Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds.

Size: px
Start display at page:

Download "Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds."

Transcription

1 Overview Challenge Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds. Materials Needed One of these sets: TETRIX MAX Programmable Robotics Set (43053) TETRIX MAX Dual-Control Robotics Set (43054) TETRIX PRIME R/C Starter Set (40384) plus TETRIX PRIME Arduino Hardware Kit (42030) Items to create robot maze: painter s tape, blocks or books of various sizes Engineering logbook Objectives By the end of the lesson, students will be able to: Create the challenge maze. Build a robot within the constraints to meet the challenge. Write the steps and create a program for the robot that meets the challenge. Activity Smallest Vehicle Autonomous Challenge Difficulty Intermediate Class Time Six 45-minute class periods Grade Level Middle school High school Learning Focus Engineering design Robot assembly Computer science Math application Analyze the scoring formula, calculate the score of their robot, and determine the winning robot. Test and refine the robot program and design. Demonstrate the effectiveness of the robot to meet the challenge. Reflect and share on the challenge and its real-world applications. 1

2 Step 1: Introduce (15 minutes) Share, define, and refine the challenge. Document this information in the engineering logbook. Write the challenge in your own words. Record the constraints you should follow, the materials that can be used for the solution, and what the testing field will look like. Discuss the constraints and materials that are allowed. Step 2: Brainstorm (30 minutes) Brainstorm ideas to solve the challenge. Create quick sketches and describe solutions to the challenge. Considerations for your design: Could a larger robot use a follow the left-hand wall strategy? Consider what happens in the corners. A robot that is too tall and narrow could fall over when it turns. Think about the center of gravity. The variable is designed to encourage the use of functions. Try to have fewer than 10 lines of code for the L score. More than about 10 lines will quickly run up the score. Your score will increase with the number of runs, or tests, that your robot has to execute to complete the maze. Note the 45 blocks in the two corners. Note the hallway sizes and the shortcut gap size of the example maze. Step 3: Set Up (15 minutes) Build the challenge maze following the pictured guide. It should take 1 m by 1 m of floor space. Use the tape, blocks, and/or books of various sizes. Possible Challenge Maze Start Constraints The team s robot must contain parts from only one set. Scoring formula = 10T + P + 5S + L 2 + 3R + 3W T = time in seconds difference from the ideal time of 30 s P = number of parts in the robot, including each connector and wire S = size of robot in cm of the overall length plus width plus height of the theoretical box that the robot would fit into L = number of lines of code in the loop and setup areas of the robot s sketch R = number of runs by the robot on the official maze W = number of times the robot touches a wall while inside the maze on its run The lowest score wins. Hallways big enough for a 25 cm wide robot to pass through Shortcut gap just big enough for a 13 cm wide robot to squeeze through Finish 2

3 Step 4: Plan (30 minutes) Before building, think about the potential design of the robot and draw or record ideas in the engineering logbook. Consider the following: Drivetrain for speed and control Robot chassis for size The location and orientation of the Line Finder Sensor The location and orientation of the Ultrasonic Sensor Should it be on the front or the top of the robot? Should it be stationary or rotating so that it looks left, right, and front? Possible solutions given robot size Create a detailed sketch of your selected solution to the challenge. Label the materials you will use. Write a detailed description of how your solution meets the challenge, constraints, and criteria. Step 5: Create (45 minutes) Design and build the robot. Remember to update the solution in the engineering logbook as the design is improved. Step 6: Write the Steps (15 minutes) Think through the steps or series of actions that the robot will have to complete in order to meet the challenge. Planning out this series of steps is sometimes referred to as creating a pseudocode for your robot. Record these steps in the engineering logbook and use them as a guide when operating the robot. Notice that the steps are like programming code for the robot to follow. Make sure the robot performs all the steps required in the challenge. Step 7: Create the Program (45 minutes) When you have completed this process, you are ready to begin programming using your steps as a guide. Remember to track changes in the engineering logbook. When you are coding your robot, it is recommended that you write the code using functions so that each task can be tested and adjusted before it is incorporated into the final program. Sample Code 1 This is sample code for a robot that has both a Line Finder Sensor and an Ultrasonic Sensor. This requires only five functions. 1. Go forward until I see a 2. Turn left Go forward until I see a 4. Turn left Go forward until I see a 6. Turn right Go forward until I see a 8. Turn right Go forward until I see a 10. Turn left Go forward until I see a 12. Turn left Go forward until I see a 14. Turn right Go forward until I see a black line. 16. Celebrate. Prepare functions to control your robot, depending upon your solution plan: Larger robot using timing void goforwarduntilwall(int dist) void turnright90() void turnleft90() void goforwarduntilseeblackline() void celebrate() 3

4 Small robot taking the shortcut and using the wall void goforwardlookingrightuntilseeblack Line() void celebrate() There are many other possible solution plans that use other functions. Check each of your functions as you write them to make sure they work as you intend. Now, write a test sketch to try them all out. Step 8: Test (45 minutes) Test the solution. Place the robot into the challenge maze and press the Start button to execute the code. Refine the solution. Adjust the design and code as needed. Document any changes in the engineering logbook. Sample Code 2 This is sample code for a small robot that has a Line Finder Sensor and an Ultrasonic Sensor. The Ultrasonic Sensor would point to the right-hand side of the robot, requiring only one function. 1. Follow right-hand wall until I see a black line. 2. Celebrate. Step 9: Demonstrate (15 minutes) When the robot has been tested and successfully navigates the challenge maze, demonstrate its performance in a final test. Step 10: Reflect and Share (15 minutes) Look back at the prototype. How does it compare to the final design? Look back at the original steps. How do they compare to the final steps? Discuss the original prototype, the final robot code, the solution as implemented, and how this challenge applies to the real world of robot design and programming. Step 11: Extensions Warehouse Parts Robot The aisles in a warehouse are as narrow as possible so as much material as possible can be stacked onto shelving. Design a warehouse with 25 cm wide aisles that has parts (small blocks) placed in cordoned-off areas. The robot needs to be able to get to a given part, collect it, and return it to the start area for loading onto a truck. Warehouse Stocking Robot This is like the previous challenge, but instead the robot places parts onto the shelves. The Real Warehouse Assign each storage shelf coordinates based upon a coordinate system. Have the robot place at least three objects onto shelves and collect three different objects from three other shelves. Tunnel Checker Purchase some 15 cm diameter PVC or similar pipe. Have the robot proceed into the pipe until it comes to a restriction and then count its steps (each rotation of a wheel equals one step) back to the start. 4

5 Mars Explorer Add another variable for weight restriction to any of the previous activities. For example, anything more than a 0.5 kg limit is penalized at 3M for each 0.1 kg above that limit. The M variable would represent the mass of the robot. Change the maze to an open field with objects (small wads of paper) to find and bring back to the spaceship. Government Purchase Design a cost sheet for each type of part in the TETRIX kit. Add a cost variable (C) to the scoring formula based upon the cost sheet. Adjust the presentation requirements to reflect this new variable by having each team make a sales presentation to an outside audience. 5

Robots in Town Autonomous Challenge. Overview. Challenge. Activity. Difficulty. Materials Needed. Class Time. Grade Level. Objectives.

Robots in Town Autonomous Challenge. Overview. Challenge. Activity. Difficulty. Materials Needed. Class Time. Grade Level. Objectives. Overview Challenge Students will design, program, and build a robot that drives around in town while avoiding collisions and staying on the roads. The robot should turn around when it reaches the outside

More information

Morse Code Autonomous Challenge. Overview. Challenge. Activity. Difficulty. Materials Needed. Class Time. Grade Level. Learning Focus.

Morse Code Autonomous Challenge. Overview. Challenge. Activity. Difficulty. Materials Needed. Class Time. Grade Level. Learning Focus. Overview Challenge Students will design, program, and build a robot that communicates with Morse code. The robot must use its communication system to tell the operator when the robot completes each task

More information

A servo is an electric motor that takes in a pulse width modulated signal that controls direction and speed. A servo has three leads:

A servo is an electric motor that takes in a pulse width modulated signal that controls direction and speed. A servo has three leads: Project 4: Arduino Servos Part 1 Description: A servo is an electric motor that takes in a pulse width modulated signal that controls direction and speed. A servo has three leads: a. Red: Current b. Black:

More information

Tilt Sensor Maze Game

Tilt Sensor Maze Game Tilt Sensor Maze Game How to Setup the tilt sensor This describes how to set up and subsequently use a tilt sensor. In this particular example, we will use the tilt sensor to control a maze game, but it

More information

Part of: Inquiry Science with Dartmouth

Part of: Inquiry Science with Dartmouth Curriculum Guide Part of: Inquiry Science with Dartmouth Developed by: David Qian, MD/PhD Candidate Department of Biomedical Data Science Overview Using existing knowledge of computer science, students

More information

Medb ot. Medbot. Learn about robot behaviors as you transport medicine in a hospital with Medbot!

Medb ot. Medbot. Learn about robot behaviors as you transport medicine in a hospital with Medbot! Medb ot Medbot Learn about robot behaviors as you transport medicine in a hospital with Medbot! Seek Discover new hands-on builds and programming opportunities to further your understanding of a subject

More information

Where C= circumference, π = 3.14, and D = diameter EV3 Distance. Developed by Joanna M. Skluzacek Wisconsin 4-H 2016 Page 1

Where C= circumference, π = 3.14, and D = diameter EV3 Distance. Developed by Joanna M. Skluzacek Wisconsin 4-H 2016 Page 1 Instructor Guide Title: Distance the robot will travel based on wheel size Introduction Calculating the distance the robot will travel for each of the duration variables (rotations, degrees, seconds) can

More information

Implement a Robot for the Trinity College Fire Fighting Robot Competition.

Implement a Robot for the Trinity College Fire Fighting Robot Competition. Alan Kilian Fall 2011 Implement a Robot for the Trinity College Fire Fighting Robot Competition. Page 1 Introduction: The successful completion of an individualized degree in Mechatronics requires an understanding

More information

Ultimatum. Robotics Unit Lesson 5. Overview

Ultimatum. Robotics Unit Lesson 5. Overview Robotics Unit Lesson 5 Ultimatum Overview In this final challenge the students will deploy their TETRIX rescue robot up the mountain to rescue the stranded mountain climbers. First the rescue robot has

More information

Western Kansas Lego Robotics Competition April 16, 2018 Fort Hays State University

Western Kansas Lego Robotics Competition April 16, 2018 Fort Hays State University Western Kansas Lego Robotics Competition April 16, 2018 Fort Hays State University WELCOME FHSU is hosting our 12 th annual Lego robotics competition. The competition is open to all area middle school

More information

Unit 4: Robot Chassis Construction

Unit 4: Robot Chassis Construction Unit 4: Robot Chassis Construction Unit 4: Teacher s Guide Lesson Overview: Paul s robotic assistant needs to operate in a real environment. The size, scale, and capabilities of the TETRIX materials are

More information

Roborodentia Robot: Tektronix. Sean Yap Advisor: John Seng California Polytechnic State University, San Luis Obispo June 8th, 2016

Roborodentia Robot: Tektronix. Sean Yap Advisor: John Seng California Polytechnic State University, San Luis Obispo June 8th, 2016 Roborodentia Robot: Tektronix Sean Yap Advisor: John Seng California Polytechnic State University, San Luis Obispo June 8th, 2016 Table of Contents Introduction... 2 Problem Statement... 2 Software...

More information

*Contest and Rules Adapted and/or cited from the 2007 Trinity College Home Firefighting Robot Contest

*Contest and Rules Adapted and/or cited from the 2007 Trinity College Home Firefighting Robot Contest Firefighting Mobile Robot Contest (R&D Project)* ITEC 467, Mobile Robotics Dr. John Wright Department of Applied Engineering, Safety & Technology Millersville University *Contest and Rules Adapted and/or

More information

Positive Promotion: Use the FIRST and FTC logos in a manner that is positive and promotes FIRST.

Positive Promotion: Use the FIRST and FTC logos in a manner that is positive and promotes FIRST. You have incredibly creative opportunities in terms of designing your own identity. There are many examples of how teams brand their efforts with websites, incredible team logos on robots, T shirts, hats,

More information

Autonomous Aerial Robot Tournament KISS Institute for Practical Robotics

Autonomous Aerial Robot Tournament KISS Institute for Practical Robotics 2018 Autonomous Aerial Robot Tournament KISS Institute for Practical Robotics Document Version 1.1 Table of Contents KIPR / Botball / GCER Sponsors... 3 Change Log... 4 KIPR Autonomous Aerial Robot Tournament...

More information

FLL Coaches Clinic Chassis and Attachments. Patrick R. Michaud

FLL Coaches Clinic Chassis and Attachments. Patrick R. Michaud FLL Coaches Clinic Chassis and Attachments Patrick R. Michaud pmichaud@pobox.com Erik Jonsson School of Engineering and Computer Science University of Texas at Dallas September 23, 2017 Presentation Outline

More information

TETRIX PULSE Workshop Guide

TETRIX PULSE Workshop Guide TETRIX PULSE Workshop Guide 44512 1 Who Are We and Why Are We Here? Who is Pitsco? Pitsco s unwavering focus on innovative educational solutions and unparalleled customer service began when the company

More information

This document will provide detailed specifications, BOM information, and assembly instructions for the Official Competition Field.

This document will provide detailed specifications, BOM information, and assembly instructions for the Official Competition Field. This document will provide detailed specifications, BOM information, and assembly instructions for the Official Field. Teams who do not need an official field should refer to the separate low-cost field

More information

Strategic Design. Michael Corsetto

Strategic Design. Michael Corsetto Strategic Design Michael Corsetto Training Golden Rule #3 Steal From The Best, Invent The Rest Get Team familiar with past games and robots Games will often be similar to past games Examples: 2004, 2010,

More information

NXT Amazing Rules USU Physics Day Lagoon Farmington, UT

NXT Amazing Rules USU Physics Day Lagoon Farmington, UT NXT Amazing Rules USU Physics Day Lagoon Farmington, UT May 17, 2013 COMPETITION OBJECTIVE The aim of the competition is to foster math, science, engineering and team work in students in 5 th grade. DESIGN

More information

Winter 2007/2008 Third Annual IEEE Lego Robot Competition Rules

Winter 2007/2008 Third Annual IEEE Lego Robot Competition Rules Welcome to the Third Annual IEEE Lego Robot Competition. In this document you will find the rules and regulations for the events for the Winter 2007/2008 competition. This competition will take place in

More information

Measure Mission 1. Name Date

Measure Mission 1. Name Date Name Date Measure Mission 1 Your first mission, should you decide to take it (and you will), is to measure the width of the hallway outside your classroom using only a robot and a graphing device. YOU

More information

OZOBOT BASIC TRAINING LESSON 1 WHAT IS OZOBOT?

OZOBOT BASIC TRAINING LESSON 1 WHAT IS OZOBOT? OZOBOT BASIC TRAINING LESSON 1 WHAT IS OZOBOT? What students will learn What kind of a robot is Ozobot? How does Ozobot sense its environment and move in it? How can you give commands to Ozobot? Topics

More information

I.1 Smart Machines. Unit Overview:

I.1 Smart Machines. Unit Overview: I Smart Machines I.1 Smart Machines Unit Overview: This unit introduces students to Sensors and Programming with VEX IQ. VEX IQ Sensors allow for autonomous and hybrid control of VEX IQ robots and other

More information

Robofest SM 2005 Competition Challenge: RoboRelay Jan. 6, 2005 v5.2 (Official Version) Junior Competition Division ...

Robofest SM 2005 Competition Challenge: RoboRelay Jan. 6, 2005 v5.2 (Official Version) Junior Competition Division ... Robofest SM 2005 Competition Challenge: RoboRelay Jan. 6, 2005 v5.2 (Official Version) Junior Competition Division Crate 3.5 (std. stud) 18-24 12 12? Robot1? Robot2... 18-24 2 gap 4 gap (VHS tape) Crate

More information

Erik Von Burg Mesa Public Schools Gifted and Talented Program Johnson Elementary School

Erik Von Burg Mesa Public Schools Gifted and Talented Program Johnson Elementary School Erik Von Burg Mesa Public Schools Gifted and Talented Program Johnson Elementary School elvonbur@mpsaz.org Water Sabers (2008)* High Heelers (2009)* Helmeteers (2009)* Cyber Sleuths (2009)* LEGO All Stars

More information

AREA See the Math Notes box in Lesson for more information about area.

AREA See the Math Notes box in Lesson for more information about area. AREA..1.. After measuring various angles, students look at measurement in more familiar situations, those of length and area on a flat surface. Students develop methods and formulas for calculating the

More information

Line Detection. Duration Minutes. Di culty Intermediate. Learning Objectives Students will:

Line Detection. Duration Minutes. Di culty Intermediate. Learning Objectives Students will: Line Detection Design ways to improve driving safety by helping to prevent drivers from falling asleep and causing an accident. Learning Objectives Students will: Explore the concept of the Loop Understand

More information

Pre-Activity Quiz. 2 feet forward in a straight line? 1. What is a design challenge? 2. How do you program a robot to move

Pre-Activity Quiz. 2 feet forward in a straight line? 1. What is a design challenge? 2. How do you program a robot to move Maze Challenge Pre-Activity Quiz 1. What is a design challenge? 2. How do you program a robot to move 2 feet forward in a straight line? 2 Pre-Activity Quiz Answers 1. What is a design challenge? A design

More information

C - Underground Exploration

C - Underground Exploration C - Underground Exploration You've discovered an underground system of tunnels under the planet surface, but they are too dangerous to explore! Let's get our robot to explore instead. 2017 courses.techcamp.org.uk/

More information

Experiment 4.B. Position Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 4.B. Position Control. ECEN 2270 Electronics Design Laboratory 1 Experiment 4.B Position Control Electronics Design Laboratory 1 Procedures 4.B.1 4.B.2 4.B.3 4.B.4 Read Encoder with Arduino Position Control by Counting Encoder Pulses Demo Setup Extra Credit Electronics

More information

Utah Elementary Robotics Obstacle Course Rules USU Physics Day. Competition at USU Brigham City Campus 989 S Main St Brigham City, UT 84302

Utah Elementary Robotics Obstacle Course Rules USU Physics Day. Competition at USU Brigham City Campus 989 S Main St Brigham City, UT 84302 Utah Elementary Robotics Obstacle Course Rules USU Physics Day Competition at USU Brigham City Campus 989 S Main St Brigham City, UT 84302 Starting at 10:00 AM May 2 nd, 2017 COMPETITION OBJECTIVE The

More information

Automatic Headlights

Automatic Headlights Automatic Headlights Design car features that will improve nighttime driving safety. Learning Objectives Students will: Explore the concept of Inputs and the way to control them Explore the concept of

More information

2015 Maryland State 4-H LEGO Robotic Challenge

2015 Maryland State 4-H LEGO Robotic Challenge Trash Talk Utilizing Trash to Power the World 2015 Maryland State 4-H LEGO Robotic Challenge Through Trash Talk, 4-H members involved in robotics will create LEGO robots that complete tasks related to

More information

This document will provide detailed specifications and a bill of materials (BOM) for the Official Competition Field.

This document will provide detailed specifications and a bill of materials (BOM) for the Official Competition Field. Introduction This document will provide detailed specifications and a bill of materials (BOM) for the Official Competition Field. Please note that this field utilizes the VEX IQ Challenge Full Field Perimeter

More information

Robotics using Lego Mindstorms EV3 (Intermediate)

Robotics using Lego Mindstorms EV3 (Intermediate) Robotics using Lego Mindstorms EV3 (Intermediate) Facebook.com/roboticsgateway @roboticsgateway Robotics using EV3 Are we ready to go Roboticists? Does each group have at least one laptop? Do you have

More information

Robotics Challenge. Team Members Tyler Quintana Tyler Gus Josh Cogdill Raul Davila John Augustine Kelty Tobin

Robotics Challenge. Team Members Tyler Quintana Tyler Gus Josh Cogdill Raul Davila John Augustine Kelty Tobin Robotics Challenge Team Members Tyler Quintana Tyler Gus Josh Cogdill Raul Davila John Augustine Kelty Tobin 1 Robotics Challenge: Team Multidisciplinary: Computer, Electrical, Mechanical Currently split

More information

Worksheet: Wheels and Distance Introduction to Mobile Robotics > Wheels and Distance Investigation

Worksheet: Wheels and Distance Introduction to Mobile Robotics > Wheels and Distance Investigation Worksheet: s and Distance Introduction to Mobile Robotics > s and Distance Investigation This worksheet is provided for reference only. Be sure that you follow the steps in the online directions, and answer

More information

2012 Mechatronics Competition: Capture the Flag

2012 Mechatronics Competition: Capture the Flag 2012 Mechatronics Competition: Capture the Flag Overview The mechatronics competition will be a capture the flag game between two alliances of three robots each. The goal is to be the first alliance to

More information

Table of Contents. Sample Pages - get the whole book at

Table of Contents. Sample Pages - get the whole book at Table of Contents Chapter 1: Introduction... 1 Chapter 2: minivex Basics... 4 Chapter 3: What is a Robot?... 20 Chapter 4: Flowcharting... 25 Chapter 5: How Far?... 28 Chapter 6: How Fast?... 32 Chapter

More information

Design Project Introduction DE2-based SecurityBot

Design Project Introduction DE2-based SecurityBot Design Project Introduction DE2-based SecurityBot ECE2031 Fall 2017 1 Design Project Motivation ECE 2031 includes the sophomore-level team design experience You are developing a useful set of tools eventually

More information

ROBOTICS DESIGN CHALLENGE. Colorado TSA State Conference BUILDING COLLAPSE

ROBOTICS DESIGN CHALLENGE. Colorado TSA State Conference BUILDING COLLAPSE ROBOTICS DESIGN CHALLENGE Colorado TSA State Conference 2018-2019 BUILDING COLLAPSE Overview of Design Challenge changes from 2017-2018: 1) Removal of packed debris socks and replaced with a fallen staircase

More information

VEX IQ Challenge - Highrise. Field Appendix. Page 1. Copyright VEX Robotics Inc. v

VEX IQ Challenge - Highrise. Field Appendix. Page 1. Copyright VEX Robotics Inc. v Field Appendix Page 1 Introduction This document will provide detailed specifications, a bill of materials (BOM), and assembly instructions for the Official Competition Field. Please note that this field

More information

GroundControl. Follow instructions contained in this manual. Incorrect installation could result in serious injury or damage to property.

GroundControl. Follow instructions contained in this manual. Incorrect installation could result in serious injury or damage to property. GroundControl TM use supplied hardware Use only hardware supplied in your GroundControl kit or supplied by an authorized YAKIMA dealer. Use of unauthorized parts in the GroundControl system could result

More information

Activity 2 Wave the Flag. Student Guide. Activity Overview. Robotics Jargon. Materials Needed. Building the Robot

Activity 2 Wave the Flag. Student Guide. Activity Overview. Robotics Jargon. Materials Needed. Building the Robot Activity Overview In this activity, you will learn about pivot points and integrate a servo motor into your robot to create a pivot point capable of waving a flag. After building the robot, you will conduct

More information

Activity 2 Wave the Flag. Student Guide. Activity Overview. Robotics Jargon. Materials Needed. Building the Robot

Activity 2 Wave the Flag. Student Guide. Activity Overview. Robotics Jargon. Materials Needed. Building the Robot Activity Overview In this activity, you will learn about pivot points and integrate a servo motor into your robot to create a pivot point capable of waving a flag. After building the robot, you will conduct

More information

KING OF THE HILL CHALLENGE RULES

KING OF THE HILL CHALLENGE RULES KING OF THE HILL CHALLENGE RULES Last Revised: May 19 th, 2015 Table of Contents 1.0 KING of the HILL CHALLENGE... 2 2.0 CHALLENGE RULES... 2 3.0 JUDGING and SCORING... 3 4.0 KING of the HILL DIAGRAM...

More information

Saturday Academy Program

Saturday Academy Program Lesson Plans High School Courses Donald L. McCoy K-to-College STEM Education Consultant thempitman@gmail.com Last Update: October 17, 2018 Virtual Reality Coding using PlayCanvas RobotC Coding Applications

More information

CURIE Academy, Summer 2014 Lab 2: Computer Engineering Software Perspective Sign-Off Sheet

CURIE Academy, Summer 2014 Lab 2: Computer Engineering Software Perspective Sign-Off Sheet Lab : Computer Engineering Software Perspective Sign-Off Sheet NAME: NAME: DATE: Sign-Off Milestone TA Initials Part 1.A Part 1.B Part.A Part.B Part.C Part 3.A Part 3.B Part 3.C Test Simple Addition Program

More information

MADISON PUBLIC SCHOOL DISTRICT. GRADE 7 Robotics Cycle

MADISON PUBLIC SCHOOL DISTRICT. GRADE 7 Robotics Cycle MADISON PUBLIC SCHOOL DISTRICT GRADE 7 Robotics Cycle Authored by: Erik Lih Richard Newbery Reviewed by: Lee Nittel Director of Curriculum and Instruction Tom Paterson K12 Supervisor of Science and Technology

More information

World Robot Olympiad 2018

World Robot Olympiad 2018 World Robot Olympiad 2018 Advanced Robotics Category Game Description, Rules and Scoring Version: Final Version January 15 th Table of Contents Introduction... 3 Important changes for Tetrastack 2018...

More information

Always ask yourself, How are the players learning about geometry by using it in the game?

Always ask yourself, How are the players learning about geometry by using it in the game? Project Goal You are to create a board game that will use a coordinate grid and transformations (reflections, translations, and rotations). The board game can be of any theme and will include other game

More information

8 th Annual Robotics Competition. High School and Middle School Teams. April 5th, Event Rules Booklet. Sponsored by

8 th Annual Robotics Competition. High School and Middle School Teams. April 5th, Event Rules Booklet. Sponsored by 8 th Annual Robotics Competition For High School and Middle School Teams April 5th, 2017 Event Rules Booklet Sponsored by 1 Table of Contents Table of Contents 2. Competition Overview 2.1. Major Changes

More information

FABO ACADEMY X ELECTRONIC DESIGN

FABO ACADEMY X ELECTRONIC DESIGN ELECTRONIC DESIGN MAKE A DEVICE WITH INPUT & OUTPUT The Shanghaino can be programmed to use many input and output devices (a motor, a light sensor, etc) uploading an instruction code (a program) to it

More information

Robotics Engineering DoDEA Career Technology Education Robot Programming

Robotics Engineering DoDEA Career Technology Education Robot Programming Robotics Engineering DoDEA Career Technology Education Robot Programming Area Competency G. Robot Programming 1. Introduction to Robot Programming ( / / ) ( / / ) Before you get started, print out this

More information

CUSTOMER SERVICES HELP LINE NUMBER: +44 (0) (UK) (USA)

CUSTOMER SERVICES HELP LINE NUMBER: +44 (0) (UK) (USA) 466077 rev00 STOP Read through ALL instructions before commencing installation. If you have any questions about this product or issues with installation contact the customer services help line before returning

More information

Project Goal Game Design & Creation Process type theme MUST BE prototype board artistically rule book Flowchart prototype Test feedback Modify

Project Goal Game Design & Creation Process type theme MUST BE prototype board artistically rule book Flowchart prototype Test feedback Modify Project Goal You are to create a board game that will use a coordinate grid and transformations (slides and reflections). The board game can be of any theme and will include other game features such as

More information

Autonomous Following RObot Critical Design Review

Autonomous Following RObot Critical Design Review Autonomous Following RObot Critical Design Review James Tse (Leader) Wei Dai Travis Frecker Peter Verlangieri Professor John Johnson ECE 189A Fall 2012 Critical Design Review: Project Description A robot

More information

Robotic Systems Challenge 2013

Robotic Systems Challenge 2013 Robotic Systems Challenge 2013 An engineering challenge for students in grades 6 12 April 27, 2013 Charles Commons Conference Center JHU Homewood Campus Sponsored by: Johns Hopkins University Laboratory

More information

INSTALLATION GUIDE N5-DS48-4

INSTALLATION GUIDE N5-DS48-4 INSTALLATION GUIDE N5-DS48-4 Shelving ( steel ) Transit High Roof & Medium Roof Promaster Standard Roof & High Roof Nissan NV High Roof Sprinter Low Roof & High Roof Box Truck / Trailer QUICK START GUIDE

More information

Robotics Workshop. for Parents and Teachers. September 27, 2014 Wichita State University College of Engineering. Karen Reynolds

Robotics Workshop. for Parents and Teachers. September 27, 2014 Wichita State University College of Engineering. Karen Reynolds Robotics Workshop for Parents and Teachers September 27, 2014 Wichita State University College of Engineering Steve Smith Christa McAuliffe Academy ssmith3@usd259.net Karen Reynolds Wichita State University

More information

Optimization Maze Robot Using A* and Flood Fill Algorithm

Optimization Maze Robot Using A* and Flood Fill Algorithm International Journal of Mechanical Engineering and Robotics Research Vol., No. 5, September 2017 Optimization Maze Robot Using A* and Flood Fill Algorithm Semuil Tjiharjadi, Marvin Chandra Wijaya, and

More information

WCRG 2011 Sumo Robots Rev 0. Sumo Rules. (Mini & Full Size Sumo & LEGO)

WCRG 2011 Sumo Robots Rev 0. Sumo Rules. (Mini & Full Size Sumo & LEGO) Object WCRG 2011 Sumo Robots Rev 0 Sumo Rules (Mini & Full Size Sumo & LEGO) The object is for your robot to push the other robot out of the sumo ring. Robot Specifications Robots must not intentionally

More information

Saint Patrick High School Curriculum Guide: Robotics

Saint Patrick High School Curriculum Guide: Robotics Saint Patrick High School Curriculum Guide: Robotics Department: Science Grade and Level: Varies Class: Robotics Term (Semester or Year): Year-long course Required Text: Additional Resources (i.e. texts,

More information

Vision Centric Challenge 2019 S-SLAM: Simple SLAM

Vision Centric Challenge 2019 S-SLAM: Simple SLAM Vision Centric Challenge 2019 S-SLAM: Simple SLAM (Simultaneous Localization and Mapping) A Robofest (www.robofest.net) Challenge for Pre-college and College Students Lawrence Technological University,

More information

Introduction to Robotics Rubrics

Introduction to Robotics Rubrics Introduction to Robotics Rubrics Students can evaluate their project work according to the learning goals. Each rubric includes four levels: Bronze, Silver, Gold, and Platinum. The intention is to help

More information

Vision Ques t. Vision Quest. Use the Vision Sensor to drive your robot in Vision Quest!

Vision Ques t. Vision Quest. Use the Vision Sensor to drive your robot in Vision Quest! Vision Ques t Vision Quest Use the Vision Sensor to drive your robot in Vision Quest! Seek Discover new hands-on builds and programming opportunities to further your understanding of a subject matter.

More information

A - Debris on the Track

A - Debris on the Track A - Debris on the Track Rocks have fallen onto the line for the robot to follow, blocking its path. We need to make the program clever enough to not get stuck! 2017 https://www.hamiltonbuhl.com/teacher-resources

More information

A - Debris on the Track

A - Debris on the Track A - Debris on the Track Rocks have fallen onto the line for the robot to follow, blocking its path. We need to make the program clever enough to not get stuck! 2018 courses.techcamp.org.uk/ Page 1 of 7

More information

GST BOCES. Regional Robotics Competition & Exhibition. May 29, :00 2:00. Wings of Eagles Discovery Center, Big Flats NY. Mission Mars Rover

GST BOCES. Regional Robotics Competition & Exhibition. May 29, :00 2:00. Wings of Eagles Discovery Center, Big Flats NY. Mission Mars Rover GST BOCES Regional Robotics Competition & Exhibition May 29, 2019 9:00 2:00 Wings of Eagles Discovery Center, Big Flats NY Mission Rover Revision: 10/15/18 contact: STEM@GSTBOCES.org Page: 1 Program Overview

More information

1 Day Robot Building (MC40A + Aluminum Base) for Edubot 2.0

1 Day Robot Building (MC40A + Aluminum Base) for Edubot 2.0 1 Day Robot Building (MC40A + Aluminum Base) for Edubot 2.0 Have you ever thought of making a mobile robot in 1 day? Now you have the chance with MC40A Mini Mobile Robot Controller + some accessories.

More information

JHU Robotics Challenge 2015

JHU Robotics Challenge 2015 JHU Robotics Challenge 2015 An engineering competition for students in grades 6 12 May 2, 2015 Glass Pavilion JHU Homewood Campus Sponsored by: Johns Hopkins University Laboratory for Computational Sensing

More information

Re: ENSC 370 Project Gerbil Process Report

Re: ENSC 370 Project Gerbil Process Report Simon Fraser University Burnaby, BC V5A 1S6 trac-tech@sfu.ca April 30, 1999 Dr. Andrew Rawicz School of Engineering Science Simon Fraser University Burnaby, BC V5A 1S6 Re: ENSC 370 Project Gerbil Process

More information

A - Debris on the Track

A - Debris on the Track A - Debris on the Track Rocks have fallen onto the line for the robot to follow, blocking its path. We need to make the program clever enough to not get stuck! Step 1 2017 courses.techcamp.org.uk/ Page

More information

Assembly and installation help

Assembly and installation help Assembly and installation help A supplement to the directions The Purpose of this tutorial is to expand (not replace) upon the directions that come with the system and to help provide shortcuts, the first

More information

Arduino Control of Tetrix Prizm Robotics. Motors and Servos Introduction to Robotics and Engineering Marist School

Arduino Control of Tetrix Prizm Robotics. Motors and Servos Introduction to Robotics and Engineering Marist School Arduino Control of Tetrix Prizm Robotics Motors and Servos Introduction to Robotics and Engineering Marist School Motor or Servo? Motor Faster revolution but less Power Tetrix 12 Volt DC motors have a

More information

CoSpace Make Code Challenge Rules 2016

CoSpace Make Code Challenge Rules 2016 CoSpace Make Code Challenge Rules 2016 CoSpace Technical Committee This is the official rules for Make Code Challenge 2016 and is released by the CoSpace Technical Committee. The rules contained in this

More information

EECE401 Senior Design I. Electrical and Computer Engineering Howard University. Instructor Dr. Charles Kim

EECE401 Senior Design I. Electrical and Computer Engineering Howard University. Instructor Dr. Charles Kim EECE401 Senior Design I Electrical and Computer Engineering Howard University Instructor Dr. Charles Kim [ckim@howard.edu] Fall 2014 Charles Kim Howard University 1 Senior Design brief definition Is Culmination

More information

Your EdVenture into Robotics 10 Lesson plans

Your EdVenture into Robotics 10 Lesson plans Your EdVenture into Robotics 10 Lesson plans Activity sheets and Worksheets Find Edison Robot @ Search: Edison Robot Call 800.962.4463 or email custserv@ Lesson 1 Worksheet 1.1 Meet Edison Edison is a

More information

After Performance Report Of the Robot

After Performance Report Of the Robot After Performance Report Of the Robot Engineering 112 Spring 2007 Instructor: Dr. Ghada Salama By Mahmudul Alam Tareq Al Maaita Ismail El Ebiary Section- 502 Date: May 2, 2007 Introduction: The report

More information

Week Lesson Assignment SD Technology Standards. SPA Handout. Handouts. Handouts/quiz. Video/handout. Handout. Video, handout.

Week Lesson Assignment SD Technology Standards. SPA Handout. Handouts. Handouts/quiz. Video/handout. Handout. Video, handout. Week Lesson Assignment SD Technology Standards 1 Lesson 1: Intro to Robotics class Discuss goals of class & definition of a robot SPA Define engineering, programming and system. Define managing a project.

More information

Your Task. Unit 3 (Chapter 1): Number Relationships. The 5 Goals of Chapter 1

Your Task. Unit 3 (Chapter 1): Number Relationships. The 5 Goals of Chapter 1 Unit 3 (Chapter 1): Number Relationships The 5 Goals of Chapter 1 I will be able to: model perfect squares and square roots use a variety of strategies to recognize perfect squares use a variety of strategies

More information

Autonomous Obstacle Avoiding and Path Following Rover

Autonomous Obstacle Avoiding and Path Following Rover Volume 114 No. 9 2017, 271-281 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Autonomous Obstacle Avoiding and Path Following Rover ijpam.eu Sandeep Polina

More information

LESSON ACTIVITY TOOLKIT 2.0

LESSON ACTIVITY TOOLKIT 2.0 LESSON ACTIVITY TOOLKIT 2.0 LESSON ACTIVITY TOOLKIT 2.0 Create eye-catching lesson activities For best results, limit the number of individual Adobe Flash tools you use on a page to five or less using

More information

Newton s Laws of Motion Discovery

Newton s Laws of Motion Discovery Student handout Newton s First Law of Motion Discovery Stations Discovery Station: Wacky Washers 1. To prepare for this experiment, stack 4 washers one on top of the other so that you form a tower of washers.

More information

Robofest 2016 BottleSumo

Robofest 2016 BottleSumo Robofest 2016 BottleSumo 2016 Kick-off version 12-4-15, V1.1 The Bottle will be placed on this line (Figure 1) An example of BottleSumo Game Initial Configuration, Junior Division 21.6cm (8.5 ) 8 cm 3.8

More information

IEEE Open Milker Robot Version 1.1

IEEE Open Milker Robot Version 1.1 IEEE Open 2016 2017 Milker Robot Version 1.1 Sumary Introduction Goals The scenario The Field Cows Gloves Terrines The Milk Tank Zones Markers Lighting conditions Dimensions The Robot Rules Arena initial

More information

Programming a Servo. Servo. Red Wire. Black Wire. White Wire

Programming a Servo. Servo. Red Wire. Black Wire. White Wire Programming a Servo Learn to connect wires and write code to program a Servo motor. If you have gone through the LED Circuit and LED Blink exercises, you are ready to move on to programming a Servo. A

More information

Introducing Numicon into Year 1

Introducing Numicon into Year 1 Introducing Numicon into year page of 5 Introducing Numicon into Year Before using Numicon Shapes in your teaching, give children time to explore Numicon Shapes for themselves. To help you get started

More information

BEST DESIGN PROCESS Page 1 of 16 BEST DESIGN PROCESS

BEST DESIGN PROCESS Page 1 of 16 BEST DESIGN PROCESS BEST DESIGN PROCESS Page 1 of 16 BEST DESIGN PROCESS BEST DESIGN PROCESS Page 2 of 16 The four main phases of design are: BEST DESIGN PROCESS Phase What You Get Example Conceptual Design Concept Four wheels,

More information

Sensor and. Motor Control Lab. Abhishek Bhatia. Individual Lab Report #1

Sensor and. Motor Control Lab. Abhishek Bhatia. Individual Lab Report #1 Sensor and 10/16/2015 Motor Control Lab Individual Lab Report #1 Abhishek Bhatia Team D: Team HARP (Human Assistive Robotic Picker) Teammates: Alex Brinkman, Feroze Naina, Lekha Mohan, Rick Shanor I. Individual

More information

TU Graz Robotics Challenge 2017

TU Graz Robotics Challenge 2017 1 TU Graz Robotics Challenge W I S S E N T E C H N I K L E I D E N S C H A F T TU Graz Robotics Challenge 2017 www.robotics-challenge.ist.tugraz.at Kick-Off 14.03.2017 u www.tugraz.at 2 Overview Introduction

More information

Mindstorms NXT. mindstorms.lego.com

Mindstorms NXT. mindstorms.lego.com Mindstorms NXT mindstorms.lego.com A3B99RO Robots: course organization At the beginning of the semester the students are divided into small teams (2 to 3 students). Each team uses the basic set of the

More information

IF A PART IS MISSING OR DAMAGED...

IF A PART IS MISSING OR DAMAGED... Speed Racer ALPINE CHALLENGE ITEM NO. 11157 WARNING:! CHOKINGHAZARD - Small parts. Not for Children Under 3 Years BEFORE YOU BEGIN... 1. Unpack the parts. Save the packing materials. 2. Match the parts

More information

DIY Field Guide ANDYMARK, INC.

DIY Field Guide ANDYMARK, INC. ANDYMARK, INC. Intro For the 2014-2015 FTC Game Cascade Effect, teams can purchase official field hardware from AndyMark, or they can build do-it-yourself (DIY) versions of the same hardware. The competitions

More information

The power of Math in LEGO Robotics

The power of Math in LEGO Robotics The power of Math in LEGO Robotics Disseminator: Marco Diez marcodiez@dadeschools.net Howard D. McMillan Middle School (Mail Code: 6441) 13100 SW 59 ST. Miami, FL 33183 For information concerning Ideas

More information

Hardware Implementation of Fuzzy Logic using VHDL. Vikas Kumar Sharma Supervisor : Prof. Laurent Cabaret and Prof. Celine Hudelot July 23, 2007

Hardware Implementation of Fuzzy Logic using VHDL. Vikas Kumar Sharma Supervisor : Prof. Laurent Cabaret and Prof. Celine Hudelot July 23, 2007 Hardware Implementation of Fuzzy Logic using VHDL Vikas Kumar Sharma Supervisor : Prof. Laurent Cabaret and Prof. Celine Hudelot July 23, 2007 Abstract In this project, we propose a Fuzzy Logic approach

More information

Workshops Elisava Introduction to programming and electronics (Scratch & Arduino)

Workshops Elisava Introduction to programming and electronics (Scratch & Arduino) Workshops Elisava 2011 Introduction to programming and electronics (Scratch & Arduino) What is programming? Make an algorithm to do something in a specific language programming. Algorithm: a procedure

More information

LEGO Mindstorms Class: Lesson 1

LEGO Mindstorms Class: Lesson 1 LEGO Mindstorms Class: Lesson 1 Some Important LEGO Mindstorm Parts Brick Ultrasonic Sensor Light Sensor Touch Sensor Color Sensor Motor Gears Axle Straight Beam Angled Beam Cable 1 The NXT-G Programming

More information

Chassis & Attachments 101. Part 1: Chassis Overview

Chassis & Attachments 101. Part 1: Chassis Overview Chassis & Attachments 101 Part 1: Chassis Overview 2017 1 Introductions Rest rooms location. Food and Drink. Cell phones. Today presentation available at: http://www.roboplex.org/fll 2 What can be used

More information