A servo is an electric motor that takes in a pulse width modulated signal that controls direction and speed. A servo has three leads:

Size: px
Start display at page:

Download "A servo is an electric motor that takes in a pulse width modulated signal that controls direction and speed. A servo has three leads:"

Transcription

1 Project 4: Arduino Servos Part 1 Description: A servo is an electric motor that takes in a pulse width modulated signal that controls direction and speed. A servo has three leads: a. Red: Current b. Black: Ground c. White (Or Yellow): Signal White(Yellow): Signal Red: Current Black: Ground The Signal in an Arduino servo takes a range of values from 0 to 180: Note that the value of 90 will stop the Servo. During the lab, if the Servo does not stop at the value 90, use a small screwdriver and adjust the calibration (small dial on Servo) to have the Servo stop when at 90. In this lesson we will connect 1 Servo to the Arduino board and write code to turn the servo Clockwise and Counterclockwise. In Project 5 we will build a wheeled vehicle robot using two servos.

2 Process: 1. Remove the LED lights and Piezo Speakers from Projects 1,2, and 3. Make sure these are stored safely in the kit. 2. Remove the 330 Ohm resistors and store them in the required package. 3. Configure the Breadboard and Arduino to the following form:

3 4. We will now set up for Servo 1. Wire Pin 9 on Arduino to J12

4 5. We can now connect the Servo. a. Servo Black to Ground (Blue Rail) b. Servo Red to Current (Red Rail) c. Servo White to F12 (Signal)

5 6. Wire the 2 nd Servo: a. Run a white wire (Signal) from Arduino 10 to Breadboard J20. b. Servo White to Breadboard F20 (To carry signal to Pin 10). c. Servo Current to Red Rail. d. Servo Ground to Blue Rail.

6 7. Alternate wiring schematics: If you need to use the external batteries to power the servos, set up the circuit as follows: (Note that the External Battery will plug into the rails on the left side of the breadboard. Then the ground from the left side will connect to the ground of the Arduino. This provides a common ground between the batteries and the Arduino, allowing the signal to work.

7 Sketch Code: We will now program the Servos to move in the following manner: -forward for 2 seconds. Process: 1. Start your Arduino Sketch Program by clicking on the Sketch Icon. 2. Save the code by selecting File-Save and naming the program lastnameservos.

8 3. We want to set up the code by writing comments and defining the two required functions (void setup() and void loop()). 4. Now we need to include an #include statement to bring in the library for the Servo functions.

9 5. We will now declare the Servo objects (servoleft and servoright)

10 6. Next, we want to write a function that will spin both the wheels in the same direction. We will call this function forward. Note that servoleft is written to 180 and servoright is written to 0. This opposite writing calls will have the motors spin in opposite directions. When the motors are mounted onto a vehicle, this will have the vehicle move forward (or backward depending on the build).

11 7. We will now move to the setup() function and call the code to connect the servo objects to PINS 9 and 10.

12 8. We will now call the function forward() in the setup() function to have the servoleft and servoright spin.

13

14 9. Save the program and plug in your Arduino and Servo setup. Click the upload button to upload the code to the Arduino and run the program. The wheels should start spinning (and will keep spinning while the Arduino has power.)

15 10. We do not want the servos to spin without stopping. Write another function that will set the values of the servoleft and servoright to 90. This should stop the Servos.

16 11. We now will combine a delay() function call with the stopmotors() function to have the servos spin for 2 seconds and then stop.

17 12. Save and upload the code to the Arduino. The servos should spin and then stop. 13. Write the following functions for your Servos and test them with your Arduino. -backward() -turnright() -turnleft()

18 Other Ideas: -Add the other Servo to the system. The wiring should look something like this: - Write a procedure to control both motors at the same time. (Hint, use the Servo Write block) Vocabulary: Servo: An electric motor and encoder that work together to use a pulse width modulated signal to control direction and speed of motor. External Battery Pack: Provides additional power for motors or other devices in electronic device. Wired in separately from Arduino power.

Experiment 4.B. Position Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 4.B. Position Control. ECEN 2270 Electronics Design Laboratory 1 Experiment 4.B Position Control Electronics Design Laboratory 1 Procedures 4.B.1 4.B.2 4.B.3 4.B.4 Read Encoder with Arduino Position Control by Counting Encoder Pulses Demo Setup Extra Credit Electronics

More information

Programming 2 Servos. Learn to connect and write code to control two servos.

Programming 2 Servos. Learn to connect and write code to control two servos. Programming 2 Servos Learn to connect and write code to control two servos. Many students who visit the lab and learn how to use a Servo want to use 2 Servos in their project rather than just 1. This lesson

More information

Two Hour Robot. Lets build a Robot.

Two Hour Robot. Lets build a Robot. Lets build a Robot. Our robot will use an ultrasonic sensor and servos to navigate it s way around a maze. We will be making 2 voltage circuits : A 5 Volt for our ultrasonic sensor, sound and lights powered

More information

LED + Servo 2 devices, 1 Arduino

LED + Servo 2 devices, 1 Arduino LED + Servo 2 devices, 1 Arduino Learn to connect and write code to control both a Servo and an LED at the same time. Many students who come through the lab ask if they can use both an LED and a Servo

More information

Introduction. 1 of 44

Introduction. 1 of 44 Introduction I set out to create this robot kit to give teachers, students, and hobbyists an affordable way to start learning and sharing robotics in their community. Most robotics kits that have the same

More information

Lab 2: Blinkie Lab. Objectives. Materials. Theory

Lab 2: Blinkie Lab. Objectives. Materials. Theory Lab 2: Blinkie Lab Objectives This lab introduces the Arduino Uno as students will need to use the Arduino to control their final robot. Students will build a basic circuit on their prototyping board and

More information

Programming a Servo. Servo. Red Wire. Black Wire. White Wire

Programming a Servo. Servo. Red Wire. Black Wire. White Wire Programming a Servo Learn to connect wires and write code to program a Servo motor. If you have gone through the LED Circuit and LED Blink exercises, you are ready to move on to programming a Servo. A

More information

Computational Crafting with Arduino. Christopher Michaud Marist School ECEP Programs, Georgia Tech

Computational Crafting with Arduino. Christopher Michaud Marist School ECEP Programs, Georgia Tech Computational Crafting with Arduino Christopher Michaud Marist School ECEP Programs, Georgia Tech Introduction What do you want to learn and do today? Goals with Arduino / Computational Crafting Purpose

More information

Arduino Control of Tetrix Prizm Robotics. Motors and Servos Introduction to Robotics and Engineering Marist School

Arduino Control of Tetrix Prizm Robotics. Motors and Servos Introduction to Robotics and Engineering Marist School Arduino Control of Tetrix Prizm Robotics Motors and Servos Introduction to Robotics and Engineering Marist School Motor or Servo? Motor Faster revolution but less Power Tetrix 12 Volt DC motors have a

More information

Objectives: Learn what an Arduino is and what it can do Learn what an LED is and how to use it Be able to wire and program an LED to blink

Objectives: Learn what an Arduino is and what it can do Learn what an LED is and how to use it Be able to wire and program an LED to blink Objectives: Learn what an Arduino is and what it can do Learn what an LED is and how to use it Be able to wire and program an LED to blink By the end of this session: You will know how to use an Arduino

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs 10-11 Introduction to Arduino In this lab we will introduce the idea of using a microcontroller as a tool for controlling

More information

Experiment 1: Robot Moves in 3ft squared makes sound and

Experiment 1: Robot Moves in 3ft squared makes sound and Experiment 1: Robot Moves in 3ft squared makes sound and turns on an LED at each turn then stop where it started. Edited: 9-7-2015 Purpose: Press a button, make a sound and wait 3 seconds before starting

More information

FABO ACADEMY X ELECTRONIC DESIGN

FABO ACADEMY X ELECTRONIC DESIGN ELECTRONIC DESIGN MAKE A DEVICE WITH INPUT & OUTPUT The Shanghaino can be programmed to use many input and output devices (a motor, a light sensor, etc) uploading an instruction code (a program) to it

More information

For this exercise, you will need a partner, an Arduino kit (in the plastic tub), and a laptop with the Arduino programming environment.

For this exercise, you will need a partner, an Arduino kit (in the plastic tub), and a laptop with the Arduino programming environment. Physics 222 Name: Exercise 6: Mr. Blinky This exercise is designed to help you wire a simple circuit based on the Arduino microprocessor, which is a particular brand of microprocessor that also includes

More information

Setup Download the Arduino library (link) for Processing and the Lab 12 sketches (link).

Setup Download the Arduino library (link) for Processing and the Lab 12 sketches (link). Lab 12 Connecting Processing and Arduino Overview In the previous lab we have examined how to connect various sensors to the Arduino using Scratch. While Scratch enables us to make simple Arduino programs,

More information

StenBOT Robot Kit. Stensat Group LLC, Copyright 2018

StenBOT Robot Kit. Stensat Group LLC, Copyright 2018 StenBOT Robot Kit 1 Stensat Group LLC, Copyright 2018 Legal Stuff Stensat Group LLC assumes no responsibility and/or liability for the use of the kit and documentation. There is a 90 day warranty for the

More information

ezsystem elab16m Light Sensing Robot

ezsystem elab16m Light Sensing Robot ezsystem elab16m Light Sensing Robot ezsystem The aim of ezsystem is to enable Creativity and Innovation at an early age in a Problem Based Learning (PBL) approach. ezsystem integrates ezcircuit Designer,

More information

J. La Favre Using Arduino with Raspberry Pi February 7, 2018

J. La Favre Using Arduino with Raspberry Pi February 7, 2018 As you have already discovered, the Raspberry Pi is a very capable digital device. Nevertheless, it does have some weaknesses. For example, it does not produce a clean pulse width modulation output (unless

More information

The Motor sketch. One Direction ON-OFF DC Motor

The Motor sketch. One Direction ON-OFF DC Motor One Direction ON-OFF DC Motor The DC motor in your Arduino kit is the most basic of electric motors and is used in all types of hobby electronics. When current is passed through, it spins continuously

More information

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Ahmed Okasha, Assistant Lecturer okasha1st@gmail.com Objective Have a

More information

Lab 06: Ohm s Law and Servo Motor Control

Lab 06: Ohm s Law and Servo Motor Control CS281: Computer Systems Lab 06: Ohm s Law and Servo Motor Control The main purpose of this lab is to build a servo motor control circuit. As with prior labs, there will be some exploratory sections designed

More information

1. Controlling the DC Motors

1. Controlling the DC Motors E11: Autonomous Vehicles Lab 5: Motors and Sensors By this point, you should have an assembled robot and Mudduino to power it. Let s get things moving! In this lab, you will write code to test your motors

More information

Roborodentia Robot: Tektronix. Sean Yap Advisor: John Seng California Polytechnic State University, San Luis Obispo June 8th, 2016

Roborodentia Robot: Tektronix. Sean Yap Advisor: John Seng California Polytechnic State University, San Luis Obispo June 8th, 2016 Roborodentia Robot: Tektronix Sean Yap Advisor: John Seng California Polytechnic State University, San Luis Obispo June 8th, 2016 Table of Contents Introduction... 2 Problem Statement... 2 Software...

More information

CONSTRUCTION GUIDE Robotic Arm. Robobox. Level II

CONSTRUCTION GUIDE Robotic Arm. Robobox. Level II CONSTRUCTION GUIDE Robotic Arm Robobox Level II Robotic Arm This month s robot is a robotic arm with two degrees of freedom that will teach you how to use motors. You will then be able to move the arm

More information

The USELESS BOX. Procedure:

The USELESS BOX. Procedure: The USELESS BOX The useless box is exactly what it implies. A project that is pretty much Useless and is made for pure entertainment. You are going to go through the process of building this project from

More information

In this activity, you will program the BASIC Stamp to control the rotation of each of the Parallax pre-modified servos on the Boe-Bot.

In this activity, you will program the BASIC Stamp to control the rotation of each of the Parallax pre-modified servos on the Boe-Bot. Week 3 - How servos work Testing the Servos Individually In this activity, you will program the BASIC Stamp to control the rotation of each of the Parallax pre-modified servos on the Boe-Bot. How Servos

More information

RC Servo Interface. Figure Bipolar amplifier connected to a large DC motor

RC Servo Interface. Figure Bipolar amplifier connected to a large DC motor The bipolar amplifier is well suited for controlling motors for vehicle propulsion. Figure 12-45 shows a good-sized 24VDC motor that runs nicely on 13.8V from a lead acid battery based power supply. You

More information

Controlling Your Robot

Controlling Your Robot Controlling Your Robot The activities on this week are about instructing the Boe-Bot where to go and how to get there. You will write programs to make the Boe-Bot perform a variety of maneuvers. You will

More information

Objective of the lesson

Objective of the lesson Arduino Lesson 5 1 Objective of the lesson Learn how to program an Arduino in S4A All of you will: Add an LED to an Arduino and get it to come on and blink Most of you will: Add an LED to an Arduino and

More information

Coding with Arduino to operate the prosthetic arm

Coding with Arduino to operate the prosthetic arm Setup Board Install FTDI Drivers This is so that your RedBoard will be able to communicate with your computer. If you have Windows 8 or above you might already have the drivers. 1. Download the FTDI driver

More information

Module: Arduino as Signal Generator

Module: Arduino as Signal Generator Name/NetID: Teammate/NetID: Module: Laboratory Outline In our continuing quest to access the development and debugging capabilities of the equipment on your bench at home Arduino/RedBoard as signal generator.

More information

Rodni What will yours be?

Rodni What will yours be? Rodni What will yours be? version 4 Welcome to Rodni, a modular animatronic animal of your own creation for learning how easy it is to enter the world of software programming and micro controllers. During

More information

Advanced Mechatronics 1 st Mini Project. Remote Control Car. Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014

Advanced Mechatronics 1 st Mini Project. Remote Control Car. Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014 Advanced Mechatronics 1 st Mini Project Remote Control Car Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014 Remote Control Car Manual Control with the remote and direction buttons Automatic

More information

Internet of Things Student STEM Project Jackson High School. Lesson 3: Arduino Solar Tracker

Internet of Things Student STEM Project Jackson High School. Lesson 3: Arduino Solar Tracker Internet of Things Student STEM Project Jackson High School Lesson 3: Arduino Solar Tracker Lesson 3 Arduino Solar Tracker Time to complete Lesson 60-minute class period Learning objectives Students learn

More information

the Board of Education

the Board of Education the Board of Education Voltage regulator electrical power (V dd, V in, V ss ) breadboard (for building circuits) power jack digital input / output pins 0 to 15 reset button Three-position switch 0 = OFF

More information

Chapter 2: Your Boe-Bot's Servo Motors

Chapter 2: Your Boe-Bot's Servo Motors Chapter 2: Your Boe-Bot's Servo Motors Vocabulary words used in this lesson. Argument in computer science is a value of data that is part of a command. Also data passed to a procedure or function at the

More information

MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor

MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To understand and gain insight about how a

More information

100UF CAPACITOR POTENTIOMETER SERVO MOTOR MOTOR ARM. MALE HEADER PIN (3 pins) INGREDIENTS

100UF CAPACITOR POTENTIOMETER SERVO MOTOR MOTOR ARM. MALE HEADER PIN (3 pins) INGREDIENTS 05 POTENTIOMETER SERVO MOTOR MOTOR ARM 100UF CAPACITOR MALE HEADER PIN (3 pins) INGREDIENTS 63 MOOD CUE USE A SERVO MOTOR TO MAKE A MECHANICAL GAUGE TO POINT OUT WHAT SORT OF MOOD YOU RE IN THAT DAY Discover:

More information

Quantizer step: volts Input Voltage [V]

Quantizer step: volts Input Voltage [V] EE 101 Fall 2008 Date: Lab Section # Lab #8 Name: A/D Converter and ECEbot Power Abstract Partner: Autonomous robots need to have a means to sense the world around them. For example, the bumper switches

More information

1. ASSEMBLING THE PCB 2. FLASH THE ZIP LEDs 3. BUILDING THE WHEELS

1. ASSEMBLING THE PCB 2. FLASH THE ZIP LEDs 3. BUILDING THE WHEELS V1.0 :MOVE The Kitronik :MOVE mini for the BBC micro:bit provides an introduction to robotics. The :MOVE mini is a 2 wheeled robot, suitable for both remote control and autonomous operation. A range of

More information

Pulse Width Modulation and

Pulse Width Modulation and Pulse Width Modulation and analogwrite ( ); 28 Materials needed to wire one LED. Odyssey Board 1 dowel Socket block Wire clip (optional) 1 Female to Female (F/F) wire 1 F/F resistor wire LED Note: The

More information

Sten-Bot Robot Kit Stensat Group LLC, Copyright 2013

Sten-Bot Robot Kit Stensat Group LLC, Copyright 2013 Sten-Bot Robot Kit Stensat Group LLC, Copyright 2013 Legal Stuff Stensat Group LLC assumes no responsibility and/or liability for the use of the kit and documentation. There is a 90 day warranty for the

More information

Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds.

Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds. Overview Challenge Students will design, program, and build a robot vehicle to traverse a maze in 30 seconds without touching any sidewalls or going out of bounds. Materials Needed One of these sets: TETRIX

More information

Parts List. Robotic Arm segments ¼ inch screws Cable XBEE module or Wifi module

Parts List. Robotic Arm segments ¼ inch screws Cable XBEE module or Wifi module Robotic Arm 1 Legal Stuff Stensat Group LLC assumes no responsibility and/or liability for the use of the kit and documentation. There is a 90 day warranty for the Sten-Bot kit against component defects.

More information

Arduino STEAM Academy Arduino STEM Academy Art without Engineering is dreaming. Engineering without Art is calculating. - Steven K.

Arduino STEAM Academy Arduino STEM Academy Art without Engineering is dreaming. Engineering without Art is calculating. - Steven K. Arduino STEAM Academy Arduino STEM Academy Art without Engineering is dreaming. Engineering without Art is calculating. - Steven K. Roberts Page 1 See Appendix A, for Licensing Attribution information

More information

Electronic Components

Electronic Components Electronic Components Arduino Uno Arduino Uno is a microcontroller (a simple computer), it has no way to interact. Building circuits and interface is necessary. Battery Snap Battery Snap is used to connect

More information

Adafruit 16-Channel Servo Driver with Arduino

Adafruit 16-Channel Servo Driver with Arduino Adafruit 16-Channel Servo Driver with Arduino Created by Bill Earl Last updated on 2015-09-29 06:19:37 PM EDT Guide Contents Guide Contents Overview Assembly Install the Servo Headers Solder all pins Add

More information

Using Servos with an Arduino

Using Servos with an Arduino Using Servos with an Arduino ME 120 Mechanical and Materials Engineering Portland State University http://web.cecs.pdx.edu/~me120 Learning Objectives Be able to identify characteristics that distinguish

More information

Attribution Thank you to Arduino and SparkFun for open source access to reference materials.

Attribution Thank you to Arduino and SparkFun for open source access to reference materials. Attribution Thank you to Arduino and SparkFun for open source access to reference materials. Contents Parts Reference... 1 Installing Arduino... 7 Unit 1: LEDs, Resistors, & Buttons... 7 1.1 Blink (Hello

More information

PLAN DE FORMACIÓN EN LENGUAS EXTRANJERAS IN-57 Technology for ESO: Contents and Strategies

PLAN DE FORMACIÓN EN LENGUAS EXTRANJERAS IN-57 Technology for ESO: Contents and Strategies Lesson Plan: Traffic light with Arduino using code, S4A and Ardublock Course 3rd ESO Technology, Programming and Robotic David Lobo Martínez David Lobo Martínez 1 1. TOPIC Arduino is an open source hardware

More information

CURIE Academy, Summer 2014 Lab 2: Computer Engineering Software Perspective Sign-Off Sheet

CURIE Academy, Summer 2014 Lab 2: Computer Engineering Software Perspective Sign-Off Sheet Lab : Computer Engineering Software Perspective Sign-Off Sheet NAME: NAME: DATE: Sign-Off Milestone TA Initials Part 1.A Part 1.B Part.A Part.B Part.C Part 3.A Part 3.B Part 3.C Test Simple Addition Program

More information

Controlling motors with Arduino and Processing

Controlling motors with Arduino and Processing Fabian Winkler Controlling motors with Arduino and Processing Today s workshop illustrates how to control two different types of motors with the Arduino board: DC motors and servo motors. Since we have

More information

Inspiring Creative Fun Ysbrydoledig Creadigol Hwyl. S4A - Scratch for Arduino Workbook

Inspiring Creative Fun Ysbrydoledig Creadigol Hwyl. S4A - Scratch for Arduino Workbook Inspiring Creative Fun Ysbrydoledig Creadigol Hwyl S4A - Scratch for Arduino Workbook 1) Robotics Draw a robot. Consider the following and annotate: What will it look like? What will it do? How will you

More information

Exam Practice Problems (3 Point Questions)

Exam Practice Problems (3 Point Questions) Exam Practice Problems (3 Point Questions) Below are practice problems for the three point questions found on the exam. These questions come from past exams as well additional questions created by faculty.

More information

Figure 1. Digilent DC Motor

Figure 1. Digilent DC Motor Laboratory 9 - Usage of DC- and servo-motors The current laboratory describes the usage of DC and servomotors 1. DC motors Figure 1. Digilent DC Motor Classical DC motors are converting electrical energy

More information

CONSTRUCTION GUIDE Capacitor, Transistor & Motorbike. Robobox. Level VII

CONSTRUCTION GUIDE Capacitor, Transistor & Motorbike. Robobox. Level VII CONSTRUCTION GUIDE Capacitor, Transistor & Motorbike Robobox Level VII Capacitor, Transistor & Motorbike In this box, we will understand in more detail the operation of DC motors, transistors and capacitor.

More information

TETRIX PULSE Workshop Guide

TETRIX PULSE Workshop Guide TETRIX PULSE Workshop Guide 44512 1 Who Are We and Why Are We Here? Who is Pitsco? Pitsco s unwavering focus on innovative educational solutions and unparalleled customer service began when the company

More information

LESSONS Lesson 1. Microcontrollers and SBCs. The Big Idea: Lesson 1: Microcontrollers and SBCs. Background: What, precisely, is computer science?

LESSONS Lesson 1. Microcontrollers and SBCs. The Big Idea: Lesson 1: Microcontrollers and SBCs. Background: What, precisely, is computer science? LESSONS Lesson Lesson : Microcontrollers and SBCs Microcontrollers and SBCs The Big Idea: This book is about computer science. It is not about the Arduino, the C programming language, electronic components,

More information

Thinking Robotics: Teaching Robots to Make Decisions. Jeffrey R. Peters and Rushabh Patel

Thinking Robotics: Teaching Robots to Make Decisions. Jeffrey R. Peters and Rushabh Patel Thinking Robotics: Teaching Robots to Make Decisions Jeffrey R. Peters and Rushabh Patel Adapted From Robotics with the Boe-Bot by Andy Lindsay, Parallax, inc., 2010 Preface This manual was developed as

More information

Breadboard Primer. Experience. Objective. No previous electronics experience is required.

Breadboard Primer. Experience. Objective. No previous electronics experience is required. Breadboard Primer Experience No previous electronics experience is required. Figure 1: Breadboard drawing made using an open-source tool from fritzing.org Objective A solderless breadboard (or protoboard)

More information

INA169 Breakout Board Hookup Guide

INA169 Breakout Board Hookup Guide Page 1 of 10 INA169 Breakout Board Hookup Guide CONTRIBUTORS: SHAWNHYMEL Introduction Have a project where you want to measure the current draw? Need to carefully monitor low current through an LED? The

More information

Lesson 3: Arduino. Goals

Lesson 3: Arduino. Goals Introduction: This project introduces you to the wonderful world of Arduino and how to program physical devices. In this lesson you will learn how to write code and make an LED flash. Goals 1 - Get to

More information

Lab 2.4 Arduinos, Resistors, and Circuits

Lab 2.4 Arduinos, Resistors, and Circuits Lab 2.4 Arduinos, Resistors, and Circuits Objectives: Investigate resistors in series and parallel and Kirchoff s Law through hands-on learning Get experience using an Arduino hat you need: Arduino Kit:

More information

Demon Pumpkin APPROXIMATE TIME (EXCLUDING PREPARATION WORK): 1 HOUR PREREQUISITES: PART LIST:

Demon Pumpkin APPROXIMATE TIME (EXCLUDING PREPARATION WORK): 1 HOUR PREREQUISITES: PART LIST: Demon Pumpkin This is a lab guide for creating your own simple animatronic pumpkin. This project encourages students and makers to innovate upon the base design to add their own personal touches. APPROXIMATE

More information

Getting started with the SparkFun Inventor's Kit for Google's Science Journal App

Getting started with the SparkFun Inventor's Kit for Google's Science Journal App Page 1 of 16 Getting started with the SparkFun Inventor's Kit for Google's Science Journal App Introduction Google announced their Making & Science Initiative at the 2016 Bay Area Maker Faire. Making &

More information

How to Build the Robotics++ V2 Robot. Last Edited Nov

How to Build the Robotics++ V2 Robot. Last Edited Nov How to Build the Robotics++ V2 Robot Last Edited Nov. 15-2014 www.roboticscity.com 1 Completed Robotics++ V2 Robot. More views of completed robot can be found at the end of this instructions manual The

More information

Electronics Merit Badge Kit Theory of Operation

Electronics Merit Badge Kit Theory of Operation Electronics Merit Badge Kit Theory of Operation This is an explanation of how the merit badge kit functions. There are several topics worthy of discussion. These are: 1. LED operation. 2. Resistor function

More information

You'll create a lamp that turns a light on and off when you touch a piece of conductive material

You'll create a lamp that turns a light on and off when you touch a piece of conductive material TOUCHY-FEELY LAMP You'll create a lamp that turns a light on and off when you touch a piece of conductive material Discover : installing third party libraries, creating a touch sensor Time : 5 minutes

More information

Intelligent Systems Design in a Non Engineering Curriculum. Embedded Systems Without Major Hardware Engineering

Intelligent Systems Design in a Non Engineering Curriculum. Embedded Systems Without Major Hardware Engineering Intelligent Systems Design in a Non Engineering Curriculum Embedded Systems Without Major Hardware Engineering Emily A. Brand Dept. of Computer Science Loyola University Chicago eabrand@gmail.com William

More information

o What happens if S1 and S2 or S3 and S4 are closed simultaneously? o Perform Motor Control, H-Bridges LAB 2 H-Bridges with SPST Switches

o What happens if S1 and S2 or S3 and S4 are closed simultaneously? o Perform Motor Control, H-Bridges LAB 2 H-Bridges with SPST Switches Cornerstone Electronics Technology and Robotics II H-Bridges and Electronic Motor Control 4 Hour Class Administration: o Prayer o Debriefing Botball competition Four States of a DC Motor with Terminals

More information

CONSTRUCTION GUIDE Light Robot. Robobox. Level VI

CONSTRUCTION GUIDE Light Robot. Robobox. Level VI CONSTRUCTION GUIDE Light Robot Robobox Level VI The Light In this box dedicated to light we will discover, through 3 projects, how light can be used in our robots. First we will see how to insert headlights

More information

introduction to Digital Electronics Install the Arduino IDE on your laptop if you haven t already!

introduction to Digital Electronics Install the Arduino IDE on your laptop if you haven t already! introduction to Digital Electronics Install the Arduino IDE 1.8.5 on your laptop if you haven t already! Electronics can add interactivity! Any sufficiently advanced technology is indistinguishable from

More information

Learning Objectives. References 10/26/11. Using servos with an Arduino. EAS 199A Fall 2011

Learning Objectives. References 10/26/11. Using servos with an Arduino. EAS 199A Fall 2011 Using servos with an Arduino EAS 199A Fall 2011 Learning Objectives Be able to identify characteristics that distinguish a servo and a DC motor Be able to describe the difference a conventional servo and

More information

Arduino Lesson 1. Blink. Created by Simon Monk

Arduino Lesson 1. Blink. Created by Simon Monk Arduino Lesson 1. Blink Created by Simon Monk Guide Contents Guide Contents Overview Parts Part Qty The 'L' LED Loading the 'Blink' Example Saving a Copy of 'Blink' Uploading Blink to the Board How 'Blink'

More information

Part of: Inquiry Science with Dartmouth

Part of: Inquiry Science with Dartmouth Curriculum Guide Part of: Inquiry Science with Dartmouth Developed by: David Qian, MD/PhD Candidate Department of Biomedical Data Science Overview Using existing knowledge of computer science, students

More information

Ultimatum. Robotics Unit Lesson 5. Overview

Ultimatum. Robotics Unit Lesson 5. Overview Robotics Unit Lesson 5 Ultimatum Overview In this final challenge the students will deploy their TETRIX rescue robot up the mountain to rescue the stranded mountain climbers. First the rescue robot has

More information

Experiment #3: Micro-controlled Movement

Experiment #3: Micro-controlled Movement Experiment #3: Micro-controlled Movement So we re already on Experiment #3 and all we ve done is blinked a few LED s on and off. Hang in there, something is about to move! As you know, an LED is an output

More information

CPSC 226 Lab Four Spring 2018

CPSC 226 Lab Four Spring 2018 CPSC 226 Lab Four Spring 2018 Directions. This lab is a quick introduction to programming your Arduino to do some basic internal operations and arithmetic, perform character IO, read analog voltages, drive

More information

Internet of Things Student STEM Project Jackson High School. Lesson 2: Arduino and LED

Internet of Things Student STEM Project Jackson High School. Lesson 2: Arduino and LED Internet of Things Student STEM Project Jackson High School Lesson 2: Arduino and LED Lesson 2: Arduino and LED Time to complete Lesson 60-minute class period Learning objectives Students learn about Arduino

More information

Arduino Workshop 01. AD32600 Physical Computing Prof. Fabian Winkler Fall 2014

Arduino Workshop 01. AD32600 Physical Computing Prof. Fabian Winkler Fall 2014 AD32600 Physical Computing Prof. Fabian Winkler Fall 2014 Arduino Workshop 01 This workshop provides an introductory overview of the Arduino board, basic electronic components and closes with a few basic

More information

.:Twisting:..:Potentiometers:.

.:Twisting:..:Potentiometers:. CIRC-08.:Twisting:..:Potentiometers:. WHAT WE RE DOING: Along with the digital pins, the also has 6 pins which can be used for analog input. These inputs take a voltage (from 0 to 5 volts) and convert

More information

The Fundamentals of Circuits

The Fundamentals of Circuits The Fundamentals of Circuits Now that we have an understanding of current and resistance, we re ready to start studying basic direct current (DC)circuits. We ll start with resistor circuits, and then move

More information

Unit 4: Robot Chassis Construction

Unit 4: Robot Chassis Construction Unit 4: Robot Chassis Construction Unit 4: Teacher s Guide Lesson Overview: Paul s robotic assistant needs to operate in a real environment. The size, scale, and capabilities of the TETRIX materials are

More information

Lab 5: Arduino Uno Microcontroller Innovation Fellows Program Bootcamp Prof. Steven S. Saliterman

Lab 5: Arduino Uno Microcontroller Innovation Fellows Program Bootcamp Prof. Steven S. Saliterman Lab 5: Arduino Uno Microcontroller Innovation Fellows Program Bootcamp Prof. Steven S. Saliterman Exercise 5-1: Familiarization with Lab Box Contents Objective: To review the items required for working

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

TV Remote. Discover Engineering. Youth Handouts

TV Remote. Discover Engineering. Youth Handouts Discover Engineering Youth Handouts Electronic Component Guide Component Symbol Notes Amplifier chip 1 8 2 7 3 6 4 5 Capacitor LED The amplifier chip (labeled LM 386) has 8 legs, or pins. Each pin connects

More information

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE LABORATORY 7: IR SENSORS AND DISTANCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL: This section will introduce

More information

Peek-a-BOO Kit JAMECO PART NO / / Experience Level: Beginner Time Required: 1+ hour

Peek-a-BOO Kit JAMECO PART NO / / Experience Level: Beginner Time Required: 1+ hour Peek-a-BOO Kit JAMECO PART NO. 2260076/2260084/2260092 Experience Level: Beginner Time Required: 1+ hour Make a ghost that reacts to an approaching object in the room. When idle, the ghost will keep its

More information

Lab 5: Inverted Pendulum PID Control

Lab 5: Inverted Pendulum PID Control Lab 5: Inverted Pendulum PID Control In this lab we will be learning about PID (Proportional Integral Derivative) control and using it to keep an inverted pendulum system upright. We chose an inverted

More information

HAW-Arduino. Sensors and Arduino F. Schubert HAW - Arduino 1

HAW-Arduino. Sensors and Arduino F. Schubert HAW - Arduino 1 HAW-Arduino Sensors and Arduino 14.10.2010 F. Schubert HAW - Arduino 1 Content of the USB-Stick PDF-File of this script Arduino-software Source-codes Helpful links 14.10.2010 HAW - Arduino 2 Report for

More information

Assembly Manual for VFO Board 2 August 2018

Assembly Manual for VFO Board 2 August 2018 Assembly Manual for VFO Board 2 August 2018 Parts list (Preliminary) Arduino 1 Arduino Pre-programmed 1 Faceplate Assorted Header Pins Full Board Rev A 10 104 capacitors 1 Rotary encode with switch 1 5-volt

More information

The Robot Builder's Shield for Arduino

The Robot Builder's Shield for Arduino The Robot Builder's Shield for Arduino by Ro-Bot-X Designs Introduction. The Robot Builder's Shield for Arduino was especially designed to make building robots with Arduino easy. The built in dual motors

More information

Saturday Academy Program

Saturday Academy Program Lesson Plans High School Courses Donald L. McCoy K-to-College STEM Education Consultant thempitman@gmail.com Last Update: October 17, 2018 Virtual Reality Coding using PlayCanvas RobotC Coding Applications

More information

UNIT 4 VOCABULARY SKILLS WORK FUNCTIONS QUIZ. A detailed explanation about Arduino. What is Arduino? Listening

UNIT 4 VOCABULARY SKILLS WORK FUNCTIONS QUIZ. A detailed explanation about Arduino. What is Arduino? Listening UNIT 4 VOCABULARY SKILLS WORK FUNCTIONS QUIZ 4.1 Lead-in activity Find the missing letters Reading A detailed explanation about Arduino. What is Arduino? Listening To acquire a basic knowledge about Arduino

More information

Arduino Setup & Flexing the ExBow

Arduino Setup & Flexing the ExBow Arduino Setup & Flexing the ExBow What is Arduino? Before we begin, We must first download the Arduino and Ardublock software. For our Set-up we will be using Arduino. Arduino is an electronics platform.

More information

Workshops Elisava Introduction to programming and electronics (Scratch & Arduino)

Workshops Elisava Introduction to programming and electronics (Scratch & Arduino) Workshops Elisava 2011 Introduction to programming and electronics (Scratch & Arduino) What is programming? Make an algorithm to do something in a specific language programming. Algorithm: a procedure

More information

The µbotino Microcontroller Board

The µbotino Microcontroller Board The µbotino Microcontroller Board by Ro-Bot-X Designs Introduction. The µbotino Microcontroller Board is an Arduino compatible board for small robots. The 5x5cm (2x2 ) size and the built in 3 pin connectors

More information

Name & SID 1 : Name & SID 2:

Name & SID 1 : Name & SID 2: EE40 Final Project-1 Smart Car Name & SID 1 : Name & SID 2: Introduction The final project is to create an intelligent vehicle, better known as a robot. You will be provided with a chassis(motorized base),

More information

Boe-Bot robot manual

Boe-Bot robot manual Tallinn University of Technology Department of Computer Engineering Chair of Digital Systems Design Boe-Bot robot manual Priit Ruberg Erko Peterson Keijo Lass Tallinn 2016 Contents 1 Robot hardware description...3

More information

For Experimenters and Educators

For Experimenters and Educators For Experimenters and Educators ARobot (pronounced "A robot") is a computer controlled mobile robot designed for Experimenters and Educators. Ages 14 and up (younger with help) can enjoy unlimited experimentation

More information