ATF-501P8. Application Note MHz High Linearity Amplifier

Size: px
Start display at page:

Download "ATF-501P8. Application Note MHz High Linearity Amplifier"

Transcription

1 ATF-501P8 450 MHz High Linearity Amplifier Application Note 5058 ATF-501P8 Applications Information Description Avago Technologies ATF-501P8 is an enhancement mode PHEMT designed for high linearity and medium power applications. This application note covers a design approach for use in the 450 MHz band delivering good linearity (OIP3, ACPR, ACLR). Two additional application notes are available covering design approaches for the 900 MHz and 1900 MHz bands. The 450 MHz amplifier design example shown in this application note demonstrates a 41.5 dbm OIP3 with a 1.6 db noise figure, making the ATF 501P8 well suited as a base station transmit driver or a second or third stage LNA in a receiver chain when biased at 4.3V, 280 ma. The amplifier ia also targeted to have a greater than 13 db return loss, so as to eliminate unwanted in band ripple in cascaded amplifier designs. Application Guidelines The ATF-501P8 device operates as a normal FET requiring input and output matching, as well as DC biasing. Unlike a depletion mode transistor, this enhancement mode device only requires a single positive power supply, which means a positive voltage is needed on the drain and gate in order for the transistor to turn on. RF Input and Output Matching In order to achieve maximum linearity, the appropriate input (Γ s ) and output (Γ L ) impedances must be presented to the device. Input (Γ s ) and output (Γ L ) were not available at 450 MHz at the time this note was written. Correctly matching from these impedances to 50Ω will result in maximum linearity, but not necessarily maximum output power or minimum noise figure. Secondly, and not so fortunately, is the fact that any matching network created for good return loss undoubtedly has a very high Q factor. This is because both input and output return loss s-parameters are at low impedance far away from the center of the Smith Chart. In general, high Q matching circuits are undesirable because of their narrow band response and vulnerability to component variations.[1] Thirdly, and most importantly, amplifier stability has to be considered as part of the matching network. At 450 MHz the ATF-501P8 has over 27 db maximum stable gain. Without appropriate input (Γ s ) and output (Γ L ) impedance data, an empirical method was chosen to optimize the OIP3 while maintaining the design targets and unconditional stability. As background information, it is also important to note that OIP3 is largely dependent on the output match and partly dependent on termination of 2nd order mixing products. Passive Bias [2] Once the RF matching has been established, the next step is to DC bias the device. A passive biasing example is shown in Figure 2. In this example, the voltage drop across resistor R3 sets the drain current (Id) and is calculated by the following equation: R3 = V dd V ds I ds + I bb where, Vdd is the power supply voltage; (1) Vds is the device drain to source voltage; Ids is the device drain to source current; Ibb for DC stability is 10X the typical gate current. S11* S22* Figure 1. Matching for the ATF-501P8 at 450 MHz.

2 A voltage divider network with R1 and R2 establishes the typical gate bias voltage (Vg). R1 = V g I bb R2 = (V dd V g )x R1 V g (2) (3) Often the series resistor, R4, is added to enhance the low frequency stability. The complete passive bias example may be found in reference [2]. INPUT Zo R1 C1 L1 R4 R5 C2 C3 R2 Q1 Figure 2. Passive Biasing. I b L4 Vdd C5 R3 C6 C4 OUTPUT Zo Active Bias[3] Due to high DC power dissipation in a small 2x2 mm package, it is recommended that the ATF 501P8 use active biasing. The main advantage of an active biasing scheme is the ability to hold the drain to source current constant over a wide range of temperature variations and device variations. A very inexpensive method of accomplishing this is to use two PNP bipolar transistors arranged in a current mirror configuration as shown in Figure 8. Due to resistors R1 and R3, this circuit is not acting as a true current mirror. But, if the voltage drop across R1 and R3 is kept identical, then it still displays some of the more useful characteristics of a current mirror. For example, transistor Q1 is configured with its base and collector tied together. This acts as a simple PN junction, which helps temperature compensate the Emitter-Base junction of Q2. To calculate the values of R1, R2, R3, and R4 the following parameters must be known or chosen first: I ds the device drain-to-source current I R the reference current for active bias V dd the power supply voltage available V ds the device drain-to-source voltage V g the typical gate bias V be1 the typical Base-Emitter turn on voltage for Q1 & Q2 Therefore, resistor R3, which sets the desired device drain current, is calculated as follows: R3 = V dd V ds' I ds + I c2 (4) where I C2 is chosen for stability to be 10 times the typical gate current and also equal to the reference current I R. If resistor R6 is used, there is additional voltage drop, hence the use of V ds and V ds '. The next three equations are used to calculate the rest of the biasing resistors for Figure 8. Note that the voltage drop across R1 must be set equal to the voltage drop across R3, but with a current of I R. R1 = V dd V ds' I R (5) R2 sets the bias current through Q1. R2 = V ds' V bel I R (6) R4 sets the gate voltage for the ATF 501P8. R4 = V g I C2 (7) Thus, by forcing the emitter voltage (V E ) of transistor Q1 equal to V ds ', this circuit regulates the drain current. As long as Q2 operates in the forward active mode, this hold true. In other words, the Collector-Base junction of Q2 must be kept reverse biased. PCB Layout A recommended PCB pad layout for the Leadless Plastic Chip Carrier (LPCC) package used by the ATF-501P8 is shown in Figure 3. This layout provides plenty of plated through hole vias for good thermal and RF grounding. It also provides a good transition from microstrip to the device package. Using solder mask on the bottom layer often helps avoid solder wicking underneath the package. An AutoCAD drawing of the application demo board may be downloaded via the web at: Figure 3. PCB Package Layout. 2

3 Figure 4. LPCC Package for ATF-501P8. Using the recommended PCB layout also simplifies RF grounding by reducing the amount of inductance from the source to ground. It is also recommended to ground pins 1 and 4 since they are also connected to the device source. Pins 3, 5, 6, and 8 are not connected, but may be used to help dissipate heat from the package, or for better alignment when soldering the device. The ATF application demo board consists of three-layers, with a top layer of 10 mils and a bottom layer of 57 mils separated by a ground plane. The first layer is Getek ML200D material with a dielectric constant of 3.9. The second layer is for mechanical stability and consists of FR4 with a dielectric constant of 4.2. Spectrum Allocation With the complexity of the electromagnetic (EM) spectrum, perhaps it is useful to review the major mobile station and base station frequency allocations (Table 1). The uplink is defined as transmission from Mobile Station (MS) to Base Station (BTS), and the downlink is defined as transmission from the Base Station to Mobile Station. 450 MHz High Linearity Amplifier This application example presents a highly linear Tx driver amplifier for use in the 450 MHz frequency band or downlink. The input is matched for good return loss using a high pass network, and the output is matched for maximum linearity with another high pass network. Unconditional stability has also been a major consideration of the matching networks. The next step is to choose the proper DC bias conditions. From the data sheet, Avago Technologies ATF- 501P8 produces good linearity at a drain current of 280 ma and a drain to source voltage of 4.5V. Thus, to construct the active bias circuit described, the following parameters are given: Ids = 280 ma I R = 10 ma V dd = 5V V ds ' = 4.68V V ds = 4.50V (actual 4.3V) V g = 0.55V V be1 = 0.65V Using equations 4, 5, 6, and 7, the biasing resistor values are calculated in column 2 of table 2, and the actual values used are listed in column 3. Table 2. Resistors for Active Bias. Resistor Calculated Actual R1 32Ω 30.1Ω R2 403Ω 402Ω R3 1.1Ω 1.1Ω R4 55Ω 54.9Ω Table 1. Frequency Allocation in MHz. Uplink (reserve) Downlink (forward) AMPS CDMA CDMA CDMA WCDMA GSM GSM GSM GSM GSM TDMA TDMA iden The entire circuit schematic for a 450 MHz Tx driver is shown in Figure 8. Capacitors C4, C5, and C6 are added as a low frequency bypass. These terminate low frequency second order products and help improve linearity. Resistors R5 and R6 help attenuate low frequencies, and can prevent resonant frequencies between the two bypass capacitors. 3

4 Performance of ATF-501P8 in CDMA450 and GSM450 MHz Bands Avago Technologies ATF-501P8 delivers excellent performance in the CDMA and GSM frequency band. With a drain-to-source voltage of 4.3V and a drain current of 280 ma, this device produces 22.9 db of gain and 1.6 db of noise figure as show in Figure GAIN AND NOISE FIGURE, db Gain, db Noise Figure, db FREQUENCY, MHz Figure 5. Measured Gain and Noise Figure vs. Frequency. Input and output return loss are both greater than 13 db. Although somewhat narrowband, the response is adequate in the frequency range of 463 MHz to 467 MHz for the CDMA downlink or forward channel (Figure 6). If a wider band response is needed, using a balanced configuration improves return loss and doubles OIP3. INPUT AND OUTPUT RETURN LOSS, db FREQUENCY, MHz Input RL Output RL Figure 6. Measured Input and Output Return Loss vs. Frequency. Perhaps the most critical system level specification for the ATF 501P8 lies in its distortionless output power. Typically, amplifiers are characterized for linearity by measuring OIP3. This is a two-tone harmonic measurement using CW signals. The OIP3 was measured at 41.5 dbm at an output power of 4 dbm. Figure 7. Component Placement. Table MHz Bill of Materials. C1 = 22 pf Panasonic ECJ-OEC1H220J C2 = 12 pf Johanson 250R07C120JV4T C3 = 150 pf Panasonic ECJ-0EC1H151J C4,C5 = 10 nf KEMET C0402C103K3RACTU C6 = 1 µf KEMET C0805C105K8RACTU C7 = 180 pf Panasonic ECJ-0EC1H181J L1 = 6.8 nh TOKO LL1005-FH6N8J L2 = 18 nh TOKO LL1005-FH18NJ L3 = 47 nh TOKO LL1608-FS47NJ L4 = 10 nh TOKO LL1005-FS10NJ R1 = 30.1Ω KOA RK73H1J30R1F R2 = 402Ω KOA RK73H1JLTD4020F R3 = 1.1Ω KOA RK73H1J1R10F R4 = 54.9Ω KOA RK73H1J54R9F R5 = 6.8Ω KOA RK73H1JLTD6R81F R6 = 1.0Ω Yageo 9C04021A1R00FLHF3 R7 = 1.5 Ω Panasonic ERJ-2GEJ1R5X R8 = 10Ω Yageo 9C04021A10R0FLHF3 Q1, Q2 Philips BCV62C J1,J2 Johnson

5 R2=402 Q1 VE R1=30.1 Vdd Hence, very similar to Ohms Law, the temperature of the channel is calculated with equation 8 below. R4=54.9 Vg Q2 Vds' R3=1.1 C6=1 F T CH = P diss x (θ ch b + θ b s + θ s a ) + T amb (8) C4=10nF C3=150pF R5=6.8 R6=1 C5=10nF C7=180pF If no heat sink is used or heat sinking is incorporated into the PCB board, then equation 8 may be reduced to: RFin J1 C1=22pF L1=6.8nH L2=18nH 2 7 0PL ATF-501P8 L3=47nH C2=12pF RF out J2 L4=10nH T CH = P diss x (θ ch b + θ b a ) + T amb (9) where, θ ch b is the channel to board thermal resistance; θ b a is the board to ambient thermal resistance. R7=1.5 Figure 8. Schematic Circuit at 450 MHz Using Active Bias. Thermal Design When working with medium to high power FET devices, thermal dissipation should be a large part of the design. This is done to ensure that for a given ambient temperature the transistor s channel does not exceed the maximum rating, T CH, from the data sheet. For example, ATF 501P8 has a maximum channel temperature of 150 C and a channel to board thermal resistance of 23 C/W. Thus, the entire thermal design hinges on these key data points. The question that must be answered is whether this device can operate in extreme environments with ambient temperature fluctuations from -25 C to +85 C. From Figure 9, a very useful equation is derived to calculate the temperature of the channel for a given ambient temperature. These calculations are all incorporated into Avago Technologies AppCAD. The latest version can be downloaded for free at Pdiss=Vds x Ids θ ch-b θ b-s θ s-a Tch (channel) Tb (board or belly of the part)* Ts (sink) R8=10 Ta (ambient) *Note: For this example the board temperature is assumed to be the case temperature. Figure 9. Equivalent Circuit for Thermal Resistance. The board to ambient thermal resistance thus becomes very important, for this is the designer s major source of heat control. To demonstrate the influence of θ b a, thermal resistance at two extreme cases is compared. The first experiment is done with just the ATF-501P8 demo board and no heat sinking. The second case uses a much thinner demo board mounted on a 1/8" chassis with a fan. Calculating the temperature of the channel for these two scenarios gives a good indication of what type of heat sinking is needed at 85 C. Worst Case 1: 60 mil board with no heat sink, no 85 C Tch = P x (θ ch b + θ b a ) + Ta = 1.26W x ( ) C/W +85 C Tch = 155 C Best Case 2: 20 mil board chassis mounted with 85 C Tch = P x (θ ch b + θ b a ) + Ta = 1.26W x (23+3.0) C/W +85 C Tch = 118 C 5

6 In other words, if the board is mounted to a chassis as in case 2, the channel temperature is guaranteed to be 118 C, safely below the maximum temperature of 150 C. On the other hand, if no heat sinking is used,å as in case 1, then the channel temperature at 155 C slightly exceeds the absolute maximum rating. This is illustrated in Figure 10. Note power is derated at 18 mw/ C for the board with no heat sink and at 38 mw/ C for the chassis mounted board. Hence, for case 1, once the ambient temperature reaches 80 C, the device dissipated power must be derated in order to keep the channel temperature below 150 C. For reliable operation of the ATF 501P8 and extended MTBF, some form of thermal heat sinking is recommended, especially at high power dissipation. This may include any or all of the following suggestions: Table 4. Typical Performance for ATF-501P8. Results at 450 MHz Gain = 22.9 db OIP3 = 41.5 dbm P1dB = 25.0 dbm NF = 1.60 db Table 5. Thermal Resistance Measurements for various heat sinks. ATF Demoboard Fan 60 mil 20 mil θ b-a[ C/W] θ b-a[ C/W] PCB 1/8" Chassis ambient PCB 1/8 Chassis 350LFM Extrusion ambient Extrusion 350LFM Pin Fin ambient Pin Fin 350LFM PCB no HeatSink ambient PCB no HeatSink 350LFM Maximize vias underneath and around package Maximize exposed surface metal Use at least 1 oz copper clad Minimize board thickness Metal heat sinks or extrusions Fans or forced air Mount PCB to Chassis Summary A high linearity amplifier for CDMA450 and GSM450 has been presented and designed using Avago Technologies ATF-501P8. This includes RF, DC, and good thermal dissipation practices. A summary of the results is provided in Table 4. A plot of the stability factor, K, in Figure 11 shows the amplifier is unconditionally stable. Figure 10. Derating for ATF-501P8 at 1.26W. Figure 11. Measured stability factor, K, vs. Frequency, GHz. 6

7 References: [1] The Care and Feeding of High Speed Dividers, data/appnotes/an178.pdf. [Accessed 11 November, 2002]. [2] Ward, A. AN-1222 Avago Technologies ATF Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plasitic Package, [Accessed 22 August, 2002]. [3] Biasing Circuits and Considerations for GaAs MESFET Power Amplifiers, AN 0002_ajp.pdf. [Accessed 22 August, 2002]. For product information and a complete list of distributors, please go to our web site: Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright Avago Technologies, Limited. All rights reserved EN May 19, 2010

Application Note 1373

Application Note 1373 ATF-511P8 900 MHz High Linearity Amplifier Application Note 1373 Introduction Avago s ATF-511P8 is an enhancement mode PHEMT designed for high linearity and medium power applications. With an OIP3 of 41

More information

ATF-531P8 900 MHz High Linearity Amplifier. Application Note 1372

ATF-531P8 900 MHz High Linearity Amplifier. Application Note 1372 ATF-531P8 9 MHz High Linearity Amplifier Application Note 1372 Introduction This application note describes the design and construction of a single stage 85 MHz to 9 MHz High Linearity Amplifier using

More information

ATF-531P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 800 and 900 MHz Applications. Application Note 1371

ATF-531P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 800 and 900 MHz Applications. Application Note 1371 ATF-31P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 8 and 9 MHz Applications Application Note 1371 Introduction A critical first step in any LNA design is the selection of the active device. Low cost

More information

Application Note 5057

Application Note 5057 A 1 MHz to MHz Low Noise Feedback Amplifier using ATF-4143 Application Note 7 Introduction In the last few years the leading technology in the area of low noise amplifier design has been gallium arsenide

More information

Application Note 1320

Application Note 1320 ATF-3P8 9 MHz High Linearity Amplifier Application Note 3 Introduction Avago Technologies ATF-3P8 is an enhancement mode PHEMT designed for low noise and high linearity applications. With a noise figure

More information

Application Note 5460

Application Note 5460 MGA-89 High Linearity Amplifier with Low Operating Current for 9 MHz to. GHz Applications Application Note 6 Introduction The Avago MGA-89 is a high dynamic range amplifier designed for applications in

More information

High Intercept Low Noise Amplifier for 1.9 GHz PCS and 2.1 GHz W-CDMA Applications using the ATF Enhancement Mode PHEMT

High Intercept Low Noise Amplifier for 1.9 GHz PCS and 2.1 GHz W-CDMA Applications using the ATF Enhancement Mode PHEMT High Intercept Low Noise Amplifier for 1.9 GHz PCS and 2.1 GHz W-CDMA Applications using the ATF-55143 Enhancement Mode PHEMT Application Note 1241 Introduction Avago Technologies ATF-55143 is a low noise

More information

Application Note 1285

Application Note 1285 Low Noise Amplifiers for 5.125-5.325 GHz and 5.725-5.825 GHz Using the ATF-55143 Low Noise PHEMT Application Note 1285 Description This application note describes two low noise amplifiers for use in the

More information

ATF High Intercept Low Noise Amplifier for the MHz PCS Band using the Enhancement Mode PHEMT

ATF High Intercept Low Noise Amplifier for the MHz PCS Band using the Enhancement Mode PHEMT ATF-54143 High Intercept Low Noise Amplifier for the 185 191 MHz PCS Band using the Enhancement Mode PHEMT Application Note 1222 Introduction Avago Technologies ATF-54143 is a low noise enhancement mode

More information

Application Note 1360

Application Note 1360 ADA-4743 +17 dbm P1dB Avago Darlington Amplifier Application Note 1360 Description Avago Technologies Darlington Amplifier, ADA-4743 is a low current silicon gain block RFIC amplifier housed in a 4-lead

More information

Application Note 5011

Application Note 5011 MGA-62563 High Performance GaAs MMIC Amplifier Application Note 511 Application Information The MGA-62563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

Data Sheet ATF-511P8. High Linearity Enhancement Mode [1] Pseudomorphic HEMT in 2x2 mm 2 LPCC [3] Package. 1Px. Features.

Data Sheet ATF-511P8. High Linearity Enhancement Mode [1] Pseudomorphic HEMT in 2x2 mm 2 LPCC [3] Package. 1Px. Features. ATF-511P8 High Linearity Enhancement Mode [1] Pseudomorphic HEMT in 2x2 mm 2 LPCC [3] Package Data Sheet Description Avago Technologies s ATF-511P8 is a single-voltage high linearity, low noise E-pHEMT

More information

Application Note 5499

Application Note 5499 MGA-31389 and MGA-31489 High-Gain Driver Amplifier Using Avago MGA-31389 and MGA-31489 Application Note 5499 Introduction The MGA-31389 and MGA-31489 from Avago Technologies are.1 Watt flat-gain driver

More information

Application Note 5379

Application Note 5379 VMMK-1225 Applications Information Application Note 5379 Introduction The Avago Technologies VMMK-1225 is a low noise enhancement mode PHEMT designed for use in low cost commercial applications in the

More information

Features. Specifications. Applications

Features. Specifications. Applications ATF-531P8 High Linearity Enhancement Mode [1] Pseudomorphic HEMT in 2x2 mm 2 LPCC [3] Package Data Sheet Description Avago Technologies ATF 531P8 is a single-voltage high linearity, low noise E phemt housed

More information

Application Note 5421

Application Note 5421 MGA-30489 1.9GHz W-CDMA Driver Amplifier Design using Avago Technologies MGA-30489 Application Note 5421 Introduction Avago Technologies MGA-30489 is high linearity, 0.25Watt (24dBm) driver amplifier designed

More information

Data Sheet. ALM GHz 1.0GHz 2 Watt High Linearity Amplifier. Description. Features. Specifications. Component Image.

Data Sheet. ALM GHz 1.0GHz 2 Watt High Linearity Amplifier. Description. Features. Specifications. Component Image. ALM-32120 0.7GHz 1.0GHz 2 Watt High Linearity Amplifier Data Sheet Description Avago Technologies ALM-32120 is a high linearity 2 Watt PA with good OIP3 performance and exceptionally good PAE at 1dB gain

More information

1 of 7 12/20/ :04 PM

1 of 7 12/20/ :04 PM 1 of 7 12/20/2007 11:04 PM Trusted Resource for the Working RF Engineer [ C o m p o n e n t s ] Build An E-pHEMT Low-Noise Amplifier Although often associated with power amplifiers, E-pHEMT devices are

More information

Data Sheet. ALM GHz GHz 50 Watt High Power SPDT Switch with LNA Module. Features. Description. Specifications.

Data Sheet. ALM GHz GHz 50 Watt High Power SPDT Switch with LNA Module. Features. Description. Specifications. ALM-12124 1.88 GHz 2.025 GHz 50 Watt High Power SPDT Switch with LNA Module Data Sheet Description Avago Technologies ALM-12124 is a multi-chip integrated module that comprise of a 50 Watt CW high power

More information

Data Sheet. ALM GHz 2.40 GHz 50 Watt High Power SPDT Switch with LNA Module. Features. Description. Specifications.

Data Sheet. ALM GHz 2.40 GHz 50 Watt High Power SPDT Switch with LNA Module. Features. Description. Specifications. ALM-12224 2.30 GHz 2.40 GHz 50 Watt High Power SPDT Switch with LNA Module Data Sheet Description Avago Technologies ALM-12224 is a multi-chip integrated module that comprise of a 50 Watt CW high power

More information

Application Note 5012

Application Note 5012 MGA-61563 High Performance GaAs MMIC Amplifier Application Note 5012 Application Information The MGA-61563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

Application Note 5488

Application Note 5488 MGA-31289 High-Gain, High-Linearity Driver Amplifier Application Note 5488 Introduction The MGA-31289 is a highly linear enhancement-mode pseudomorphic high electron mobility transistor (E-pHEMT) amplifier

More information

MGA High Gain, High Linearity, Very Low Noise Amplifier. Features. Specifications. Applications. All other pins NC Not Connected

MGA High Gain, High Linearity, Very Low Noise Amplifier. Features. Specifications. Applications. All other pins NC Not Connected MGA- High Gain, High Linearity, Very Low Noise Amplifier Data Sheet Description Avago Technologies MGA- is a two stage, easy-touse GaAs MMIC Low Noise Amplifier (LNA). The LNA has low noise with good input

More information

Application Note 5482

Application Note 5482 MGA-31189 70 to 500 MHz Amplifier for IF Applications using the Avago Technologies MGA-31189 Amplifier Application Note 5482 Introduction The MGA-31189 is a highly linear, Enhancement mode phemt (Pseudomorphic

More information

Data Sheet. MGA W High Linearity Driver Amplifier. Features. Description. Specifications. Pin connections and Package Marking

Data Sheet. MGA W High Linearity Driver Amplifier. Features. Description. Specifications. Pin connections and Package Marking MGA-31816 0.1 W High Linearity Driver Amplifier Data Sheet Description Avago Technologies MGA-31816 is a high linearity driver MMIC Amplifier housed in a standard QFN 3X3 16 lead plastic package. It features

More information

MGA High Gain, High Linearity, Very Low Noise Amplifier. Features. Specifications

MGA High Gain, High Linearity, Very Low Noise Amplifier. Features. Specifications MGA- High Gain, High Linearity, Very Low Noise Amplifier Data Sheet Description Avago Technologies MGA- is a two stage, easy-touse GaAs MMIC Low Noise Amplifier (LNA). The LNA has low noise with good input

More information

Data Sheet. VMMK GHz Positive Gain Slope Low Noise Amplifier in SMT Package. Features. Description

Data Sheet. VMMK GHz Positive Gain Slope Low Noise Amplifier in SMT Package. Features. Description VMMK-3603 1-6 GHz Positive Gain Slope Low Noise Amplifier in SMT Package Data Sheet Description The VMMK-3603 is a small and easy-to-use, broadband, positive gain slope low noise amplifier operating in

More information

Data Sheet. MGA-565P8 20 dbm P sat. High Isolation Buffer Amplifier. 1Bx. Features. Description. Specifications. Applications. Simplified Schematic

Data Sheet. MGA-565P8 20 dbm P sat. High Isolation Buffer Amplifier. 1Bx. Features. Description. Specifications. Applications. Simplified Schematic MGA-6P8 dbm P sat High Isolation Buffer Amplifier Data Sheet Description The MGA-6P8 is designed for use in LO chains to drive high dynamic range passive mixers. It provides high isolation, high gain,

More information

ABA GHz Broadband Silicon RFIC Amplifier. Application Note 1349

ABA GHz Broadband Silicon RFIC Amplifier. Application Note 1349 ABA-52563 3.5 GHz Broadband Silicon RFIC Amplifier Application Note 1349 Introduction Avago Technologies ABA-52563 is a low current silicon gain block RFIC amplifier housed in a 6-lead SC 70 (SOT- 363)

More information

Data Sheet. AMMC GHz Amplifier. Description. Features. Applications

Data Sheet. AMMC GHz Amplifier. Description. Features. Applications AMMC - 518-2 GHz Amplifier Data Sheet Chip Size: 92 x 92 µm (.2 x.2 mils) Chip Size Tolerance: ± 1µm (±.4 mils) Chip Thickness: 1 ± 1µm (4 ±.4 mils) Pad Dimensions: 8 x 8 µm (.1 x.1 mils or larger) Description

More information

Low Noise Amplifier for 3.5 GHz using the Avago ATF Low Noise PHEMT. Application Note 1271

Low Noise Amplifier for 3.5 GHz using the Avago ATF Low Noise PHEMT. Application Note 1271 Low Noise Amplifier for 3. GHz using the Avago ATF-3143 Low Noise PHEMT Application Note 171 Introduction This application note describes a low noise amplifier for use in the 3.4 GHz to 3.8 GHz wireless

More information

Data Sheet. MGA Current-Adjustable, Low Noise Amplifier. Description. Features. Specifications at 500 MHz; 3V, 10 ma (Typ.

Data Sheet. MGA Current-Adjustable, Low Noise Amplifier. Description. Features. Specifications at 500 MHz; 3V, 10 ma (Typ. MGA-5 Current-Adjustable, Low Noise Amplifier Data Sheet Description Avago Technologies MGA-5 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent linearity and low noise figure for

More information

Data Sheet. MGA-632P8 Low Noise, High Linearity Active Bias Low Noise Amplifier. Features. Description. Specifications.

Data Sheet. MGA-632P8 Low Noise, High Linearity Active Bias Low Noise Amplifier. Features. Description. Specifications. MGA-632P8 Low Noise, High Linearity Active Bias Low Noise Amplifier Data Sheet Description Avago Technologies MGA-632P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA) with active bias.

More information

Data Sheet. AMMP GHz High Gain Amplifier in SMT Package. Description. Features. Applications. Package Diagram. Functional Block Diagram

Data Sheet. AMMP GHz High Gain Amplifier in SMT Package. Description. Features. Applications. Package Diagram. Functional Block Diagram AMMP- GHz High Gain Amplifier in SMT Package Data Sheet Description The AMMP- MMIC is a GaAs wide-band amplifier in a surface mount package designed for medium output power and high gain over the - GHz

More information

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet MGA-853.1 GHz 3 V, 17 dbm Amplifier Data Sheet Description Avago s MGA-853 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent power and low noise figure for applications from.1 to

More information

Data Sheet. MGA GHz 3 V, 14 dbm Amplifier. Description. Features. Applications. Simplified Schematic

Data Sheet. MGA GHz 3 V, 14 dbm Amplifier. Description. Features. Applications. Simplified Schematic MGA-8153.1 GHz 3 V, 1 dbm Amplifier Data Sheet Description Avago s MGA-8153 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent power and low noise figure for applications from.1 to

More information

Data Sheet. MGA-635T6 GPS Low Noise Amplifier with Variable Bias Current and Shutdown Function 3FYM. Description. Features.

Data Sheet. MGA-635T6 GPS Low Noise Amplifier with Variable Bias Current and Shutdown Function 3FYM. Description. Features. MGA-T GPS Low Noise Amplifier with Variable Bias Current and Shutdown Function Data Sheet Description Avago Technologies MGA-T is a LNA designed for GPS/ISM/Wimax applications in the (.9-.)GHz frequency

More information

8Fx. Data Sheet ATF Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package. Description. Features.

8Fx. Data Sheet ATF Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package. Description. Features. ATF-58143 Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package Data Sheet Description Avago Technologies ATF-58143 is a high dynamic range, low noise E-PHEMT housed in a 4-lead

More information

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet. Features. Description. Applications. Surface Mount Package. Simplified Schematic

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet. Features. Description. Applications. Surface Mount Package. Simplified Schematic MGA-853.1 GHz 3 V, 17 dbm Amplifier Data Sheet Description Avago s MGA-853 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent power and low noise figure for applications from.1 to

More information

Data Sheet. MGA W High Linearity Driver Amplifier. Features. Description. Specifications. Pin Connections and Package Marking

Data Sheet. MGA W High Linearity Driver Amplifier. Features. Description. Specifications. Pin Connections and Package Marking MGA-31716.1 W High Linearity Driver Amplifier Data Sheet Description Avago Technologies MGA-31716 is a high linearity driver MMIC Amplifier housed in a standard QFN 3X3 16 lead plastic package. It features

More information

87x. MGA GHz 3 V Low Current GaAs MMIC LNA. Data Sheet

87x. MGA GHz 3 V Low Current GaAs MMIC LNA. Data Sheet MGA-876 GHz V Low Current GaAs MMIC LNA Data Sheet Description Avago s MGA-876 is an economical, easy-to-use GaAs MMIC amplifier that offers low noise and excellent gain for applications from to GHz. Packaged

More information

GaAs MMIC Power Amplifier

GaAs MMIC Power Amplifier GaAs MMIC Power Amplifier AM324036WM-BM-R AM324036WM-FM-R Aug 10 Rev 6 DESCRIPTION AMCOM s is part of the GaAs MMIC power amplifier series. It has 29dB gain and 36dBm output power over the 3.2 to 4.0GHz

More information

Data Sheet MGA High Gain, High Linearity Active Bias Low Noise Amplifier. Description. Features. Specifications

Data Sheet MGA High Gain, High Linearity Active Bias Low Noise Amplifier. Description. Features. Specifications MGA-14516 High Gain, High Linearity Active Bias Low Noise Amplifier Data Sheet Description Avago Technologies MGA-14516 is a two stage, easy-touse GaAs MMIC Low Noise Amplifier (LNA) with active bias.

More information

Features. Specifications

Features. Specifications MGA-30489 0.25W Driver Amplifier Data Sheet Description Avago Technologies s MGA-30489 is a 0.25W highly dynamic range Driver Amplifier MMIC, housed in a SOT-89 standard plastic package. The device features

More information

MGA-645T6 Data Sheet Description Features Component Image Typical Performance 4FYM Pin Configuration GND Top View Applications Simplified Schematic

MGA-645T6 Data Sheet Description Features Component Image Typical Performance 4FYM Pin Configuration GND Top View Applications Simplified Schematic MGA-5T Low Noise Amplifier with Bypass/Shutdown Mode in Low Profile Package Data Sheet Description Avago Technologies MGA-5T is an economical, easy-to-use GaAs MMIC Low Noise Amplifier (LNA) with Bypass/

More information

Features. Specifications. Note:

Features. Specifications. Note: MGA-31589 0.5 W High Gain Driver Amplifier Data Sheet Description Avago Technologies MGA-31589 is a 0.5 W, high Gain, high performance Driver Amplifier MMIC, housed in a standard SOT-89 plastic package.

More information

400 MHz to 4000 MHz ½ Watt RF Driver Amplifier ADL5324

400 MHz to 4000 MHz ½ Watt RF Driver Amplifier ADL5324 Data Sheet FEATURES Operation from MHz to MHz Gain of 14.6 db at 21 MHz OIP of 4.1 dbm at 21 MHz P1dB of 29.1 dbm at 21 MHz Noise figure of.8 db Dynamically adjustable bias Adjustable power supply bias:.

More information

Features. Specifications. Applications

Features. Specifications. Applications MGA-3889 4MHz - 26MHz Flat Gain High Linearity Gain Block Data Sheet Description Avago Technologies MGA-3889 is a broadband, flat gain, high linearity gain block MMIC amplifier achieved through the use

More information

ADA-4543 Silicon Bipolar Darlington Amplifier. Data Sheet. 1Tx

ADA-4543 Silicon Bipolar Darlington Amplifier. Data Sheet. 1Tx ADA- Silicon Bipolar Darlington Amplifier Data Sheet Description Avago Technologies ADA- is an economical, easy-to-use, general purpose silicon bipolar RFIC gain block amplifiers housed in a -lead SC-7

More information

MGA-635P8 Ultra Low Noise, High Linearity Low Noise Amplifier. Features. Specifications. Applications. RFin

MGA-635P8 Ultra Low Noise, High Linearity Low Noise Amplifier. Features. Specifications. Applications. RFin MGA-3P8 Ultra Low Noise, High Linearity Low Noise Amplifier Data Sheet Description Avago Technologies MGA-3P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA). The LNA has low noise and

More information

Application Note 1299

Application Note 1299 A Low Noise High Intercept Point Amplifier for 9 MHz Applications using ATF-54143 PHEMT Application Note 1299 1. Introduction The Avago Technologies ATF-54143 is a low noise enhancement mode PHEMT designed

More information

Data Sheet. MGA-685T6 Current-Adjustable, Low Noise Amplifier. Description. Features. Specifications at 500 MHz; 3V 10 ma (Typ.

Data Sheet. MGA-685T6 Current-Adjustable, Low Noise Amplifier. Description. Features. Specifications at 500 MHz; 3V 10 ma (Typ. MGA-685T6 Current-Adjustable, Low Noise Amplifier Data Sheet Description The MGA-685T6 is an easy to use GaAs MMIC amplifier that offer excellent linearity and low noise figure for application from.1 to

More information

Data Sheet. MGA High Gain, High Linearity, Active Bias, Low Noise Amplifier. Description. Features. Specifications

Data Sheet. MGA High Gain, High Linearity, Active Bias, Low Noise Amplifier. Description. Features. Specifications MGA-13516 High Gain, High Linearity, Active Bias, Low Noise Amplifier Data Sheet Description Avago Technologies MGA-13516 is a two stage, easy-touse GaAs MMIC Low Noise Amplifier (LNA) with active bias.

More information

Data Sheet. ALM GHz 3.9GHz 2 Watt High Linearity Amplifier. Description. Features. Component Image. Specifications WWYY XXXX

Data Sheet. ALM GHz 3.9GHz 2 Watt High Linearity Amplifier. Description. Features. Component Image. Specifications WWYY XXXX ALM-32320 3.3GHz 3.9GHz 2 Watt High Linearity Amplifier Data Sheet Description Avago Technologies ALM-32320 is a high linearity 2 Watt PA with good OIP3 performance and exceptionally good PAE at 1dB gain

More information

Features. Specifications

Features. Specifications MGA-31289 0.25W High Gain Driver Amplifier 1500-3000 MHz Data Sheet Description Avago Technologies MGA-31289 is a 0.25W high gain driver amplifier MMIC with good gain flatness, housed in a standard SOT-89

More information

Data Sheet. 2Tx. ADA-4643 Silicon Bipolar Darlington Amplifier. Description. Features. Specifications. Applications. Surface Mount Package

Data Sheet. 2Tx. ADA-4643 Silicon Bipolar Darlington Amplifier. Description. Features. Specifications. Applications. Surface Mount Package ADA- Silicon Bipolar Darlington Amplifier Data Sheet Description Avago Technologies ADA- is an economical, easy-touse, general purpose silicon bipolar RFIC gain block amplifiers housed in a -lead SC-7

More information

Data Sheet. VMMK GHz Variable Gain Amplifier in SMT Package. Features. Description. Specifications (6 GHz, Vdd = 5 V, Zin = Zout = 50 Ω)

Data Sheet. VMMK GHz Variable Gain Amplifier in SMT Package. Features. Description. Specifications (6 GHz, Vdd = 5 V, Zin = Zout = 50 Ω) VMMK-. - 18 GHz Variable Gain Amplifier in SMT Package Data Sheet Description The VMMK- is a small and easy-to-use, broadband, variable gain amplifier operating in various frequency bands from.-18 GHz.

More information

RF3375 GENERAL PURPOSE AMPLIFIER

RF3375 GENERAL PURPOSE AMPLIFIER Basestation Applications Broadband, Low-Noise Gain Blocks IF or RF Buffer Amplifiers Driver Stage for Power Amplifiers Final PA for Low-Power Applications High Reliability Applications RF3375General Purpose

More information

Features. Specifications

Features. Specifications MGA-31389 0.1W High Gain Driver Amplifier 50MHz ~ 2GHz Data Sheet Description Avago Technologies MGA-31389 is a high performance Driver Amplifier MMIC, housed in a standard SOT-89 plastic package. The

More information

Data Sheet. 3Tx. ADA-4743 Silicon Bipolar Darlington Amplifier. Description

Data Sheet. 3Tx. ADA-4743 Silicon Bipolar Darlington Amplifier. Description ADA-7 Silicon Bipolar Darlington Amplifier Data Sheet Description Avago Technologies ADA-7 is an economical, easy-touse, general purpose silicon bipolar RFIC gain block amplifiers housed in a -lead SC-7

More information

Application Note 5468

Application Note 5468 GA-43228 High Linearity Wireless Data Power Amplifier for 2.3 to 2.5 GHz Applications Application Note 5468 Introduction This application note describes the GA-43228 power amplifier and gives actual performance

More information

MGA-634P8 Ultra Low Noise, High Linearity Low Noise Amplifier. Features. Specifications. Applications. RFin

MGA-634P8 Ultra Low Noise, High Linearity Low Noise Amplifier. Features. Specifications. Applications. RFin MGA-3P8 Ultra Low Noise, High Linearity Low Noise Amplifier Data Sheet Description Avago Technologies MGA-3P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA). The LNA has low noise and

More information

MGA Current Adjustable Low Noise Amplifier

MGA Current Adjustable Low Noise Amplifier Products > RF ICs/Discretes > RF ICs > GaAs Amplifiers, Mixers, Switches > MGA-68563 MGA-68563 Current Adjustable Low Noise Amplifier Description The MGA-68563 is an easy to use, economical GaAs MMIC amplifier

More information

MGA MHz to 6 GHz High Linear Amplifier

MGA MHz to 6 GHz High Linear Amplifier MGA-343 MHz to 6 GHz High Linear Amplifier Data Sheet Description Avago Technologies s MGA-343 is a high dynamic range low noise amplifier MMIC housed in a 4-lead SC-7 (SOT- 343) surface mount plastic

More information

MGA Low Noise Amplifier with switchable Bypass/Shutdown Mode in Low Profile Package. Features. Applications. VBias

MGA Low Noise Amplifier with switchable Bypass/Shutdown Mode in Low Profile Package. Features. Applications. VBias MGA-65606 Low Noise Amplifier with switchable Bypass/Shutdown Mode in Low Profile Package Data Sheet Description Avago Technologies MGA-65606 is an economical, easyto-use GaAs MMIC Low Noise Amplifier

More information

A 400, 900, and 1800 MHz Buffer/Driver Amplifier using the HBFP-0450 Silicon Bipolar Transistor

A 400, 900, and 1800 MHz Buffer/Driver Amplifier using the HBFP-0450 Silicon Bipolar Transistor A 4, 9, and 18 MHz Buffer/Driver Amplifier using the HBFP-4 Silicon Bipolar Transistor Application Note 16 Introduction Avago Technologies HBFP-4 is a high performance isolated collector silicon bipolar

More information

AMMC KHz 40 GHz Traveling Wave Amplifier

AMMC KHz 40 GHz Traveling Wave Amplifier AMMC- 3 KHz GHz Traveling Wave Amplifier Data Sheet Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions: 3 x µm (9. x 1.3 mils) ± µm (±. mils) ± µm ( ±. mils) 8 x 8 µm (.9 ±. mils) Description

More information

Features. Applications. Symbol Parameters/Conditions Units Min. Max.

Features. Applications. Symbol Parameters/Conditions Units Min. Max. AMMC - 622 6-2 GHz Low Noise Amplifier Data Sheet Chip Size: 17 x 8 µm (67 x 31. mils) Chip Size Tolerance: ± 1 µm (±.4 mils) Chip Thickness: 1 ± 1 µm (4 ±.4 mils) Pad Dimensions: 1 x 1 µm (4 ±.4 mils)

More information

AMMC GHz Output x2 Active Frequency Multiplier

AMMC GHz Output x2 Active Frequency Multiplier AMMC-614 2 4 GHz Output x2 Active Frequency Multiplier Data Sheet Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions: 13 x 9 µm (1 x 3 mils) ±1 µm (±.4 mils) 1 ± 1 µm (4 ±.4 mils) 12 x 8 µm

More information

Data Sheet. MGA High Linearity ( ) GHz Power Amplifier Module. Features. Description. Specifications. Applications.

Data Sheet. MGA High Linearity ( ) GHz Power Amplifier Module. Features. Description. Specifications. Applications. MGA-43003 High Linearity (1.805 1.88) GHz Power Amplifier Module Data Sheet Description Avago Technologies MGA-43003 is a fully matched power amplifier for use in the (1.805-1.88) GHz band. High linear

More information

Features. Specifications. Notes: Package marking provides orientation and identification 53 = Device Code X = Month of Manufacture = Pin 1

Features. Specifications. Notes: Package marking provides orientation and identification 53 = Device Code X = Month of Manufacture = Pin 1 AVT-53663 DC 6000 MHz InGaP HBT Gain Block Data Sheet Description Avago Technologies AVT-53663 is an economical, easyto-use, general purpose InGaP HBT MMIC gain block amplifier utilizing Darlington pair

More information

Data Sheet. MGA-231T6 High-Gain GPS LNA with Variable Current and Shutdown Function 31YM. Description. Features

Data Sheet. MGA-231T6 High-Gain GPS LNA with Variable Current and Shutdown Function 31YM. Description. Features MGA-231T6 High-Gain GPS LNA with Variable Current and Shutdown Function Data Sheet Description Avago Technologies MGA-231T6 is a low-noise amplifier (LNA) designed for GPS/ISM/Wimax applications in the

More information

Data Sheet. AMMP to 32 GHz GaAs High Linearity LNA in SMT Package. Description. Features. Specifications (Vdd = 4.

Data Sheet. AMMP to 32 GHz GaAs High Linearity LNA in SMT Package. Description. Features. Specifications (Vdd = 4. AMMP-622 18 to 2 GHz GaAs High Linearity LNA in SMT Package Data Sheet Description Avago s AMMP-622 is an easy-to-use broadband, high gain, high linearity Low Noise Amplifier in a surface mount package.

More information

Data Sheet. AMMP to 21 GHz GaAs High Linearity LNA in SMT Package. Description. Features. Specifications (Vdd = 4.0V, Idd = 120mA) Applications

Data Sheet. AMMP to 21 GHz GaAs High Linearity LNA in SMT Package. Description. Features. Specifications (Vdd = 4.0V, Idd = 120mA) Applications AMMP-6 7 to 1 GHz GaAs High Linearity LNA in SMT Package Data Sheet Description Avago Technologies AMMP-6 is an easy-to-use broadband, high gain, high linearity Low Noise Amplifier in a surface mount package.

More information

MGA Low Noise Amplifier. Data Sheet. Features. Description. Applications. Surface Mount Package SOT-343 /4-lead SC70. Simplified Schematic

MGA Low Noise Amplifier. Data Sheet. Features. Description. Applications. Surface Mount Package SOT-343 /4-lead SC70. Simplified Schematic MGA-243 Low Noise Amplifier Data Sheet Description Avago Technologies MGA-243 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA), which is designed for use in LNA and driver stages. While

More information

Data Sheet. ALM W Analog Variable Gain Amplifier. Description. Features. Specifications. Pin connections and Package Marking.

Data Sheet. ALM W Analog Variable Gain Amplifier. Description. Features. Specifications. Pin connections and Package Marking. ALM-81.25W Analog Variable Gain Amplifier Data Sheet Description Avago Technologies ALM-81 is a.25w Analog Controlled Variable Gain Amplifier which operates from.4ghz to 1.6GHz. The device provides an

More information

Data Sheet. MGA Dual LNA for Balanced Application MHz. Features. Description. Typical Performances. Component Image.

Data Sheet. MGA Dual LNA for Balanced Application MHz. Features. Description. Typical Performances. Component Image. MGA-16116 Dual LNA for Balanced Application 450 1450 MHz Data Sheet Description Avago Technologies MGA-16116 is an ultra low-noise high linearity amplifier pair with built-in active bias and shutdown features

More information

MGA Low Noise Amplifier with switchable Bypass/Shutdown Mode in Low Profile Package. Features. Applications. VBias

MGA Low Noise Amplifier with switchable Bypass/Shutdown Mode in Low Profile Package. Features. Applications. VBias MGA-4 Low Noise Amplifier with switchable Bypass/Shutdown Mode in Low Profile Package Data Sheet Description Avago Technologies MGA-4 is an economical, easy-to-use GaAs MMIC Low Noise Amplifier (LNA) with

More information

GaAs MMIC Power Amplifier

GaAs MMIC Power Amplifier GaAs MMIC Power Amplifier AM153040WM-BM-R AM153040WM-FM-R Aug 2010 Rev 0 DESCRIPTION AMCOM s is part of the GaAs HiFET MMIC power amplifier series. It is a 2-stage GaAs HIFET PHEMT MMIC power amplifier.

More information

Data Sheet AMMC GHz Output 2 Active Frequency Multiplier. Description. Features. Applications

Data Sheet AMMC GHz Output 2 Active Frequency Multiplier. Description. Features. Applications AMMC-1 GHz Output Active Frequency Multiplier Data Sheet Chip Size: x µm ( x mils) Chip Size Tolerance: ± µm (±. mils) Chip Thickness: ± µm ( ±. mils) Pad Dimensions: 1 x µm (x3 ±. mils) Description Avago

More information

Data Sheet 0GX. ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package. Features. Description. Specifications

Data Sheet 0GX. ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package. Features. Description. Specifications ATF-5189 Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package Data Sheet Description Avago Technologies s ATF-5189 is a high linearity, medium power, low noise E-pHEMT FET packaged in a low cost surface

More information

ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package

ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package ATF-3189 Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package Data Sheet Description Avago Technologies s ATF-3189 is a single-voltage high linearity, low noise E-pHEMT FET packaged in a low cost

More information

Features. Specifications

Features. Specifications MGA-31189 0.25W High Gain Driver Amplifier 50 2000 MHz Data Sheet Description Avago Technologies MGA-31189 is a 0.25W high gain with good gain flatness Driver Amplifier MMIC, housed in a standard SOT-89

More information

Data Sheet. ALM MHz 870 MHz Low Noise, High Linearity Amplifier Module with Fail-Safe Bypass Feature. Features.

Data Sheet. ALM MHz 870 MHz Low Noise, High Linearity Amplifier Module with Fail-Safe Bypass Feature. Features. ALM-11036 776 MHz 870 MHz Low Noise, High Linearity Amplifier Module with Fail-Safe Bypass Feature Data Sheet Description Avago Technologies ALM-11036 is an easy-to-use GaAs MMIC Tower Mount Amplifier

More information

AT General Purpose, Low Current NPN Silicon Bipolar Transistor. Data Sheet

AT General Purpose, Low Current NPN Silicon Bipolar Transistor. Data Sheet AT-4532 General Purpose, Low Current NPN Silicon Bipolar Transistor Data Sheet Description Avago s AT-4532 is a general purpose NPN bipolar transistor that has been optimized for maximum f t at low voltage

More information

Gallium Nitride MMIC Power Amplifier

Gallium Nitride MMIC Power Amplifier Gallium Nitride MMIC Power Amplifier August 2015 Rev 4 DESCRIPTION AMCOM s is an ultra-broadband GaN MMIC power amplifier. It has 21dB gain, and >41dBm output power over the 0.03 to 6GHz band. This MMIC

More information

MGA Low Noise Amplifier. Data Sheet. 42x. Features. Description. Applications. Surface Mount Package SOT-343 /4-lead SC70. Simplified Schematic

MGA Low Noise Amplifier. Data Sheet. 42x. Features. Description. Applications. Surface Mount Package SOT-343 /4-lead SC70. Simplified Schematic MGA-243 Low Noise Amplifier Data Sheet Description Avago Technologies MGA-243 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA), which is designed for use in LNA and driver stages. While

More information

Data Sheet 2GX. ATF High Linearity Mode [1] Enhancement Pseudomorphic HEMT in SOT 89 Package. Features. Description.

Data Sheet 2GX. ATF High Linearity Mode [1] Enhancement Pseudomorphic HEMT in SOT 89 Package. Features. Description. ATF-2189 High Linearity Mode [1] Enhancement Pseudomorphic HEMT in SOT 89 Package Data Sheet Description Avago Technologies s ATF-2189 is a single-voltage high linearity, low noise E-pHEMT FET packaged

More information

Data Sheet. ALM High Linearity MHz Variable Gain Amplifier. Description. Features. Typical Performances.

Data Sheet. ALM High Linearity MHz Variable Gain Amplifier. Description. Features. Typical Performances. ALM-2 High Linearity 1 27 MHz Variable Amplifier Data Sheet Description Avago Technologies ALM-2 is a high linearity variable-gain amplifier module for use in the 1-27MHz band. control is achieved using

More information

Application Note A008

Application Note A008 Microwave Oscillator Design Application Note A008 Introduction This application note describes a method of designing oscillators using small signal S-parameters. The background theory is first developed

More information

Data Sheet. VMMK to 4 GHz GaAs High Linearity LNA in Wafer Level Package. Features. Description. Specifications (Vdd = 3.

Data Sheet. VMMK to 4 GHz GaAs High Linearity LNA in Wafer Level Package. Features. Description. Specifications (Vdd = 3. VMMK-243 2 to 4 GHz GaAs High Linearity LNA in Wafer Level Package Data Sheet Description Avago s VMMK-243 is an easy-to-use, high linearity low noise amplifier in a miniaturized wafer level package (WLP).

More information

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification.

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification. GHz V Low Current GaAs MMIC LNA Technical Data MGA-876 Features Ultra-Miniature Package.6 db Min. Noise Figure at. GHz. db Gain at. GHz Single + V or V Supply,. ma Current Applications LNA or Gain Stage

More information

50 MHz to 4.0 GHz RF/IF Gain Block ADL5602

50 MHz to 4.0 GHz RF/IF Gain Block ADL5602 Data Sheet FEATURES Fixed gain of 20 db Operation from 50 MHz to 4.0 GHz Highest dynamic range gain block Input/output internally matched to 50 Ω Integrated bias control circuit OIP3 of 42.0 dbm at 2.0

More information

RF2044 GENERAL PURPOSE AMPLIFIER

RF2044 GENERAL PURPOSE AMPLIFIER GENERAL PURPOSE AMPLIFIER RoHS Compliant & Pb-Free Product Package Style: Micro-X Ceramic Features DC to >6000MHz Operation Internally matched Input and Output 20dB Small Signal Gain 4.0dB Noise Figure

More information

Data Sheet. AMMP to 32 GHz GaAs Low Noise Amplifier. Description. Features. Specifications (Vd=3.0V, Idd=65mA) Applications.

Data Sheet. AMMP to 32 GHz GaAs Low Noise Amplifier. Description. Features. Specifications (Vd=3.0V, Idd=65mA) Applications. AMMP-6233 18 to 32 GHz GaAs Low Noise Amplifier Data Sheet Description Avago Technologies AMMP-6233 is a high gain, lownoise amplifier that operates from 18 GHz to 32 GHz. It has a 3 db noise figure, over

More information

IF Digitally Controlled Variable-Gain Amplifier

IF Digitally Controlled Variable-Gain Amplifier 19-2601; Rev 1; 2/04 IF Digitally Controlled Variable-Gain Amplifier General Description The high-performance, digitally controlled variable-gain amplifier is designed for use from 0MHz to 400MHz. The

More information

Features. Specifications. Applications. Vcc

Features. Specifications. Applications. Vcc AVT-55689 50 6000 MHz InGaP HBT Gain Block Data Sheet Description Avago Technologies AVT-55689 is an economical, easy-touse, general purpose InGaP HBT MMIC gain block amplifier utilizing Darlington pair

More information

Data Sheet. ALM-1712 GPS Filter-LNA-Filter Front-End Module. Features. Description. Component Image. Specifications (Typical 25 C)

Data Sheet. ALM-1712 GPS Filter-LNA-Filter Front-End Module. Features. Description. Component Image. Specifications (Typical 25 C) ALM-1712 GPS Filter-LNA-Filter Front-End Module Data Sheet Description Avago Technologies ALM-1712 is a GPS front-end module that combines a low-noise amplifier (LNA) with GPS FBAR filters. The LNA uses

More information

MGA-725M4 Low Noise Amplifier with Bypass Switch In Miniature Leadless Package. Data Sheet. Description. Features. Applications

MGA-725M4 Low Noise Amplifier with Bypass Switch In Miniature Leadless Package. Data Sheet. Description. Features. Applications MGA-75M Low Noise Amplifier with Bypass Switch In Miniature Leadless Package Data Sheet Description Broadcom's MGA -75M is an economical, easy-to-use GaAs MMIC Low Noise Amplifier (LNA), which is designed

More information

Design Application Note -- AN022 SGA-9289 Amplifier Application Circuits

Design Application Note -- AN022 SGA-9289 Amplifier Application Circuits Design Application Note -- AN22 Abstract Sirenza Microdevices SGA-9289 is a high performance SiGe amplifier designed for operation from DC to 3 MHz. This application note illustrates several application

More information