Highly Sensitive InGaAs-AlGaAs-GaAs 2DEG Quantum Well Hall Effect Integrated Circuits

Size: px
Start display at page:

Download "Highly Sensitive InGaAs-AlGaAs-GaAs 2DEG Quantum Well Hall Effect Integrated Circuits"

Transcription

1 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database Highly Sensitive InGaAs-AlGaAs-GaAs 2DEG Quantum Well Hall Effect Integrated Circuits Mohammadreza SADEGHI and Mohamed MISSOUS School of Electrical & Electronic Engineering, Sackville Building, Sackville Street, University of Manchester, Manchester, M13 9PL England, UK, Phone: , Abstract GaAs-InGaAs-AlGaAs Hall sensor, current source, differential amplifier, comparator and source follower were integrated to form the first highly sensitive, low power (~18 mw) III-V DC unipolar Hall integrated circuit. This is a three terminal device which utilises 2 µm gate length technology, offering very high yields, at least ~50% higher switching sensitivity (~ 6 mt) compared to existing commercial unipolar ICs. In addition, the first low power (10.4 mw) and ultra-sensitive Linear Hall Effect Integrated Circuits (LHEIC) using the same GaAs-InGaAs-AlGaAs 2DEG technology have also been developed. These LHEIC have a state-of-the-art sensitivity of 533 µv/µt and are capable of detecting magnetic fields as low as 177 nt (in a 10 Hz bandwidth), at frequencies from 500 Hz to 200 khz. Keywords: Digital Hall Effect Integrated Circuit, Linear Hall Effect Integrated Circuit, phemt. 1. Introduction Hall Effect integrated circuits are widely used in applications such as automation, medical, electronic and electrical industries [1]. These ICs are divided into two categories of digital and linear (dependant on the type of output they generate in the presence of magnetic field), to cover a vast number of applications. Ccommercially available Hall Effect ICs are all based on silicon CMOS technology mainly due to their small dimension and low cost [2-5]. However, short comings of theses ICs include low magnetic field sensitivity, limited operating frequency range and high power consumption. Due to the inherently poor silicon Hall sensor material properties, devices made of III V semiconductors have attracted a great deal of interest by virtue of their high electron mobility combined with moderate sheet carrier densities, low temperature dependences of the output Hall voltage and large signal-to-noise ratios (S/N) [6-10]. However, the majority of this work to date has been concerned with single Hall elements with no reports of fully integrated Hall Effect circuit using the III V semiconductors apart from [11-12] describing a hybrid circuit using ion implanted GaAs for which the performances were less than ideal due to the difficulties of the technologies used at the time. In order to provide a higher sensitivity and lower power consumption, a new type of AC linear and DC unipolar integrated circuits have been developed in this work which utilise a two Dimensional Electron Gas (2DEG) system. These Hall integrated circuits are based on GaAs- InGaAs-AlGaAs system, which is a reasonably mature technology allowing accurate modelling and simulation of transistors for the development of Process Development Kits (PDK). Every individual elements required for successful integration have been developed in this work in order to design and fabricate highly sensitive and low power Hall integrated circuits. 2. Fabrication of GaAs phemts and Hall sensor All wafers used in these studies were grown in-house using a solid-source Molecular Beam Epitaxy (MBE) in a RIBER V100 system. The epitaxial profile of a typical 4 wafer (XMBE303) grown on a (100) GaAs semi-insulating substrate is shown in Figure 1.

2 Figure 1. GaAs-InGaAs-AlGaAs Structure The pseudomorphic high electron mobility transistor structure consists of a GaAs buffer layer, a channel/active layer of strained In 0.15 Ga 0.85 As cladded by an Al 0.35 Ga 0.65 As spacer and supply layers, a Si delta doped layer and finally a GaAs cap layer. The as-grown sheet carrier density and mobility values were obtained using Hall Effect measurements and determined to be cm -2 and 6447 cm 2 /V.s respectively. The 2 µm gate length phemts, fabricated on the structure shown in Figure 1, with trans-conductance of 140 ms/mm, threshold voltage of -0.4 V and output conductance as low as 0.04 ms/mm (Figure 2) were perfectly suitable for the design of the Integrated Circuits as they provide ample gain and bandwidth (f T = 5.2 GHz (Figure 3) and fmax=11.4 GHz). IDS (A/mm) VDS (V) Figure 2. The phemts IDS Vs VDS for VGS from -0.5V to +0.5V 2

3 H E E E+10 Frequency (Hz) Figure 3. Cut off Frequency (f T ) The design of the phemt structure can easily be adapted to form Hall plates. Using this phemtlike structure, two Greek cross Hall structures, denoted as P2A and P15A, using AlGaAs/InGaAs/GaAs materials and having resolutions of 1 µt at DC and 100 nt at higher frequencies have been reported previously [13]. The design of the XMBE303 Hall sensors relied on the same principles as the designs of the P2A and P15A sensors. Figure 4 illustrates the top view of the Greek cross sensor used in the final linear integrated circuit. Figure 4. Top view of the XMBE303 Greek cross Hall sensor The fabricated device was fully symmetrical and thus input and output resistance were the same (~1750 Ω). The fabricated sensor had an (L/W) ratio of 3 with L = 60 µm and a sensitivity of 0.4 mv/ma.mt and was capable of detecting magnetic fields as low as 10 nt (with amplification of 40 K using off-chip components). 3. DC Digital (unipolar) Hall Effect Integrated Circuit The GaAs-InGaAs-AlGaAs monolithic all Integrated Digital Hall Effect Circuit, which was designed, fabricated and tested in this work is illustrated in Figure 5. 3

4 Figure 5. Digital Hall Effect Integrated Circuit. Dimension: 1.4 mm 2 mm. This IC with a sensitivity of 8.5 mv/mt and a switching magnetic field of 6 mt operated successfully in the presence and absence of magnetic field. The output of this IC is depicted in Figure 6. 5 Digital IC Output Vs Magnetic Field output (V) 3 1 Movement of magnet Figure 6. Response of the Unipolar IC to the DC magnetic field. The DC unipolar Hall Effect IC developed in this work represents a first attempt at digital (unipolar) Hall Effect IC using 2DEG GaAs heterojunction material. Table 1 compares the performance of this IC and the commercial DC unipolar ICs available in the market. Table 1. Comparison of the performance of the GaAs 2DEG IC developed in this work with the commercial DC unipolar Hall ICs Reference Switching sensitivity Power consumption (mt) (mw) at 5 V supply [14] [15] [16] This work 6 18 As shown in Table 1, the switching sensitivity obtained in this work (despite consuming only 18 mw of power at 5 V) is at least 1.5 higher than the other commercial DC unipolar Hall ICs. This is despite the fact that the commercial Hall ICs employ multiple amplification circuitries along with current spinning technique to achieve better sensitivities. 4. AC linear Hall Effect Integrated Circuit To take advantage of reduced 1/f noise at higher frequencies, an entire high mobility GaAs-InGaAs- AlGaAs based AC Hall Effect Integrated Circuit has also been designed, fabricated and tested. This Integrated AC Hall Effect circuit has proven to detect magnetic fields as low as 177 nt in a 10 Hz bandwidth (Figure 7) at the frequency range of 500 Hz to 200 khz. 4

5 Figure 7. Minimum detectable field by the Analogue Hall Effect IC The overall integrated circuit s sensitivity was 533 mv/mt and was determined by the Hall Effect sensor s sensitivity (0.4 mv/mt biased at 1 ma) and the amplifier s gain of This is a factor of 10, 13 and 37 higher compared with the Allegro (A1324), Melexis (MLX90242) and Honeywell (SS39ET) [14-16] devices. In addition to providing very high sensitivity, this IC had a power consumption of only 10.4 mw. Despite being the most sensitive amongst all commercial silicon ICs investigated in this study, the power consumption of the Honeywell SS39ET IC is 30 mw (at 5 V supply), which is almost 3 times higher than the GaAs Hall IC reported here. The power consumption for the Allegro A1324 and Melexis MLX90242 ICs are 34.5 mw and 12.5 mw at 5 V supply, respectively. The reason for high power consumption of these silicon ICs is because they employ complex circuitries for spinning current technique, circuit protection, signal buffering, offset and 1/f noise cancellation. 5. Conclusion Mini B detected (nt) 1000 Minimum Detectable B (nt) E E E E+04 Frequency (Hz) 1.00E+05 In this work, the performances of the first GaAs-InGaAs-AlGaAs 2DEG fully integrated AC linear and DC digital (unipolar) Hall Effect integrated circuit were presented. The low power (~10.4 mw) AC linear IC provides a sensitivity of 533 µv/µt at bandwidths greater than 200 khz. This IC is capable of detecting AC magnetic fields as low as 177 nt (in a 10 Hz bandwidth), which is almost a factor of 4 lower than the best commercially available Si Hall IC. The DC digital IC offers switching sensitivity of ~6 mt and power consumption of ~18 mw which is at least 1.5 times more sensitive compared to commercial silicon DC unipolar Hall ICs. The AC linear and DC unipolar Hall Effect ICs can be employed in diverse applications such as automotive and consumer industrial, solid state switch, wiper motor, sunroof opener, seat motor adjuster and electrical power steering and especially where extreme of temperatures are encountered. References [1] G. Bosch, A Hall device in an integrated circuit, Solid-State Electron, vol. 11, (1968) [2] Bellekom, S. CMOS versus bipolar Hall plates regarding offset correction. Sens. Actuat. A, (1999) 76, [3] Popovic, R.S.; Randjelovic, Z.; Manic, D. Integrated Hall-effect magnetic sensors. Sens. Actuat. A (2001), 91, [4] Randjelovic, Z.B.; Kayal, M.; Popovic, R.; Blanchard, H. High sensitive Hall magnetic sensor Microsystem in CMOS technology. IEEE J. Solid-St. Circ. (2002) 37,

6 [5] Blanchard, H.; De, M.F.; Hu, B.J.; Popovic, R.S. Highly sensitive Hall sensor in CMOS technology. Sens. Actuat. A (2000), 82, [6] V. Mosser, S. Contreras, S. Aboulhouda, P. Lorenzini, F. Kobbi, J.L. Robert, K. Zekentes, Highsensitivity Hall sensors with low thermal drift using AlGaAs/InGaAs/GaAs heterostructures, Sens. Actuators A, 43 (1994) [7] V. Mosser, S. Aboulhouda, J. Denis, S. Contreras, P. Lorenzini, F. Kobbi, J.L. Robert, Highperformance Hall sensors based on III V heterostructures, Sens. Actuators A, (1994) [8] J.S. Lee, K.H. Ahn, Y.H. Jeong, D.M. Kim, Highly sensitive Al0.25Ga0.75As/In0.25Ga0.75As/GaAs quantum-well Hall devices with Si-delta-doped GaAs layer grown by LP-MOCVD, Sens. Actuators A, 57 (1996) [9] J.S. Lee, K.H. Ahn, Y.H. Jeong, D.M. Kim, Quantum-well Hall devices with Si-delta-doped Al0.25Ga0.75As/GaAs and pseudomorphic Al0.25Ga0.75As/In0.25Ga0.75As/GaAs heterostructures grown by LP-MOCVD: performance comparisons, IEEE Trans. Electron Devices, 43 (10) (1996) [10] V. Mosser, F. Kobbi, S. Contreras, J.M. Mercy, O. Callen, J.L. Robert, S. Aboulhouda, J. Chevier, D. Adam, Low-cost 2DEG magnetic sensor with meteorological performances for magnetic field and current sensing, in: Proceedings of the International Conferences on Solid-State Sensors and Actuators, Chicago, (1997) [11] T. R. Lepkowski, G. Shade, S. P. Kwok, Milton Feng, Lawrence E. Dickens, D. L. Laude, B. Schoendube, A GaAs Integrated Hall Sensor/Amplifier,,IEEE Electronic Device Letters, VOL. EDL-7, NO. 4, (1986) [12] K. Fricke, G. Schweeger, J. Wurfl, H.L. Hartnagel, Integrated Circuits on GaAs for the temperature range from room temperature up to 300 C, (1990) [13] N. Haned, M. Missous Nano-tesla magnetic field magnetometry using an InGaAs AlGaAs GaAs 2DEG Hall sensor, Sensors and Actuators A 1.2(3): (2003) [14] Melexis, US5782 Unipolar Hall switch medium sensitivity, US5782 datasheet, March 2012 [15] Honeywell, SS345PT Unipolar Hall-Effect digital position sensors with built-in pull-up resistor, SS345PT datasheet, November 2011 [16] Allegro, A1101 Continuous-time switch family, A1101 datasheet, January

Highly Sensitive Nano Tesla Quantum Well Hall Effect Integrated Circuits using GaAs-InGaAs-AlGaAs 2DEG

Highly Sensitive Nano Tesla Quantum Well Hall Effect Integrated Circuits using GaAs-InGaAs-AlGaAs 2DEG THE UNIVERSITY OF MANCHESTER Highly Sensitive Nano Tesla Quantum Well Hall Effect Integrated Circuits using GaAs-InGaAs-AlGaAs 2DEG A thesis submitted to The University of Manchester for the degree of

More information

Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications

Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications N. Ahmad and M. Mohamad Isa School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 26 Arau, Perlis,

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Introduction of Device Technology Digital wireless communication system has become more and more popular in recent years due to its capability for both voice and data communication.

More information

General look back at MESFET processing. General principles of heterostructure use in FETs

General look back at MESFET processing. General principles of heterostructure use in FETs SMA5111 - Compound Semiconductors Lecture 11 - Heterojunction FETs - General HJFETs, HFETs Last items from Lec. 10 Depletion mode vs enhancement mode logic Complementary FET logic (none exists, or is likely

More information

Resonant Tunneling Device. Kalpesh Raval

Resonant Tunneling Device. Kalpesh Raval Resonant Tunneling Device Kalpesh Raval Outline Diode basics History of Tunnel diode RTD Characteristics & Operation Tunneling Requirements Various Heterostructures Fabrication Technique Challenges Application

More information

improving further the mobility, and therefore the channel conductivity. The positive pattern definition proposed by Hirayama [6] was much improved in

improving further the mobility, and therefore the channel conductivity. The positive pattern definition proposed by Hirayama [6] was much improved in The two-dimensional systems embedded in modulation-doped heterostructures are a very interesting and actual research field. The FIB implantation technique can be successfully used to fabricate using these

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Kjeld Pedersen Department of Physics and Nanotechnology, AAU SEMPEL Semiconductor Materials for Power Electronics

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure

Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure Feng, P.; Teo,

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

Enhanced Emitter Transit Time for Heterojunction Bipolar Transistors (HBT)

Enhanced Emitter Transit Time for Heterojunction Bipolar Transistors (HBT) Advances in Electrical Engineering Systems (AEES)` 196 Vol. 1, No. 4, 2013, ISSN 2167-633X Copyright World Science Publisher, United States www.worldsciencepublisher.org Enhanced Emitter Transit Time for

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

InGaP HBT MMIC Development

InGaP HBT MMIC Development InGaP HBT MMIC Development Andy Dearn, Liam Devlin; Plextek Ltd, Wing Yau, Owen Wu; Global Communication Semiconductors, Inc. Abstract InGaP HBT is being increasingly adopted as the technology of choice

More information

Ultra High-Speed InGaAs Nano-HEMTs

Ultra High-Speed InGaAs Nano-HEMTs Ultra High-Speed InGaAs Nano-HEMTs 2003. 10. 14 Kwang-Seok Seo School of Electrical Eng. and Computer Sci. Seoul National Univ., Korea Contents Introduction to InGaAsNano-HEMTs Nano Patterning Process

More information

A GaAs/AlGaAs/InGaAs PSEUDOMORPHIC HEMT STRUCTURE FOR HIGH SPEED DIGITAL CIRCUITS

A GaAs/AlGaAs/InGaAs PSEUDOMORPHIC HEMT STRUCTURE FOR HIGH SPEED DIGITAL CIRCUITS IJRET: International Journal of Research in Engineering and Technology eissn: 239-63 pissn: 232-738 A GaAs/AlGaAs/InGaAs PSEUDOMORPHIC HEMT STRUCTURE FOR HIGH SPEED DIGITAL CIRCUITS Parita Mehta, Lochan

More information

Comparative Analysis of HEMT LNA Performance Based On Microstrip Based Design Methodology

Comparative Analysis of HEMT LNA Performance Based On Microstrip Based Design Methodology International Conference on Trends in Electrical, Electronics and Power Engineering (ICTEEP'212) July 15-1, 212 Singapore Comparative Analysis of HEMT LNA Performance Based On Microstrip Based Design Methodology

More information

TRANSISTOR TRANSISTOR

TRANSISTOR TRANSISTOR It is made up of semiconductor material such as Si and Ge. Usually, it comprises of three terminals namely, base, emitter and collector for providing connection to the external circuit. Today, some transistors

More information

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems Dong Min Kang, Ju Yeon Hong, Jae Yeob Shim, Jin-Hee Lee, Hyung-Sup Yoon, and Kyung Ho Lee A monolithic microwave integrated circuit (MMIC) chip

More information

On-wafer seamless integration of GaN and Si (100) electronics

On-wafer seamless integration of GaN and Si (100) electronics On-wafer seamless integration of GaN and Si (100) electronics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

MMA RECEIVERS: HFET AMPLIFIERS

MMA RECEIVERS: HFET AMPLIFIERS MMA Project Book, Chapter 5 Section 4 MMA RECEIVERS: HFET AMPLIFIERS Marian Pospieszalski Ed Wollack John Webber Last revised 1999-04-09 Revision History: 1998-09-28: Added chapter number to section numbers.

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems 64 Annual report 1998, Dept. of Optoelectronics, University of Ulm High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems G. Jost High-power semiconductor laser amplifiers are interesting

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices - 2014 Lecture Course Part of SS Module PY4P03 Dr. P. Stamenov School of Physics and CRANN, Trinity College, Dublin 2, Ireland Hilary Term, TCD 3 th of Feb 14 MOSFET Unmodified Channel

More information

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT)

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT) Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT) Nov. 26, 2004 Outline I. Introduction: Why needs high-frequency devices? Why uses compound semiconductors? How to enable

More information

TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018

TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 TECHNO INDIA BATANAGAR (DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 Paper Setter Detail Name Designation Mobile No. E-mail ID Raina Modak Assistant Professor 6290025725 raina.modak@tib.edu.in

More information

Design and fabrication of indium phosphide air-bridge waveguides with MEMS functionality

Design and fabrication of indium phosphide air-bridge waveguides with MEMS functionality Design and fabrication of indium phosphide air-bridge waveguides with MEMS functionality Wing H. Ng* a, Nina Podoliak b, Peter Horak b, Jiang Wu a, Huiyun Liu a, William J. Stewart b, and Anthony J. Kenyon

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

Characterizing the Sensitivity of a Hall Sensor

Characterizing the Sensitivity of a Hall Sensor Hall Sensor Homer L. Dodge Department of Physics and Astronomy University of Oklahoma July 30 th, 2018 s Field What are s? s are devices that utilize the to measure magnetic fields Made from semiconductors

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1 Contents 1 FUNDAMENTAL CONCEPTS 1 1.1 What is Noise Coupling 1 1.2 Resistance 3 1.2.1 Resistivity and Resistance 3 1.2.2 Wire Resistance 4 1.2.3 Sheet Resistance 5 1.2.4 Skin Effect 6 1.2.5 Resistance

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Wide Band-Gap Power Device

Wide Band-Gap Power Device Wide Band-Gap Power Device 1 Contents Revisit silicon power MOSFETs Silicon limitation Silicon solution Wide Band-Gap material Characteristic of SiC Power Device Characteristic of GaN Power Device 2 1

More information

A Novel Contact-less Current Sensor for HEV/EV and Renewable Energy Applications

A Novel Contact-less Current Sensor for HEV/EV and Renewable Energy Applications Melexis Hall Presentation A Novel Contact-less Current Sensor for HEV/EV and Renewable Energy Applications ROR-MLX Contact-less Current Sensing Melexis markets a patented Hall technology under the brand

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

6. Field-Effect Transistor

6. Field-Effect Transistor 6. Outline: Introduction to three types of FET: JFET MOSFET & CMOS MESFET Constructions, Characteristics & Transfer curves of: JFET & MOSFET Introduction The field-effect transistor (FET) is a threeterminal

More information

Title. Author(s)Uemura, T.; Baba, T. CitationIEEE Transactions on Electron Devices, 49(8): Issue Date Doc URL. Rights.

Title. Author(s)Uemura, T.; Baba, T. CitationIEEE Transactions on Electron Devices, 49(8): Issue Date Doc URL. Rights. Title A three-valued D-flip-flop and shift register using Author(s)Uemura, T.; Baba, T. CitationIEEE Transactions on Electron Devices, 49(8): 1336-1 Issue Date 2002-08 Doc URL http://hdl.handle.net/2115/5577

More information

GaN MMIC PAs for MMW Applicaitons

GaN MMIC PAs for MMW Applicaitons GaN MMIC PAs for MMW Applicaitons Miroslav Micovic HRL Laboratories LLC, 311 Malibu Canyon Road, Malibu, CA 9265, U. S. A. mmicovic@hrl.com Motivation for High Frequency Power sources 6 GHz 11 GHz Frequency

More information

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit.

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit. IL Linear Optocoupler Dimensions in inches (mm) FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > khz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption,

More information

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips Strip Detectors First detector devices using the lithographic capabilities of microelectronics First Silicon detectors -- > strip detectors Can be found in all high energy physics experiments of the last

More information

LSI ON GLASS SUBSTRATES

LSI ON GLASS SUBSTRATES LSI ON GLASS SUBSTRATES OUTLINE Introduction: Why System on Glass? MOSFET Technology Low-Temperature Poly-Si TFT Technology System-on-Glass Technology Issues Conclusion System on Glass CPU SRAM DRAM EEPROM

More information

Product Information. Allegro Hall-Effect Sensor ICs. By Shaun Milano Allegro MicroSystems, LLC. Hall Effect Principles. Lorentz Force F = q v B V = 0

Product Information. Allegro Hall-Effect Sensor ICs. By Shaun Milano Allegro MicroSystems, LLC. Hall Effect Principles. Lorentz Force F = q v B V = 0 Product Information Allegro Hall-Effect Sensor ICs y Shaun Milano Allegro MicroSystems, LLC is a world leader in developing, manufacturing, and marketing high-performance Halleffect sensor integrated circuits.

More information

PowerAmp Design. PowerAmp Design PAD112 HIGH VOLTAGE OPERATIONAL AMPLIFIER

PowerAmp Design. PowerAmp Design PAD112 HIGH VOLTAGE OPERATIONAL AMPLIFIER PowerAmp Design Rev C KEY FEATURES LOW COST HIGH VOLTAGE 150 VOLTS HIGH OUTPUT CURRENT 5 AMPS 50 WATT DISSIPATION CAPABILITY 100 WATT OUTPUT CAPABILITY INTEGRATED HEAT SINK AND FAN COMPATIBLE WITH PAD123

More information

Power MOSFET Zheng Yang (ERF 3017,

Power MOSFET Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Power MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Evolution of low-voltage (

More information

PowerAmp Design. PowerAmp Design PAD20 COMPACT HIGH VOLTAGE OP AMP

PowerAmp Design. PowerAmp Design PAD20 COMPACT HIGH VOLTAGE OP AMP PowerAmp Design Rev C KEY FEATURES LOW COST HIGH VOLTAGE 150 VOLTS HIGH OUTPUT CURRENT 5A 40 WATT DISSIPATION CAPABILITY 80 WATT OUTPUT CAPABILITY INTEGRATED HEAT SINK AND FAN SMALL SIZE 40mm SQUARE RoHS

More information

The Design of E-band MMIC Amplifiers

The Design of E-band MMIC Amplifiers The Design of E-band MMIC Amplifiers Liam Devlin, Stuart Glynn, Graham Pearson, Andy Dearn * Plextek Ltd, London Road, Great Chesterford, Essex, CB10 1NY, UK; (lmd@plextek.co.uk) Abstract The worldwide

More information

F3A Magnetic Field Transducers

F3A Magnetic Field Transducers DESCRIPTION: The F3A denotes a range of SENIS Magnetic Fieldto-Voltage Transducers with fully integrated 3-axis Hall Probe. The Hall Probe contains a CMOS integrated circuit, which incorporates three groups

More information

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS Marcelo Antonio Pavanello *, João Antonio Martino and Denis Flandre 1 Laboratório de Sistemas Integráveis Escola Politécnica

More information

Quantum Condensed Matter Physics Lecture 16

Quantum Condensed Matter Physics Lecture 16 Quantum Condensed Matter Physics Lecture 16 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 16.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

1SA-1V. Single-Axis Magnetic Sensor ASIC. 1SA-1V preliminary September 2002

1SA-1V. Single-Axis Magnetic Sensor ASIC. 1SA-1V preliminary September 2002 September SA-V Single-Axis Magnetic Sensor ASIC Features: Sensitive to a magnetic field parallel with the chip surface Very high magnetic sensitivity Analog and digital output voltages Very low offset

More information

Ground-Adjustable Inductor for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao

Ground-Adjustable Inductor for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao Applied Mechanics and Materials Online: 2012-12-13 ISSN: 1662-7482, Vols. 256-259, pp 2373-2378 doi:10.4028/www.scientific.net/amm.256-259.2373 2013 Trans Tech Publications, Switzerland Ground-Adjustable

More information

Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies

Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies J. A. del Alamo Microsystems Technology Laboratories, MIT ESSDERC-ESSCIRC 2013 Bucharest, Romania, September 16-20, 2013 Acknowledgements:

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI 1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

PowerAmp Design. PowerAmp Design PAD117A RAIL TO RAIL OPERATIONAL AMPLIFIER

PowerAmp Design. PowerAmp Design PAD117A RAIL TO RAIL OPERATIONAL AMPLIFIER PowerAmp Design RAIL TO RAIL OPERATIONAL AMPLIFIER Rev J KEY FEATURES LOW COST RAIL TO RAIL INPUT & OUTPUT SINGLE SUPPLY OPERATION HIGH VOLTAGE 100 VOLTS HIGH OUTPUT CURRENT 15A 250 WATT OUTPUT CAPABILITY

More information

Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems

Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems 71 Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems Isaac Lagnado and Paul R. de la Houssaye SSC San Diego S. J. Koester, R. Hammond, J. O. Chu, J. A. Ott, P. M. Mooney, L. Perraud,

More information

Magnetic Sensors GaAs Hall Sensors Magneto Resistors. Product Information Semiconductor/

Magnetic Sensors GaAs Hall Sensors Magneto Resistors. Product Information Semiconductor/ ic Sensors GaAs Hall Sensors o Resistors Product Information 05.97 http://www.siemens.de/ Semiconductor/ Linear GaAs Hall Sensors Position sensors Distance measurement Contactless potentiometers Current

More information

LINEAR INTEGRATED SYSTEMS, INC.

LINEAR INTEGRATED SYSTEMS, INC. LINEAR INTEGRATED SYSTEMS, INC. 4042 Clipper Court Fremont, CA 94538-6540 sales@linearsystems.com A Linear Integrated Systems, Inc. White Paper Consider the Discrete JFET When You Have a Priority Performance

More information

Novel III-Nitride HEMTs

Novel III-Nitride HEMTs IEEE EDS Distinguished Lecture Boston Chapter, July 6 2005 Novel III-Nitride HEMTs Professor Kei May Lau Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

A novel CMOS Hall effect sensor

A novel CMOS Hall effect sensor A novel CMOS Hall effect sensor D.S. Mellet a, M. du Plessis b a Azoteq Pty(Ltd), 109 Main Street, 7646 Paarl, South Africa b University of Pretoria, Carl and Emily Fuchs Institute for Microelectronics,

More information

Final Report. Contract Number Title of Research Principal Investigator

Final Report. Contract Number Title of Research Principal Investigator Final Report Contract Number Title of Research Principal Investigator Organization N00014-05-1-0135 AIGaN/GaN HEMTs on semi-insulating GaN substrates by MOCVD and MBE Dr Umesh Mishra University of California,

More information

Current Sensor: ACS750xCA-100

Current Sensor: ACS750xCA-100 5 Pin 1: V CC Pin 2: Gnd Pin 3: Output 4 1 2 3 Terminal 4: I p+ Terminal 5: I p- ABSOLUTE MAXIMUM RATINGS Operating Temperature S... 2 to +85ºC E... 4 to +85ºC Supply Voltage, Vcc...16 V Output Voltage...16

More information

InGaAs Nanoelectronics: from THz to CMOS

InGaAs Nanoelectronics: from THz to CMOS InGaAs Nanoelectronics: from THz to CMOS J. A. del Alamo Microsystems Technology Laboratories, MIT IEEE International Conference on Electron Devices and Solid-State Circuits Hong Kong, June 3, 2013 Acknowledgements:

More information

i. At the start-up of oscillation there is an excess negative resistance (-R)

i. At the start-up of oscillation there is an excess negative resistance (-R) OSCILLATORS Andrew Dearn * Introduction The designers of monolithic or integrated oscillators usually have the available process dictated to them by overall system requirements such as frequency of operation

More information

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore Semiconductor Memory: DRAM and SRAM Outline Introduction Random Access Memory (RAM) DRAM SRAM Non-volatile memory UV EPROM EEPROM Flash memory SONOS memory QD memory Introduction Slow memories Magnetic

More information

International Workshop on Nitride Semiconductors (IWN 2016)

International Workshop on Nitride Semiconductors (IWN 2016) International Workshop on Nitride Semiconductors (IWN 2016) Sheng Jiang The University of Sheffield Introduction The 2016 International Workshop on Nitride Semiconductors (IWN 2016) conference is held

More information

MODELLING OF ADVANCED SUBMICRON GATE InGaAs/InAlAs phemts AND RTD DEVICES FOR VERY HIGH FREQUENCY APPLICATIONS

MODELLING OF ADVANCED SUBMICRON GATE InGaAs/InAlAs phemts AND RTD DEVICES FOR VERY HIGH FREQUENCY APPLICATIONS MODELLING OF ADVANCED SUBMICRON GATE InGaAs/InAlAs phemts AND RTD DEVICES FOR VERY HIGH FREQUENCY APPLICATIONS A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy

More information

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max Dual-band LNA Design for Wireless LAN Applications White Paper By: Zulfa Hasan-Abrar, Yut H. Chow Introduction Highly integrated, cost-effective RF circuitry is becoming more and more essential to the

More information

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head Magnetic and Electromagnetic Microsystems 1. Magnetic Sensors 2. Magnetic Actuators 3. Electromagnetic Sensors 4. Example: magnetic read/write head (C) Andrei Sazonov 2005, 2006 1 Magnetic microsystems

More information

Progress Energy Distinguished University Professor Jay Baliga. April 11, Acknowledgements

Progress Energy Distinguished University Professor Jay Baliga. April 11, Acknowledgements Progress Energy Distinguished University Professor Jay Baliga April 11, 2019 Acknowledgements 1 Outline SiC Power MOSFET Breakthroughs achieved at NCSU PRESiCE: SiC Power Device Manufacturing Technology

More information

PowerAmp Design. PowerAmp Design PAD01 COMPACT POWER OP AMP

PowerAmp Design. PowerAmp Design PAD01 COMPACT POWER OP AMP PowerAmp Design COMPACT POWER OP AMP Rev C KEY FEATURES LOW COST HIGH VOLTAGE 00 VOLTS HIGH OUTPUURRENT 5A 30 WATT DISSIPATION CAPABILITY 50 WATT OUTPUAPABILITY SMALL FOOTPRINT 30mm SQUARE RoHS COMPLIANT

More information

A Three-Port Pipelined Register File Implemented Using a SiGe HBT BiCMOS Technology

A Three-Port Pipelined Register File Implemented Using a SiGe HBT BiCMOS Technology A Three-Port Pipelined Register File Implemented Using a SiGe HBT BiCMOS Technology by Okan Erdogan A Thesis Document Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in Partial Fulfillment

More information

Development of Low Cost Millimeter Wave MMIC

Development of Low Cost Millimeter Wave MMIC INFORMATION & COMMUNICATIONS Development of Low Cost Millimeter Wave MMIC Koji TSUKASHIMA*, Miki KUBOTA, Osamu BABA, Hideki TANGO, Atsushi YONAMINE, Tsuneo TOKUMITSU and Yuichi HASEGAWA This paper describes

More information

Shown for reference only. MULTIPLEXED TWO-WIRE HALL-EFFECT SENSOR ICs FEATURES. ABSOLUTE MAXIMUM RATINGS at T A = +25 C

Shown for reference only. MULTIPLEXED TWO-WIRE HALL-EFFECT SENSOR ICs FEATURES. ABSOLUTE MAXIMUM RATINGS at T A = +25 C Data Sheet 2768.1* ABSOLUTE MAXIMUM RATINGS at T A = +25 C Supply Voltage, V BUS.............. 18 V Magnetic Flux Density, B....... Unlimited The A354KU and A354SU Hall-effect sensor ICs are digital magnetic

More information

An introduction to Depletion-mode MOSFETs By Linden Harrison

An introduction to Depletion-mode MOSFETs By Linden Harrison An introduction to Depletion-mode MOSFETs By Linden Harrison Since the mid-nineteen seventies the enhancement-mode MOSFET has been the subject of almost continuous global research, development, and refinement

More information

Figure 1: Layout of the AVC scanning micromirror including layer structure and comb-offset view

Figure 1: Layout of the AVC scanning micromirror including layer structure and comb-offset view Bauer, Ralf R. and Brown, Gordon G. and Lì, Lì L. and Uttamchandani, Deepak G. (2013) A novel continuously variable angular vertical combdrive with application in scanning micromirror. In: 2013 IEEE 26th

More information

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION CHAPTER I INTRODUCTION High performance semiconductor devices with better voltage and current handling capability are required in different fields like power electronics, computer and automation. Since

More information

Dual Channel Sensitive Hall Effect Switch CYD8536. With Quadrature Outputs

Dual Channel Sensitive Hall Effect Switch CYD8536. With Quadrature Outputs Dual Channel Sensitive Hall Effect Switch CYD8536 With Quadrature Outputs The CYD8536 a dual-channel, bipolar switch with two Hall Effect sensing elements, each providing a separate digital output for

More information

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014

AE103 ELECTRONIC DEVICES & CIRCUITS DEC 2014 Q.2 a. State and explain the Reciprocity Theorem and Thevenins Theorem. a. Reciprocity Theorem: If we consider two loops A and B of network N and if an ideal voltage source E in loop A produces current

More information

Ultra-low voltage resonant tunnelling diode electroabsorption modulator

Ultra-low voltage resonant tunnelling diode electroabsorption modulator Ultra-low voltage resonant tunnelling diode electroabsorption modulator, 1/10 Ultra-low voltage resonant tunnelling diode electroabsorption modulator J. M. L. FIGUEIREDO Faculdade de Ciências e Tecnologia,

More information

SW REVISED DECEMBER 2016

SW REVISED DECEMBER 2016 www.senkomicro.com REVISED DECEMBER 2016 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications FEATURES AND BENEFITS Symmetrical Latch switch points Resistant to physical

More information

GaN power electronics

GaN power electronics GaN power electronics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Lu, Bin, Daniel Piedra, and

More information

PowerAmp Design. PowerAmp Design PAD196 HIGH VOLATGE OPERATIONAL AMPLIFIER

PowerAmp Design. PowerAmp Design PAD196 HIGH VOLATGE OPERATIONAL AMPLIFIER PowerAmp Design HIGH VOLTAGE OPERATIONAL AMPLIFIER Preliminary Information Rev D KEY FEATURES LOW COST SMALL SIZE 50mm SQUARE HIGH VOLTAGE 2050 VOLTS OUTPUT CURRENT 50mA 12 WATT DISSIPATION CAPABILITY

More information

High-efficiency, high-speed VCSELs with deep oxidation layers

High-efficiency, high-speed VCSELs with deep oxidation layers Manuscript for Review High-efficiency, high-speed VCSELs with deep oxidation layers Journal: Manuscript ID: Manuscript Type: Date Submitted by the Author: Complete List of Authors: Keywords: Electronics

More information

Test Results of the HTADC12 12 Bit Analog to Digital Converter at 250 O C

Test Results of the HTADC12 12 Bit Analog to Digital Converter at 250 O C Test Results of the HTADC12 12 Bit Analog to Digital Converter at 250 O C Thomas J. Romanko and Mark R. Larson Honeywell International Inc. Honeywell Aerospace, Defense & Space 12001 State Highway 55,

More information

Circuit For Mems Application

Circuit For Mems Application A Low Voltage To High Voltage Level Shifter Circuit For Mems Application The level converter is used as interface between low voltages to high voltage B.M. A low voltage to high voltage level shifter circuit

More information

FOUNDRY SERVICE. SEI's FEATURE. Wireless Devices FOUNDRY SERVICE. SRD-800DD, SRD-500DD D-FET Process Lg=0.8, 0.5µm. Ion Implanted MESFETs SRD-301ED

FOUNDRY SERVICE. SEI's FEATURE. Wireless Devices FOUNDRY SERVICE. SRD-800DD, SRD-500DD D-FET Process Lg=0.8, 0.5µm. Ion Implanted MESFETs SRD-301ED FOUNDRY SERVICE 01.04. Foundry services have been one of the core businesses at SEI, providing sophisticated GaAs IC technology for all customers. SEI offers very flexible service to support the customers

More information

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems . TU6D-1 Characteristics of Harmonic Optoelectronic Mixers and Their Application to 6GHz Radio-on-Fiber Systems Chang-Soon Choi 1, Hyo-Soon Kang 1, Dae-Hyun Kim 2, Kwang-Seok Seo 2 and Woo-Young Choi 1

More information

Dr Danielle George Dr Saswata Bhaumik

Dr Danielle George Dr Saswata Bhaumik TQP13N Process Evaluation Dr Danielle George Dr Saswata Bhaumik S c h o o l o f E l e c t r i c a l a n d E l e c t r o n i c E n g i n e e r i n g T h e U n i v e r s i t y o f M a n c h e s t e r May

More information

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Alternatives to standard MOSFETs. What problems are we really trying to solve? Alternatives to standard MOSFETs A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include: Silicon-in-insulator

More information

420 Intro to VLSI Design

420 Intro to VLSI Design Dept of Electrical and Computer Engineering 420 Intro to VLSI Design Lecture 0: Course Introduction and Overview Valencia M. Joyner Spring 2005 Getting Started Syllabus About the Instructor Labs, Problem

More information

Questions on JFET: 1) Which of the following component is a unipolar device?

Questions on JFET: 1) Which of the following component is a unipolar device? Questions on JFET: 1) Which of the following component is a unipolar device? a) BJT b) FET c) DJT d) EFT 2) Current Conduction in FET takes place due e) Majority charge carriers only f) Minority charge

More information

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.2, APRIL, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.2.221 ISSN(Online) 2233-4866 Normally-Off Operation of AlGaN/GaN

More information

3280, 3281, AND 3283 CHOPPER-STABILIZED, PRECISION HALL-EFFECT LATCHES. Suffix ' LT' & ' UA' Pinning (SOT89/TO-243AA & ultra-mini SIP)

3280, 3281, AND 3283 CHOPPER-STABILIZED, PRECISION HALL-EFFECT LATCHES. Suffix ' LT' & ' UA' Pinning (SOT89/TO-243AA & ultra-mini SIP) 28, 281, AND 28 Data Sheet 2769.2b Suffix ' LT' & ' UA' Pinning (SOT89/TO-24AA & ultra-mini SIP) X V CC 1 SUPPLY 2 GROUND PTCT Dwg. PH--2 Pinning is shown viewed from branded side. OUTPUT The A28--, A281--,

More information

500V Three Phase Inverter ICs Based on a New Dielectric Isolation Technique

500V Three Phase Inverter ICs Based on a New Dielectric Isolation Technique Proceedings of 1992 International Symposium on Power Semiconductor Devices & ICs, Tokyo, pp. 328-332 13.3 500V Three Phase Inverter ICs Based on a New Dielectric Isolation Technique A.Nakagawa, Y.Yamaguchi,

More information

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT EE 320 L ELECTRONICS I LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS by Ming Zhu DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE Get familiar with MOSFETs,

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information