A-data new-a. Data here. B-data new-b. Digital Circuits V CC. ECGR2181 Chapter 3 Notes 3-1. Logic System Design I

Size: px
Start display at page:

Download "A-data new-a. Data here. B-data new-b. Digital Circuits V CC. ECGR2181 Chapter 3 Notes 3-1. Logic System Design I"

Transcription

1 Data here -data new- -data new- Digital Circuits V CC ECGR28 Chapter 3 Notes S ogic System Design I 3-

2 What is a digital system? It is a organized collecti of digital elements which is designed to perform specified operatis a set of digital inputs and to generate a set of digital respses. digital system can be as simple as a block of combinatial logic or as complex as a microprocessor. ogic System Design I 3-2

3 Characteristics of Digital Systems What are the characteristics of a digital system? Coordinate and sequence its internal operatis. Data processing and storage. Cooperate in transferring data to & from itself. Sequences operatis of external entities. ogic System Design I 3-3

4 Overview of a digital system Inputs Digital System Outputs Data Ctrol Sequencing Processing Storage Data Ctrol ogic System Design I 3-4

5 Input & Output Signals Data: Multi-bit: values Single-bit: decisi-making / informati Ctrol: {generally single-bit signals} Sequencing operatis of system Coordinating operatis with external units ogic System Design I 3-5

6 Introducti to Digital Systems Nomenclature: (Terms to know.) Word: group of binary bits. Typically represents some element of data. The number of bits in a word is indeterminate unless specified. [Example: 24-bit word ] yte: n 8-bit word. Nibble: 4-bit word. ogic System Design I 3-6

7 Introducti to Digital Systems Structure of digital systems: system vs. module digital system can be created as a molithic structure. Complex systems often need to be partitied into some number of subsystems -- modules For small systems which can be cveniently designed molithically the terms system and module may be used interchangeably. ogic System Design I 3-7

8 Introducti to Digital Systems Single module system: System data in ctrol module data out ctrol ogic System Design I 3-8

9 Introducti to Digital Systems Multiple module system: System data in ctrol data in ctrol module module module data out ctrol ogic System Design I 3-9

10 Examples of digital systems Data Selector: Route input data to e of two outputs. Data Cverter: Inputs a 32-bit data word and outputs it as 4 bytes. Message Generator: Outputs a fixed message when a start command is received Communicatis uffer: Receives and stores a block of data. When the block is complete, it resends the stored data. Microprocessor: Does everything! ogic System Design I 3-

11 first look at the design process. Understand the functial specificati. 2. Create a block diagram from the external viewpoint. 3. Fill in the major internal compents. 4. Determine the sequence of operatis which must occur within the module ogic System Design I 3-

12 Data Selector Route input data to e of two outputs. Specificati: When a new data word arrives at the input, the module inspects the state of the most significant bit and routes the data to output if the bit is true and to if the bit is false. The last value sent to either output is retained until replaced. Data here -data new- -data new- ogic System Design I 3-2

13 Data Cverter Inputs 32-bit data word and outputs it as 4 bytes. Specificati: When a new data word arrives at the input, the module accepts it and then outputs the word as 4 bytes. IN ready R E G OUT new ogic System Design I 3-3

14 Message Generator Outputs a fixed message when a start command is received. Specificati: When a start command is received, the module retrieves the bytes of a message stored in an internal ROM and outputs them sequentially. start ROM Memory DOUT new ogic System Design I 3-4

15 Communicatis uffer Receives and stores a block of data. When the block is complete, it resends the data. Specificati: The module receives a series of data bytes and stores them in an internal memory. Intake of data stops when a byte of all s is received. Then it resends the message with pairs of bytes packed in 6-bit words. IN here RM Memory OUT new ogic System Design I 3-5

16 Digital ogic inary system -- &, OW & IG, negated and asserted. asic building blocks -- ND, OR, NOT (a) X Y X ND Y X Y (b) X Y X OR Y X + Y (c) X NOT X X X Y X ND Y X Y X OR Y X NOT X Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e ogic System Design I 3-6

17 NND and NOR (a) X Y X X NND Y (b) X NOR Y Y (X Y) (X + Y) X Y X NND Y X Y X NOR Y Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e ogic System Design I 3-7

18 Truth Tables X Y X Y X Y X Y F X Y + X Y X Y XY X Y X +Y + F ogic System Design I 3-8

19 More Practice X Y F ogic System Design I 3-9

20 Many representatis of digital logic Transistor-level circuit diagrams V CC S ogic System Design I 3-2

21 Truth tables ogic diagrams Table - Truth table for the multiplexer functi. S S SN SN S ogic System Design I 3-2

22 ogic levels 5. V ogic (IG) 3.5 V undefined logic level.5 V ogic (OW). V Switching threshold varies with voltage, temp, process, etc. need noise margin Operating closer to the tolerances requires an increase in attenti to analog behavior. ogic voltage levels decreasing with process 5 -> 3.3 -> 2.5 ->.8 V Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e ogic System Design I 3-22

23 MOS Transistors V IN Voltage-ctrolled resistance Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, V gs 3/e + PMOS gate source drain Voltage-ctrolled resistance: decrease V gs ==> decrease R ds Note: normally, V gs NMOS gate + V gs Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e drain source Voltage-ctrolled resistance: increase V gs ==> decrease R ds Note: normally, V gs Copyright 2 by Prentice all, Inc. ogic Digital System Design Design Principles I and Practices, 3/e 3-23

24 CMOS Inverter (a) V DD = +5. V Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e Q2 (p-channel) V OUT (b). 5. V IN () () Q Q2 V OUT 5.. () () V IN Q (n-channel) (c) IN OUT ogic System Design I 3-24

25 lternate transistor symbols V DD = +5. V Q2 (p-channel) when V IN is low V OUT V IN Q (n-channel) when V IN is high Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e ogic System Design I 3-25

26 Switch model (a) V DD = +5. V (b) V DD = +5. V V IN = V OUT = V IN = V OUT = Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e ogic System Design I 3-26

27 (a) CMOS NND Gates Use 2n transistors for n-input gate V DD Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e Q2 Q4 (b) Q Q2 Q3 Q4 Q Q3 (c) ogic System Design I 3-27

28 CMOS NND -- switch model V DD (a) (b) (c) V DD (b) (c) V DD ( = = = = = = = 2 by Prentice all, Inc. n Principles and Practices, 3/e Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e ogic System Design I 3-28

29 CMOS NND -- more inputs (3) (a) V DD (b) C Q Q2 Q3 Q4 Q5 Q6 Q2 Q4 Q6 Q Q3 (c) C Q5 C Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e ogic System Design I 3-29

30 CMOS NOR Gates ike NND -- 2n transistors for n-input gate (a) V DD Q2 (b) Q Q2 Q3 Q4 Q4 Q Q3 (c) Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e ogic System Design I 3-3

31 (a) NND vs. NOR PMOS transistors have higher resistance than NMOS transistors. NND V DD V Copyright 2 by Prentice DD all, Inc. Digital Design Principles and Practices, 3/e (a) NOR Q2 Q Q4 (b) Q Q2 Q3 Q2 Q4 Q4 (b) Q3 (c) Q Q3 (c) Result: NND gates are preferred in CMOS. Copyrig Digital De ogic System Design I 3-3

32 dditial Terms Sinking/Sourcing Current (sect , p. 6) current entering/leaving the output of a device. Fanout (sect ) how many gate inputs can a particular device drive and still maintain digital logic characteristics. Unused Inputs (sect ) always cnect unused inputs to either power supply rail (V cc or Gnd.) Static cditis may appear to be stable, Dynamic cditis could be unstable Makes circuit behavior unpredictable. ESD Electro-Static Discharge. (sect ) ESD involves the discharge of static electricity and is the deadly enemy of electric circuits, especially, CMOS devices. (a) ESD damage can be avoided with the use of ESD straps and rubber mats. Transiti Time (b) (sect. 3.6.) time required for signal to transit the abnormal regi. The time to transit the abnormal regi may be different for traversing the regi in different directis. t r t f (c) IG OW V Imin V Imax t r t f Copyright 2 by Prentice all, Inc. Digital Design Principles and Practices, 3/e ogic System Design I 3-32

33 More Terms Propagati Delay (sect ) time required for a change the input to produce a change the output. Current Spikes (sect ) typically seen the power rails. Produced when many outputs change at the same time. Switching Power Supplies often produce these effects. {t/s note: check frequency to help find source} Decoupling Capacitors (sect ) distributes the filtering the board and aids in the reducti of noise the power rails. Ground ounce (sect ) read the text. {describe how it looks an o scope} Three-state Outputs (sect ) devices whose outputs are e of three states, high, low and high impedance. Used to drive an output from multiple, mutually exclusive sources (or devices.) Different types of ogic Families: TT Transitor-Transitor ogic CMOS Complementary Metal Oxide Semicductor EC Emitter-Coupled ogic Take extreme care when interfacing TT and CMOS logic devices ogic System Design I 3-33

A-data new-a. Data here. B-data new-b. Digital Circuits V CC. ECGR2181 Chapter 3 Notes 3-1. Logic System Design I

A-data new-a. Data here. B-data new-b. Digital Circuits V CC. ECGR2181 Chapter 3 Notes 3-1. Logic System Design I Data here -data new- -data new- Digital Circuits V CC ECGR28 Chapter 3 Notes S ogic System Design I 3- What is a digital system? It is a organized collecti of digital elements which is designed to perform

More information

ECE/CoE 0132: FETs and Gates

ECE/CoE 0132: FETs and Gates ECE/CoE 0132: FETs and Gates Kartik Mohanram September 6, 2017 1 Physical properties of gates Over the next 2 lectures, we will discuss some of the physical characteristics of integrated circuits. We will

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

Design cycle for MEMS

Design cycle for MEMS Design cycle for MEMS Design cycle for ICs IC Process Selection nmos CMOS BiCMOS ECL for logic for I/O and driver circuit for critical high speed parts of the system The Real Estate of a Wafer MOS Transistor

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2000): 48 million IBM PowerPC 750FX (2002): 38 million IBM/Apple

More information

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits

ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits Faculty of Engineering ECE 334: Electronic Circuits Lecture 10: Digital CMOS Circuits CMOS Technology Complementary MOS, or CMOS, needs both PMOS and NMOS FET devices for their logic gates to be realized

More information

Introduction to Computer Engineering EECS 203 dickrp/eecs203/ Grading scheme. Review.

Introduction to Computer Engineering EECS 203  dickrp/eecs203/ Grading scheme. Review. Introduction to Computer Engineering EECS 203 http://ziyang.eecs.northwestern.edu/ dickrp/eecs203/ Grading scheme Instructor: Robert Dick Office: 77 Tech Email: dickrp@northwestern.edu Phone: 847 467 2298

More information

Shorthand Notation for NMOS and PMOS Transistors

Shorthand Notation for NMOS and PMOS Transistors Shorthand Notation for NMOS and PMOS Transistors Terminal Voltages Mode of operation depends on V g, V d, V s V gs = V g V s V gd = V g V d V ds = V d V s = V gs - V gd Source and drain are symmetric diffusion

More information

EE100Su08 Lecture #16 (August 1 st 2008)

EE100Su08 Lecture #16 (August 1 st 2008) EESu8 Lecture #6 (ugust st 28) OUTLINE Project next week: Pick up kits in your first lab section, work on the project in your first lab section, at home etc. and wrap up in the second lab section. USE

More information

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families

EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families EEC 118 Lecture #11: CMOS Design Guidelines Alternative Static Logic Families Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Homework 5 this week Lab

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 3

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 3 EECTRIC ND COMPUTER ENGINEERING DEPRTMENT, OKND UNIVERITY ECE-7: Digital ogic Design all 7 IMPEMENTTION TECNOOGY Notes - Unit 3 OGIC EVE: ogic values are represented by TRUE or E. In digital circuits,

More information

ECE380 Digital Logic. Logic values as voltage levels

ECE380 Digital Logic. Logic values as voltage levels ECE380 Digital Logic Implementation Technology: NMOS and PMOS Transistors, CMOS logic gates Dr. D. J. Jackson Lecture 13-1 Logic values as voltage levels V ss is the minimum voltage that can exist in the

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part II - Circuits Dr. I. J. Wassell Gates from Transistors 1 Introduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit

More information

In this experiment you will study the characteristics of a CMOS NAND gate.

In this experiment you will study the characteristics of a CMOS NAND gate. Introduction Be sure to print a copy of Experiment #12 and bring it with you to lab. There will not be any experiment copies available in the lab. Also bring graph paper (cm cm is best). Purpose In this

More information

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques:

Reading. Lecture 17: MOS transistors digital. Context. Digital techniques: Reading Lecture 17: MOS transistors digital Today we are going to look at the analog characteristics of simple digital devices, 5. 5.4 And following the midterm, we will cover PN diodes again in forward

More information

Design Techniques for Gate-Leakage Reduction in CMOS Circuits

Design Techniques for Gate-Leakage Reduction in CMOS Circuits Design Techniques for Gate-Leakage Reducti in CMOS Circuits Rafik S. Guindi and Farid N. Najm Department of Electrical and Computer Engineering University of Torto Torto, ON, Canada, M5S 3G4 rguindi@eecg.utorto.ca

More information

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic CMOS Inverter: A First Look C L 9/11/26 VLSI

More information

1.1 About Digital Design

1.1 About Digital Design Hi, I'm John.... c h a p t e r Introducti Welcome to the world of digital design. Perhaps you re a computer science student who knows all about computer software and programming, but you re still trying

More information

2019 by D. G. Meyer 1

2019 by D. G. Meyer 1 Purdue IM:PACT* *Instruction Matters: Purdue Academic Course Transformation Introduction to Digital System Design Module Switching Algebra and CMOS ogic Gates Glossary of Common Terms INTEGRATED CIRCUIT

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2): 48 million IBM PowerPC 75FX (22): 38 million IBM/Apple PowerPC

More information

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo Digital Integrated Circuits Designing Combinational Logic Circuits Fuyuzhuo Introduction Digital IC Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit

More information

Chapter 6 DIFFERENT TYPES OF LOGIC GATES

Chapter 6 DIFFERENT TYPES OF LOGIC GATES Chapter 6 DIFFERENT TYPES OF LOGIC GATES Lesson 9 CMOS gates Ch06L9-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline CMOS (n-channel based MOSFETs based circuit) CMOS Features

More information

Note that none of the above MAY be a VALID ANSWER.

Note that none of the above MAY be a VALID ANSWER. ECE 270 Learning Outcome 1-1 - Practice Exam / Solution LEARNING OUTCOME #1: an ability to analyze and design CMOS logic gates. Multiple Choice select the single most appropriate response for each question.

More information

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader EE4 Lecture 35 2/5/7 Reading: Ch 7, Supplementary Reader EE4 all 26 Slide Week 5 OUTLINE Need for Input Controlled Pull-Up CMOS Inverter nalysis CMOS Voltage Transfer Characteristic Combinatorial logic

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization Spring 2018 CMOS Logic Lecture 4: 1 NAND Logic Gate X Y (X Y) = NAND Using De Morgan s Law: (X Y) = X +Y X X X +Y = Y Y Also a NAND We can build circuits

More information

Classification of Digital Circuits

Classification of Digital Circuits Classification of Digital Circuits Combinational logic circuits. Output depends only on present input. Sequential circuits. Output depends on present input and present state of the circuit. Combinational

More information

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph

ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph ENG2410 Digital Design CMOS Technology Fall 2017 S. reibi School of Engineering University of Guelph The Transistor Revolution First transistor Bell Labs, 1948 Bipolar logic 1960 s Intel 4004 processor

More information

BICMOS Technology and Fabrication

BICMOS Technology and Fabrication 12-1 BICMOS Technology and Fabrication 12-2 Combines Bipolar and CMOS transistors in a single integrated circuit By retaining benefits of bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with

More information

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information

The entire range of digital ICs is fabricated using either bipolar devices or MOS devices or a combination of the two. Bipolar Family DIODE LOGIC

The entire range of digital ICs is fabricated using either bipolar devices or MOS devices or a combination of the two. Bipolar Family DIODE LOGIC Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem - IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 10 Lecture Title:

More information

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digital Logic Circuits Chapter 3: Implementation Technology Curtis Nelson Chapter 3 Overview In this chapter you will learn about: How transistors are used as switches; Integrated circuit technology;

More information

Combinational Logic Gates in CMOS

Combinational Logic Gates in CMOS Combinational Logic Gates in CMOS References: dapted from: Digital Integrated Circuits: Design Perspective, J. Rabaey UC Principles of CMOS VLSI Design: Systems Perspective, 2nd Ed., N. H. E. Weste and

More information

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits EE 330 Lecture 43 Digital Circuits Other Logic Styles Dynamic Logic Circuits Review from Last Time Elmore Delay Calculations W M 5 V OUT x 20C RE V IN 0 L R L 1 L R R 6 W 1 C C 3 D R t 1 R R t 2 R R t

More information

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

More information

UNIT-III GATE LEVEL DESIGN

UNIT-III GATE LEVEL DESIGN UNIT-III GATE LEVEL DESIGN LOGIC GATES AND OTHER COMPLEX GATES: Invert(nmos, cmos, Bicmos) NAND Gate(nmos, cmos, Bicmos) NOR Gate(nmos, cmos, Bicmos) The module (integrated circuit) is implemented in terms

More information

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD?

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD? Improved Inverter: Current-Source Pull-Up MOS Inverter with Current-Source Pull-Up What else could be connected between the drain and? Replace resistor with current source I SUP roc i D v IN v OUT Find

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 9 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection

Topic 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. NMOS Transistors in Series/Parallel Connection NMOS Transistors in Series/Parallel Connection Topic 6 CMOS Static & Dynamic Logic Gates Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Transistors can be thought

More information

EEC 118 Lecture #12: Dynamic Logic

EEC 118 Lecture #12: Dynamic Logic EEC 118 Lecture #12: Dynamic Logic Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Outline Today: Alternative MOS Logic Styles Dynamic MOS Logic Circuits: Rabaey

More information

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. complex logic gates

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. complex logic gates EE 330 Lecture 5 asic Logic Circuits Complete Logic Family Other Logic Styles complex logic gates Review from Last Time The key patents that revolutionized the electronics field: Jack Kilby (34 years old

More information

DESIGN OF 16 TO 1 MULTIPLEXER IC USING HIGH SPEED CMOS TECHNOLOGY

DESIGN OF 16 TO 1 MULTIPLEXER IC USING HIGH SPEED CMOS TECHNOLOGY DESIGN OF 16 TO 1 MUTIPEXER IC USING IG SPEED CMOS TECNOOGY Eka Maulana a, M Julius St b, R Arief Setyawan c, Ceri A d, Tito Panca N e, abc ecturer, Department of Electrical Engineering, Brawijaya University,

More information

Domino Static Gates Final Design Report

Domino Static Gates Final Design Report Domino Static Gates Final Design Report Krishna Santhanam bstract Static circuit gates are the standard circuit devices used to build the major parts of digital circuits. Dynamic gates, such as domino

More information

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4

CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4 CPE/EE 427, CPE 527 VLSI Design I: Homeworks 3 & 4 1 2 3 4 5 6 7 8 9 10 Sum 30 10 25 10 30 40 10 15 15 15 200 1. (30 points) Misc, Short questions (a) (2 points) Postponing the introduction of signals

More information

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

EE 330 Lecture 43. Digital Circuits. Other Logic Styles Dynamic Logic Circuits EE 330 Lecture 43 Digital Circuits Other Logic Styles Dynamic Logic Circuits Review from Last Time Elmore Delay Calculations W M 5 V OUT x 20C RE V IN 0 L R L 1 L R RW 6 W 1 C C 3 D R t 1 R R t 2 R R t

More information

Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates

Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates Learning Outcome: an ability to analyze and design CMOS logic gates Learning Objectives: 1-1. convert numbers from one base (radix) to another:

More information

Chapter # 1: Introduction

Chapter # 1: Introduction Chapter # : Randy H. Katz University of California, erkeley May 993 ฉ R.H. Katz Transparency No. - The Elements of Modern Design Representations, Circuit Technologies, Rapid Prototyping ehaviors locks

More information

Logic Families. Describes Process used to implement devices Input and output structure of the device. Four general categories.

Logic Families. Describes Process used to implement devices Input and output structure of the device. Four general categories. Logic Families Characterizing Digital ICs Digital ICs characterized several ways Circuit Complexity Gives measure of number of transistors or gates Within single package Four general categories SSI - Small

More information

EE 330 Lecture 44. Digital Circuits. Other Logic Styles Dynamic Logic Circuits

EE 330 Lecture 44. Digital Circuits. Other Logic Styles Dynamic Logic Circuits EE 330 Lecture 44 Digital Circuits Other Logic Styles Dynamic Logic Circuits Course Evaluation Reminder - ll Electronic http://bit.ly/isustudentevals Review from Last Time Power Dissipation in Logic Circuits

More information

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Objectives In this lecture you will learn the following Ratioed Logic Pass Transistor Logic Dynamic Logic Circuits

More information

Microelectronics, BSc course

Microelectronics, BSc course Microelectronics, BSc course MOS inverters http://www.eet.bme.hu/~poppe/miel/en/13-mosfet2.pptx http://www.eet.bme.hu Overview of MSOFET types 13-11-2014 Microelectronics BSc course, MOS inverters András

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa atarina enter for Technology omputer Science & Electronics Engineering Integrated ircuits & Systems INE 5442 Lecture 16 MOS ombinational ircuits - 2 guntzel@inf.ufsc.br Pass

More information

Metal-Oxide-Silicon (MOS) devices PMOS. n-type

Metal-Oxide-Silicon (MOS) devices PMOS. n-type Metal-Oxide-Silicon (MOS devices Principle of MOS Field Effect Transistor transistor operation Metal (poly gate on oxide between source and drain Source and drain implants of opposite type to substrate.

More information

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families

Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1 Module-3: Metal Oxide Semiconductor (MOS) & Emitter coupled logic (ECL) families 1. Introduction 2. Metal Oxide Semiconductor (MOS) logic 2.1. Enhancement and depletion mode 2.2. NMOS and PMOS inverter

More information

Digital Design and System Implementation. Overview of Physical Implementations

Digital Design and System Implementation. Overview of Physical Implementations Digital Design and System Implementation Overview of Physical Implementations CMOS devices CMOS transistor circuit functional behavior Basic logic gates Transmission gates Tri-state buffers Flip-flops

More information

! Is it feasible? ! How do we decompose the problem? ! Vdd. ! Topology. " Gate choice, logical optimization. " Fanin, fanout, Serial vs.

! Is it feasible? ! How do we decompose the problem? ! Vdd. ! Topology.  Gate choice, logical optimization.  Fanin, fanout, Serial vs. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Design Space Exploration Lec 18: March 28, 2017 Design Space Exploration, Synchronous MOS Logic, Timing Hazards 3 Design Problem Problem Solvable!

More information

VLSI Logic Structures

VLSI Logic Structures VLSI Logic Structures Ratioed Logic Pass-Transistor Logic Dynamic CMOS Domino Logic Zipper CMOS Spring 25 John. Chandy inary Multiplication + x Multiplicand Multiplier Partial products Result Spring 25

More information

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic

EE 330 Lecture 5. Basic Logic Circuits Complete Logic Family Other Logic Styles. Improved Device Models. complex logic gates pass transistor logic EE 330 Lecture 5 asic Logic Circuits Complete Logic Family Other Logic Styles complex logic gates pass transistor logic Improved Device Models Review from Last Time The key patents that revolutionized

More information

EE241 - Spring 2002 Advanced Digital Integrated Circuits

EE241 - Spring 2002 Advanced Digital Integrated Circuits EE241 - Spring 2002 dvanced Digital Integrated Circuits Lecture 7 MOS Logic Styles nnouncements Homework #1 due 2/19 1 Reading Chapter 7 in the text by K. ernstein ackground material from Rabaey References»

More information

Lecture 02: Logic Families. R.J. Harris & D.G. Bailey

Lecture 02: Logic Families. R.J. Harris & D.G. Bailey Lecture 02: Logic Families R.J. Harris & D.G. Bailey Objectives Show how diodes can be used to form logic gates (Diode logic). Explain the need for introducing transistors in the output (DTL and TTL).

More information

Electronics Basic CMOS digital circuits

Electronics Basic CMOS digital circuits Electronics Basic CMOS digital circuits Prof. Márta Rencz, Gábor Takács, Dr. György Bognár, Dr. Péter G. Szabó BME DED October 21, 2014 1 / 30 Introduction The topics covered today: The inverter: the simplest

More information

EE434 ASIC & Digital Systems

EE434 ASIC & Digital Systems EE434 ASIC & Digital Systems Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Spring 2015 Dae Hyun Kim daehyun@eecs.wsu.edu 1 Lecture 4 More on CMOS Gates Ref: Textbook chapter

More information

Digital Integrated Circuits - Logic Families (Part II)

Digital Integrated Circuits - Logic Families (Part II) Digital Integrated Circuits - Logic Families (Part II) MOSFET Logic Circuits MOSFETs are unipolar devices. They are simple, small in size, inexpensive to fabricate and consume less power. MOS fabrication

More information

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design CMOS Digital Integrated Circuits Analysis and Design Chapter 8 Sequential MOS Logic Circuits 1 Introduction Combinational logic circuit Lack the capability of storing any previous events Non-regenerative

More information

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter

More information

Digital logic families

Digital logic families Digital logic families Digital logic families Digital integrated circuits are classified not only by their complexity or logical operation, but also by the specific circuit technology to which they belong.

More information

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology CMOS Digital Logic Design with Verilog Chapter1 Digital IC Design &Technology Chapter Overview: In this chapter we study the concept of digital hardware design & technology. This chapter deals the standard

More information

Digital Circuits Introduction

Digital Circuits Introduction Lecture #6 OUTLINE Logic inary representations Combinatorial logic circuits Chap 7-7.5 Reading EE4 Summer 25: Lecture 6 Instructor: Octavian lorescu Digital Circuits Introduction nalog: signal amplitude

More information

MOS IC Amplifiers. Token Ring LAN JSSC 12/89

MOS IC Amplifiers. Token Ring LAN JSSC 12/89 MO IC Amplifiers MOFETs are inferior to BJTs for analog design in terms of quality per silicon area But MO is the technology of choice for digital applications Therefore, most analog portions of mixed-signal

More information

Introduction to Electronic Devices

Introduction to Electronic Devices Introduction to Electronic Devices (Course Number 300331) Fall 2006 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/ Source: Apple Ref.:

More information

Lecture 4 - Digital Representations III + Transistors

Lecture 4 - Digital Representations III + Transistors Lecture 4 - Digital Representations III + Transistors Video: Seems like a natural extension from images no? We just have a new dimension (time) Each frame is just an image made up of pixels Display n frames

More information

I. Digital Integrated Circuits - Logic Concepts

I. Digital Integrated Circuits - Logic Concepts I. Digital Integrated Circuits - Logic Concepts. Logic Fundamentals: binary mathematics: only operate on and (oolean algebra) simplest function -- inversion = symbol for the inverter INPUT OUTPUT EECS

More information

DIGITAL ELECTRONICS. A2: logic circuits parameters. Politecnico di Torino - ICT school

DIGITAL ELECTRONICS. A2: logic circuits parameters. Politecnico di Torino - ICT school Politecnico di Torino - ICT school A2: logic circuits parameters DIGITAL ELECTRONICS A INTRODUCTION A.2 Logic circuits parameters» Static parameters» Interfacing and compatibility» Output stages» Dynamic

More information

DIGITAL ELECTRONICS. Digital Electronics - A2 28/04/ DDC Storey 1. Politecnico di Torino - ICT school. A2: logic circuits parameters

DIGITAL ELECTRONICS. Digital Electronics - A2 28/04/ DDC Storey 1. Politecnico di Torino - ICT school. A2: logic circuits parameters Politecnico di Torino - ICT school A2: logic circuits parameters DIGITAL ELECTRONICS A INTRODUCTION A.2 Logic circuits parameters» Static parameters» Interfacing and compatibility» Output stages» Dynamic

More information

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits Noise in Digital Integrated Circuits Lecture 4 The CMOS Inverter i(t) v(t) V DD Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail:

More information

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

More information

Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates

Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates Learning Outcome: an ability to analyze and design CMOS logic gates Learning Objectives: 1-1. convert numbers from one base (radix) to another:

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Microelectronics, BSc course

Microelectronics, BSc course Microelectronics, BSc course MOS circuits: CMOS circuits, construction http://www.eet.bme.hu/~poppe/miel/en/14-cmos.pptx http://www.eet.bme.hu The abstraction level of our study: SYSTEM + MODULE GATE CIRCUIT

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

Chapter 13: Introduction to Switched- Capacitor Circuits

Chapter 13: Introduction to Switched- Capacitor Circuits Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor

More information

Logic diagram: a graphical representation of a circuit

Logic diagram: a graphical representation of a circuit LOGIC AND GATES Introduction to Logic (1) Logic diagram: a graphical representation of a circuit Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate

More information

Preface to Third Edition Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate

Preface to Third Edition Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate Preface to Third Edition p. xiii Deep Submicron Digital IC Design p. 1 Introduction p. 1 Brief History of IC Industry p. 3 Review of Digital Logic Gate Design p. 6 Basic Logic Functions p. 6 Implementation

More information

Abu Dhabi Men s College, Electronics Department. Logic Families

Abu Dhabi Men s College, Electronics Department. Logic Families bu Dhabi Men s College, Electronics Department Logic Families There are several different families of logic gates. Each family has its capabilities and limitations, its advantages and disadvantages. The

More information

Chapter 15 Integrated Circuits

Chapter 15 Integrated Circuits Chapter 15 Integrated Circuits SKEE1223 Digital Electronics Mun im/arif/izam FKE, Universiti Teknologi Malaysia December 8, 2015 Overview 1 Basic IC Characteristics Packaging Logic Families Datasheets

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector

EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector EE584 Introduction to VLSI Design Final Project Document Group 9 Ring Oscillator with Frequency selector Group Members Uttam Kumar Boda Rajesh Tenukuntla Mohammad M Iftakhar Srikanth Yanamanagandla 1 Table

More information

Lecture 1. Tinoosh Mohsenin

Lecture 1. Tinoosh Mohsenin Lecture 1 Tinoosh Mohsenin Today Administrative items Syllabus and course overview Digital systems and optimization overview 2 Course Communication Email Urgent announcements Web page http://www.csee.umbc.edu/~tinoosh/cmpe650/

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 11 BiCMOS PMOS rray Q1 NMOS rray Y NMOS rray Q2 dib brishamifar EE Department IUST Contents Introduction BiCMOS Devices BiCMOS Inverters BiCMOS Gates BiCMOS Drivers

More information

INTRODUCTION TO DIGITAL CONCEPT

INTRODUCTION TO DIGITAL CONCEPT COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) INTRODUCTION TO DIGITAL CONCEPT Digital and Analog Quantities Digital relates to data in the form of digits,

More information

Chapter 3. H/w s/w interface. hardware software Vijaykumar ECE495K Lecture Notes: Chapter 3 1

Chapter 3. H/w s/w interface. hardware software Vijaykumar ECE495K Lecture Notes: Chapter 3 1 Chapter 3 hardware software H/w s/w interface Problems Algorithms Prog. Lang & Interfaces Instruction Set Architecture Microarchitecture (Organization) Circuits Devices (Transistors) Bits 29 Vijaykumar

More information

ECE 471/571 The CMOS Inverter Lecture-6. Gurjeet Singh

ECE 471/571 The CMOS Inverter Lecture-6. Gurjeet Singh ECE 471/571 The CMOS Inverter Lecture-6 Gurjeet Singh NMOS-to-PMOS ratio,pmos are made β times larger than NMOS Sizing Inverters for Performance Conclusions: Intrinsic delay tp0 is independent of sizing

More information

DATASHEET HD Features. Ordering Information. CMOS Programmable Bit Rate Generator. FN2954 Rev 2.00 Page 1 of 8. August 24, FN2954 Rev 2.

DATASHEET HD Features. Ordering Information. CMOS Programmable Bit Rate Generator. FN2954 Rev 2.00 Page 1 of 8. August 24, FN2954 Rev 2. D-4702 CMOS Programmable Bit Rate Generator NOT RECOMMENDED FOR NEW DESIGNS NO RECOMMENDED REPACEMENT contact our Technical Support Center at 1-888-INTERSI or www.intersil.com/tsc DATASEET FN2954 Rev 2.00

More information

Microcontroller Systems. ELET 3232 Topic 13: Load Analysis

Microcontroller Systems. ELET 3232 Topic 13: Load Analysis Microcontroller Systems ELET 3232 Topic 13: Load Analysis 1 Objective To understand hardware constraints on embedded systems Define: Noise Margins Load Currents and Fanout Capacitive Loads Transmission

More information

Chapter 1: Digital logic

Chapter 1: Digital logic Chapter 1: Digital logic I. Overview In PHYS 252, you learned the essentials of circuit analysis, including the concepts of impedance, amplification, feedback and frequency analysis. Most of the circuits

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers Chapter 3 Digital Logic Structures Original slides from Gregory Byrd, North Carolina State University Modified by Chris Wilcox, Sanjay Rajopadhye Colorado State University Computing Layers Problems Algorithms

More information

Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage?

Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage? Exam 2 Name: Score /90 Question 1 Short Takes 1 point each unless noted otherwise. 1. Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance

More information

Designing Information Devices and Systems II Fall 2017 Note 1

Designing Information Devices and Systems II Fall 2017 Note 1 EECS 16B Designing Information Devices and Systems II Fall 2017 Note 1 1 Digital Information Processing Electrical circuits manipulate voltages (V ) and currents (I) in order to: 1. Process information

More information

ELEC Digital Logic Circuits Fall 2015 Delay and Power

ELEC Digital Logic Circuits Fall 2015 Delay and Power ELEC - Digital Logic Circuits Fall 5 Delay and Power Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849 http://www.eng.auburn.edu/~vagrawal

More information