methods for Bayer Color Arrays, Journal of Electronic Imaging, 11(3), pp Paul E. Debevec, Jitendra Malik, Recovering High Dynamic Range Radiance Maps from Photographs, SIGGRAPH ex.mhtml

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera

Cameras. Outline. Pinhole camera. Camera trial #1. Pinhole camera Film camera Digital camera Video camera Outline Cameras Pinhole camera Film camera Digital camera Video camera Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/6 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

More information

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Cameras Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Camera trial #1 scene film Put a piece of film in front of

More information

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object.

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object. Camera trial #1 Cameras Digital Visual Effects Yung-Yu Chuang scene film with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Put a piece of film in front of an object. Pinhole camera

More information

Announcement A total of 5 (five) late days are allowed for projects. Office hours

Announcement A total of 5 (five) late days are allowed for projects. Office hours Announcement A total of 5 (five) late days are allowed for projects. Office hours Me: 3:50-4:50pm Thursday (or by appointment) Jake: 12:30-1:30PM Monday and Wednesday Image Formation Digital Camera Film

More information

High Dynamic Range Images : Rendering and Image Processing Alexei Efros. The Grandma Problem

High Dynamic Range Images : Rendering and Image Processing Alexei Efros. The Grandma Problem High Dynamic Range Images 15-463: Rendering and Image Processing Alexei Efros The Grandma Problem 1 Problem: Dynamic Range 1 1500 The real world is high dynamic range. 25,000 400,000 2,000,000,000 Image

More information

CS559: Computer Graphics. Lecture 2: Image Formation in Eyes and Cameras Li Zhang Spring 2008

CS559: Computer Graphics. Lecture 2: Image Formation in Eyes and Cameras Li Zhang Spring 2008 CS559: Computer Graphics Lecture 2: Image Formation in Eyes and Cameras Li Zhang Spring 2008 Today Eyes Cameras Light Why can we see? Visible Light and Beyond Infrared, e.g. radio wave longer wavelength

More information

High dynamic range imaging

High dynamic range imaging High dynamic range imaging Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/6 with slides by Fedro Durand, Brian Curless, Steve Seitz and Alexei Efros Announcements Assignment #1 announced on

More information

High dynamic range imaging

High dynamic range imaging Announcements High dynamic range imaging Digital Visual Effects, Spring 27 Yung-Yu Chuang 27/3/6 Assignment # announced on 3/7 (due on 3/27 noon) TA/signup sheet/gil/tone mapping Considered easy; it is

More information

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1 Announcements Mailing list (you should have received messages) Project 1 additional test sequences online Projection Readings Nalwa 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html

More information

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros

Acquisition. Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Acquisition Some slides from: Yung-Yu Chuang (DigiVfx) Jan Neumann, Pat Hanrahan, Alexei Efros Image Acquisition Digital Camera Film Outline Pinhole camera Lens Lens aberrations Exposure Sensors Noise

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 4a: Cameras Source: S. Lazebnik Reading Szeliski chapter 2.2.3, 2.3 Image formation Let s design a camera Idea 1: put a piece of film in front of an object

More information

Unit 1: Image Formation

Unit 1: Image Formation Unit 1: Image Formation 1. Geometry 2. Optics 3. Photometry 4. Sensor Readings Szeliski 2.1-2.3 & 6.3.5 1 Physical parameters of image formation Geometric Type of projection Camera pose Optical Sensor

More information

Cameras. CSE 455, Winter 2010 January 25, 2010

Cameras. CSE 455, Winter 2010 January 25, 2010 Cameras CSE 455, Winter 2010 January 25, 2010 Announcements New Lecturer! Neel Joshi, Ph.D. Post-Doctoral Researcher Microsoft Research neel@cs Project 1b (seam carving) was due on Friday the 22 nd Project

More information

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13 Projection Readings Szeliski 2.1 Projection Readings Szeliski 2.1 Müller-Lyer Illusion by Pravin Bhat Müller-Lyer Illusion by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Müller-Lyer

More information

LENSES. INEL 6088 Computer Vision

LENSES. INEL 6088 Computer Vision LENSES INEL 6088 Computer Vision Digital camera A digital camera replaces film with a sensor array Each cell in the array is a Charge Coupled Device light-sensitive diode that converts photons to electrons

More information

Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2.

Projection. Projection. Image formation. Müller-Lyer Illusion. Readings. Readings. Let s design a camera. Szeliski 2.1. Szeliski 2. Projection Projection Readings Szeliski 2.1 Readings Szeliski 2.1 Müller-Lyer Illusion Image formation object film by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html Let s design a camera

More information

Prof. Feng Liu. Spring /05/2017

Prof. Feng Liu. Spring /05/2017 Prof. Feng Liu Spring 2017 http://www.cs.pdx.edu/~fliu/courses/cs510/ 04/05/2017 Last Time Course overview Admin. Info Computational Photography 2 Today Digital Camera History of Camera Controlling Camera

More information

Building a Real Camera. Slides Credit: Svetlana Lazebnik

Building a Real Camera. Slides Credit: Svetlana Lazebnik Building a Real Camera Slides Credit: Svetlana Lazebnik Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible?

More information

High dynamic range imaging and tonemapping

High dynamic range imaging and tonemapping High dynamic range imaging and tonemapping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 12 Course announcements Homework 3 is out. - Due

More information

Building a Real Camera

Building a Real Camera Building a Real Camera Home-made pinhole camera Slide by A. Efros http://www.debevec.org/pinhole/ Shrinking the aperture Why not make the aperture as small as possible? Less light gets through Diffraction

More information

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen

Image Formation and Capture. Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Acknowledgment: some figures by B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, and A. Theuwissen Image Formation and Capture Real world Optics Sensor Devices Sources of Error

More information

High Dynamic Range Imaging

High Dynamic Range Imaging High Dynamic Range Imaging 1 2 Lecture Topic Discuss the limits of the dynamic range in current imaging and display technology Solutions 1. High Dynamic Range (HDR) Imaging Able to image a larger dynamic

More information

6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS

6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS 6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Bill Freeman Frédo Durand MIT - EECS Administrivia PSet 1 is out Due Thursday February 23 Digital SLR initiation? During

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Cameras and Projection Szeliski 2.1.3-2.1.6 Reading Announcements Project 1 assigned, see projects page: http://www.cs.cornell.edu/courses/cs6670/2011sp/projects/projects.html

More information

Computational Photography and Video. Prof. Marc Pollefeys

Computational Photography and Video. Prof. Marc Pollefeys Computational Photography and Video Prof. Marc Pollefeys Today s schedule Introduction of Computational Photography Course facts Syllabus Digital Photography What is computational photography Convergence

More information

Image Formation and Capture

Image Formation and Capture Figure credits: B. Curless, E. Hecht, W.J. Smith, B.K.P. Horn, A. Theuwissen, and J. Malik Image Formation and Capture COS 429: Computer Vision Image Formation and Capture Real world Optics Sensor Devices

More information

Two strategies for realistic rendering capture real world data synthesize from bottom up

Two strategies for realistic rendering capture real world data synthesize from bottom up Recap from Wednesday Two strategies for realistic rendering capture real world data synthesize from bottom up Both have existed for 500 years. Both are successful. Attempts to take the best of both world

More information

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor

Image acquisition. In both cases, the digital sensing element is one of the following: Line array Area array. Single sensor Image acquisition Digital images are acquired by direct digital acquisition (digital still/video cameras), or scanning material acquired as analog signals (slides, photographs, etc.). In both cases, the

More information

Basic principles of photography. David Capel 346B IST

Basic principles of photography. David Capel 346B IST Basic principles of photography David Capel 346B IST Latin Camera Obscura = Dark Room Light passing through a small hole produces an inverted image on the opposite wall Safely observing the solar eclipse

More information

! High&Dynamic!Range!Imaging! Slides!from!Marc!Pollefeys,!Gabriel! Brostow!(and!Alyosha!Efros!and! others)!!

! High&Dynamic!Range!Imaging! Slides!from!Marc!Pollefeys,!Gabriel! Brostow!(and!Alyosha!Efros!and! others)!! ! High&Dynamic!Range!Imaging! Slides!from!Marc!Pollefeys,!Gabriel! Brostow!(and!Alyosha!Efros!and! others)!! Today! High!Dynamic!Range!Imaging!(LDR&>HDR)! Tone!mapping!(HDR&>LDR!display)! The!Problem!

More information

The Camera : Computational Photography Alexei Efros, CMU, Fall 2008

The Camera : Computational Photography Alexei Efros, CMU, Fall 2008 The Camera 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 How do we see the world? object film Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable

More information

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al.

Capturing Light in man and machine. Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. Capturing Light in man and machine Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al. 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Image Formation Digital

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision CS / ECE 181B Thursday, April 1, 2004 Course Details HW #0 and HW #1 are available. Course web site http://www.ece.ucsb.edu/~manj/cs181b Syllabus, schedule, lecture notes,

More information

Lenses, exposure, and (de)focus

Lenses, exposure, and (de)focus Lenses, exposure, and (de)focus http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 15 Course announcements Homework 4 is out. - Due October 26

More information

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2015 Version 3

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2015 Version 3 Image Formation Dr. Gerhard Roth COMP 4102A Winter 2015 Version 3 1 Image Formation Two type of images Intensity image encodes light intensities (passive sensor) Range (depth) image encodes shape and distance

More information

The Camera : Computational Photography Alexei Efros, CMU, Fall 2005

The Camera : Computational Photography Alexei Efros, CMU, Fall 2005 The Camera 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 How do we see the world? object film Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable

More information

CSE 473/573 Computer Vision and Image Processing (CVIP)

CSE 473/573 Computer Vision and Image Processing (CVIP) CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu inwogu@buffalo.edu Lecture 4 Image formation(part I) Schedule Last class linear algebra overview Today Image formation and camera properties

More information

Image stitching. Image stitching. Video summarization. Applications of image stitching. Stitching = alignment + blending. geometrical registration

Image stitching. Image stitching. Video summarization. Applications of image stitching. Stitching = alignment + blending. geometrical registration Image stitching Stitching = alignment + blending Image stitching geometrical registration photometric registration Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2005/3/22 with slides by Richard Szeliski,

More information

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do?

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do? Computational Photography The ultimate camera What does it do? Image from Durand & Freeman s MIT Course on Computational Photography Today s reading Szeliski Chapter 9 The ultimate camera Infinite resolution

More information

brief history of photography foveon X3 imager technology description

brief history of photography foveon X3 imager technology description brief history of photography foveon X3 imager technology description imaging technology 30,000 BC chauvet-pont-d arc pinhole camera principle first described by Aristotle fourth century B.C. oldest known

More information

Image formation - Cameras. Grading & Project. About the course. Tentative Schedule. Course Content. Students introduction

Image formation - Cameras. Grading & Project. About the course. Tentative Schedule. Course Content. Students introduction About the course Instructors: Haibin Ling (hbling@temple, Wachman 35) Hours Lecture: Tuesda 5:3-8:pm, TTLMAN 43B Office hour: Tuesda 3: - 5:pm, or b appointment Textbook Computer Vision: Models, Learning,

More information

Images and Displays. Lecture Steve Marschner 1

Images and Displays. Lecture Steve Marschner 1 Images and Displays Lecture 2 2008 Steve Marschner 1 Introduction Computer graphics: The study of creating, manipulating, and using visual images in the computer. What is an image? A photographic print?

More information

Improved sensitivity high-definition interline CCD using the KODAK TRUESENSE Color Filter Pattern

Improved sensitivity high-definition interline CCD using the KODAK TRUESENSE Color Filter Pattern Improved sensitivity high-definition interline CCD using the KODAK TRUESENSE Color Filter Pattern James DiBella*, Marco Andreghetti, Amy Enge, William Chen, Timothy Stanka, Robert Kaser (Eastman Kodak

More information

Digital Photographs, Image Sensors and Matrices

Digital Photographs, Image Sensors and Matrices Digital Photographs, Image Sensors and Matrices Digital Camera Image Sensors Electron Counts Checkerboard Analogy Bryce Bayer s Color Filter Array Mosaic. Image Sensor Data to Matrix Data Visualization

More information

Digital Cameras The Imaging Capture Path

Digital Cameras The Imaging Capture Path Manchester Group Royal Photographic Society Imaging Science Group Digital Cameras The Imaging Capture Path by Dr. Tony Kaye ASIS FRPS Silver Halide Systems Exposure (film) Processing Digital Capture Imaging

More information

Digital Photographs and Matrices

Digital Photographs and Matrices Digital Photographs and Matrices Digital Camera Image Sensors Electron Counts Checkerboard Analogy Bryce Bayer s Color Filter Array Mosaic. Image Sensor Data to Matrix Data Visualization of Matrix Addition

More information

Cameras and Sensors. Today. Today. It receives light from all directions. BIL721: Computational Photography! Spring 2015, Lecture 2!

Cameras and Sensors. Today. Today. It receives light from all directions. BIL721: Computational Photography! Spring 2015, Lecture 2! !! Cameras and Sensors Today Pinhole camera! Lenses! Exposure! Sensors! photo by Abelardo Morell BIL721: Computational Photography! Spring 2015, Lecture 2! Aykut Erdem! Hacettepe University! Computer Vision

More information

Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color --

Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color -- Introduction to Image Processing and Computer Vision -- Noise, Dynamic Range and Color -- Winter 2013 Ivo Ihrke Organizational Issues I received your email addresses Course announcements will be send via

More information

Computer Vision. The Pinhole Camera Model

Computer Vision. The Pinhole Camera Model Computer Vision The Pinhole Camera Model Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2017/2018 Imaging device

More information

Digital photography , , Computational Photography Fall 2017, Lecture 2

Digital photography , , Computational Photography Fall 2017, Lecture 2 Digital photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 2 Course announcements To the 14 students who took the course survey on

More information

Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors

Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors Image Formation III Chapter 1 (Forsyth&Ponce) Cameras Lenses & Sensors Guido Gerig CS-GY 6643, Spring 2017 (slides modified from Marc Pollefeys, UNC Chapel Hill/ ETH Zurich, With content from Prof. Trevor

More information

Introduction to Digital Photography

Introduction to Digital Photography Introduction to Digital Photography A CAMERA IS A LIGHT TIGHT BOX All contemporary cameras have the same basic features A light-tight box to hold the camera parts and recording material A viewing system

More information

Focusing and Metering

Focusing and Metering Focusing and Metering CS 478 Winter 2012 Slides mostly stolen by David Jacobs from Marc Levoy Focusing Outline Manual Focus Specialty Focus Autofocus Active AF Passive AF AF Modes Manual Focus - View Camera

More information

A CAMERA IS A LIGHT TIGHT BOX

A CAMERA IS A LIGHT TIGHT BOX HOW CAMERAS WORK A CAMERA IS A LIGHT TIGHT BOX Pinhole Principle All contemporary cameras have the same basic features A light-tight box to hold the camera parts and recording material A viewing system

More information

Wavelengths and Colors. Ankit Mohan MAS.131/531 Fall 2009

Wavelengths and Colors. Ankit Mohan MAS.131/531 Fall 2009 Wavelengths and Colors Ankit Mohan MAS.131/531 Fall 2009 Epsilon over time (Multiple photos) Prokudin-Gorskii, Sergei Mikhailovich, 1863-1944, photographer. Congress. Epsilon over time (Bracketing) Image

More information

Digital camera. Sensor. Memory card. Circuit board

Digital camera. Sensor. Memory card. Circuit board Digital camera Circuit board Memory card Sensor Detector element (pixel). Typical size: 2-5 m square Typical number: 5-20M Pixel = Photogate Photon + Thin film electrode (semi-transparent) Depletion volume

More information

How do we see the world?

How do we see the world? The Camera 1 How do we see the world? Let s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable image? Credit: Steve Seitz 2 Pinhole camera Idea 2: Add a barrier to

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2015 Etymology PHOTOGRAPHY light drawing / writing Image Formation Digital Camera

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 Image Formation Digital Camera Film The Eye Digital camera A digital camera replaces film with a sensor

More information

Digital Camera Sensors

Digital Camera Sensors Digital Camera Sensors Agenda Basic Parts of a Digital Camera The Pixel Camera Sensor Pixels Camera Sensor Sizes Pixel Density CMOS vs. CCD Digital Signal Processors ISO, Noise & Light Sensor Comparison

More information

Basic Camera Concepts. How to properly utilize your camera

Basic Camera Concepts. How to properly utilize your camera Basic Camera Concepts How to properly utilize your camera Basic Concepts Shutter speed One stop Aperture, f/stop Depth of field and focal length / focus distance Shutter Speed When the shutter is closed

More information

Image Formation: Camera Model

Image Formation: Camera Model Image Formation: Camera Model Ruigang Yang COMP 684 Fall 2005, CS684-IBMR Outline Camera Models Pinhole Perspective Projection Affine Projection Camera with Lenses Digital Image Formation The Human Eye

More information

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

More information

Computational Approaches to Cameras

Computational Approaches to Cameras Computational Approaches to Cameras 11/16/17 Magritte, The False Mirror (1935) Computational Photography Derek Hoiem, University of Illinois Announcements Final project proposal due Monday (see links on

More information

Get the Shot! Photography + Instagram Workshop September 21, 2013 BlogPodium. Saturday, 21 September, 13

Get the Shot! Photography + Instagram Workshop September 21, 2013 BlogPodium. Saturday, 21 September, 13 Get the Shot! Photography + Instagram Workshop September 21, 2013 BlogPodium Part One: Taking your camera off manual Technical details Common problems and how to fix them Practice Ways to make your photos

More information

ME 6406 MACHINE VISION. Georgia Institute of Technology

ME 6406 MACHINE VISION. Georgia Institute of Technology ME 6406 MACHINE VISION Georgia Institute of Technology Class Information Instructor Professor Kok-Meng Lee MARC 474 Office hours: Tues/Thurs 1:00-2:00 pm kokmeng.lee@me.gatech.edu (404)-894-7402 Class

More information

The Dynamic Range Problem. High Dynamic Range (HDR) Multiple Exposure Photography. Multiple Exposure Photography. Dr. Yossi Rubner.

The Dynamic Range Problem. High Dynamic Range (HDR) Multiple Exposure Photography. Multiple Exposure Photography. Dr. Yossi Rubner. The Dynamic Range Problem High Dynamic Range (HDR) starlight Domain of Human Vision: from ~10-6 to ~10 +8 cd/m moonlight office light daylight flashbulb 10-6 10-1 10 100 10 +4 10 +8 Dr. Yossi Rubner yossi@rubner.co.il

More information

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

More information

Introduction to camera usage. The universal manual controls of most cameras

Introduction to camera usage. The universal manual controls of most cameras Introduction to camera usage A camera in its barest form is simply a light tight container that utilizes a lens with iris, a shutter that has variable speeds, and contains a sensitive piece of media, either

More information

Acquisition Basics. How can we measure material properties? Goal of this Section. Special Purpose Tools. General Purpose Tools

Acquisition Basics. How can we measure material properties? Goal of this Section. Special Purpose Tools. General Purpose Tools Course 10 Realistic Materials in Computer Graphics Acquisition Basics MPI Informatik (moving to the University of Washington Goal of this Section practical, hands-on description of acquisition basics general

More information

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2014 Version 1

Image Formation. Dr. Gerhard Roth. COMP 4102A Winter 2014 Version 1 Image Formation Dr. Gerhard Roth COMP 4102A Winter 2014 Version 1 Image Formation Two type of images Intensity image encodes light intensities (passive sensor) Range (depth) image encodes shape and distance

More information

A Simple Camera Model

A Simple Camera Model A Simple Camera Model Carlo Tomasi The images we process in computer vision are formed by light bouncing off surfaces in the world and into the lens of the camera. The light then hits an array of sensors

More information

High Dynamic Range Images

High Dynamic Range Images High Dynamic Range Images TNM078 Image Based Rendering Jonas Unger 2004, V1.2 1 Introduction When examining the world around us, it becomes apparent that the lighting conditions in many scenes cover a

More information

Image Processing & Projective geometry

Image Processing & Projective geometry Image Processing & Projective geometry Arunkumar Byravan Partial slides borrowed from Jianbo Shi & Steve Seitz Color spaces RGB Red, Green, Blue HSV Hue, Saturation, Value Why HSV? HSV separates luma,

More information

High Dynamic Range Imaging

High Dynamic Range Imaging High Dynamic Range Imaging IMAGE BASED RENDERING, PART 1 Mihai Aldén mihal915@student.liu.se Fredrik Salomonsson fresa516@student.liu.se Tuesday 7th September, 2010 Abstract This report describes the implementation

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2016 Textbook http://szeliski.org/book/ General Comments Prerequisites Linear algebra!!!

More information

Image Formation and Camera Design

Image Formation and Camera Design Image Formation and Camera Design Spring 2003 CMSC 426 Jan Neumann 2/20/03 Light is all around us! From London & Upton, Photography Conventional camera design... Ken Kay, 1969 in Light & Film, TimeLife

More information

Sensors and Sensing Cameras and Camera Calibration

Sensors and Sensing Cameras and Camera Calibration Sensors and Sensing Cameras and Camera Calibration Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 20.11.2014

More information

VC 16/17 TP2 Image Formation

VC 16/17 TP2 Image Formation VC 16/17 TP2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Hélder Filipe Pinto de Oliveira Outline Computer Vision? The Human Visual

More information

F-number sequence. a change of f-number to the next in the sequence corresponds to a factor of 2 change in light intensity,

F-number sequence. a change of f-number to the next in the sequence corresponds to a factor of 2 change in light intensity, 1 F-number sequence a change of f-number to the next in the sequence corresponds to a factor of 2 change in light intensity, 0.7, 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, 32, Example: What is the difference

More information

Topic 9 - Sensors Within

Topic 9 - Sensors Within Topic 9 - Sensors Within Learning Outcomes In this topic, we will take a closer look at sensor sizes in digital cameras. By the end of this video you will have a better understanding of what the various

More information

Cameras As Computing Systems

Cameras As Computing Systems Cameras As Computing Systems Prof. Hank Dietz In Search Of Sensors University of Kentucky Electrical & Computer Engineering Things You Already Know The sensor is some kind of chip Most can't distinguish

More information

Focusing & metering. CS 448A, Winter Marc Levoy Computer Science Department Stanford University

Focusing & metering. CS 448A, Winter Marc Levoy Computer Science Department Stanford University Focusing & metering CS 448A, Winter 2010 Marc Levoy Computer Science Department Stanford University Outline: focusing viewfinders and manual focusing view cameras and tilt-shift lenses active autofocusing

More information

Digital photography , , Computational Photography Fall 2018, Lecture 2

Digital photography , , Computational Photography Fall 2018, Lecture 2 Digital photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 2 Course announcements To the 26 students who took the start-of-semester

More information

Advanced Camera and Image Sensor Technology. Steve Kinney Imaging Professional Camera Link Chairman

Advanced Camera and Image Sensor Technology. Steve Kinney Imaging Professional Camera Link Chairman Advanced Camera and Image Sensor Technology Steve Kinney Imaging Professional Camera Link Chairman Content Physical model of a camera Definition of various parameters for EMVA1288 EMVA1288 and image quality

More information

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Cameras Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Camera Focus Camera Focus So far, we have been simulating pinhole cameras with perfect focus Often times, we want to simulate more

More information

Color , , Computational Photography Fall 2018, Lecture 7

Color , , Computational Photography Fall 2018, Lecture 7 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 7 Course announcements Homework 2 is out. - Due September 28 th. - Requires camera and

More information

VC 14/15 TP2 Image Formation

VC 14/15 TP2 Image Formation VC 14/15 TP2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

COMPUTATIONAL PHOTOGRAPHY. Chapter 10

COMPUTATIONAL PHOTOGRAPHY. Chapter 10 1 COMPUTATIONAL PHOTOGRAPHY Chapter 10 Computa;onal photography Computa;onal photography: image analysis and processing algorithms are applied to one or more photographs to create images that go beyond

More information

Mastering Y our Your Digital Camera

Mastering Y our Your Digital Camera Mastering Your Digital Camera The Exposure Triangle The ISO setting on your camera defines how sensitive it is to light. Normally ISO 100 is the least sensitive setting on your camera and as the ISO numbers

More information

VC 11/12 T2 Image Formation

VC 11/12 T2 Image Formation VC 11/12 T2 Image Formation Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Computer Vision? The Human Visual System

More information

Lecture 9. Lecture 9. t (min)

Lecture 9. Lecture 9. t (min) Sensitivity of the Eye Lecture 9 The eye is capable of dark adaptation. This comes about by opening of the iris, as well as a change in rod cell photochemistry fovea only least perceptible brightness 10

More information

HDR images acquisition

HDR images acquisition HDR images acquisition dr. Francesco Banterle francesco.banterle@isti.cnr.it Current sensors No sensors available to consumer for capturing HDR content in a single shot Some native HDR sensors exist, HDRc

More information

Camera, video production. TNGD10 - Moving media

Camera, video production. TNGD10 - Moving media Camera, video production TNGD10 - Moving media Parallel vs serial information Film and projector is parallel information But, to distribute film you need serial information You achieve this by dividing

More information

A Digital Camera Glossary. Ashley Rodriguez, Charlie Serrano, Luis Martinez, Anderson Guatemala PERIOD 6

A Digital Camera Glossary. Ashley Rodriguez, Charlie Serrano, Luis Martinez, Anderson Guatemala PERIOD 6 A Digital Camera Glossary Ashley Rodriguez, Charlie Serrano, Luis Martinez, Anderson Guatemala PERIOD 6 A digital Camera Glossary Ivan Encinias, Sebastian Limas, Amir Cal Ivan encinias Image sensor A silicon

More information

Where Vision and Silicon Meet

Where Vision and Silicon Meet History and Future of Electronic Color Photography: Where Vision and Silicon Meet Richard F. Lyon Chief Scientist Foveon, Inc. UC Berkeley Photography class of Prof. Brian Barksy February 20, 2004 Color

More information

Improving Film-Like Photography. aka, Epsilon Photography

Improving Film-Like Photography. aka, Epsilon Photography Improving Film-Like Photography aka, Epsilon Photography Ankit Mohan Courtesy of Ankit Mohan. Used with permission. Film-like like Optics: Imaging Intuition Angle(θ,ϕ) Ray Center of Projection Position

More information

Image Formation. World Optics Sensor Signal. Computer Vision. Introduction to. Light (Energy) Source. Surface Imaging Plane. Pinhole Lens.

Image Formation. World Optics Sensor Signal. Computer Vision. Introduction to. Light (Energy) Source. Surface Imaging Plane. Pinhole Lens. Image Formation Light (Energy) Source Surface Imaging Plane Pinhole Lens World Optics Sensor Signal B&W Film Color Film TV Camera Silver Density Silver density in three color layers Electrical Today Optics:

More information

History and Future of Electronic Color Photography: Where Vision and Silicon Meet

History and Future of Electronic Color Photography: Where Vision and Silicon Meet History and Future of Electronic Color Photography: Where Vision and Silicon Meet Richard F. Lyon Chief Scientist Foveon, Inc. UC Berkeley Photography class of Prof. Brian Barksy February 20, 2004 Color

More information

Cameras CS / ECE 181B

Cameras CS / ECE 181B Cameras CS / ECE 181B Image Formation Geometry of image formation (Camera models and calibration) Where? Radiometry of image formation How bright? What color? Examples of cameras What is a Camera? A camera

More information