Session 11 Introduction to Robotics and Programming mbot. >_ {Code4Loop}; Roochir Purani

Size: px
Start display at page:

Download "Session 11 Introduction to Robotics and Programming mbot. >_ {Code4Loop}; Roochir Purani"

Transcription

1 Session 11 Introduction to Robotics and Programming mbot >_ {Code4Loop}; Roochir Purani

2 RECAP from last 2 sessions 3D Programming with Events and Messages Homework Review /Questions Understanding 3D Programming environment, events, and objects. Understanding of Camera movement through the story scene. Progress check on Project work and presentation questions.

3 Introduction to Artificial Intelligence (AI) In order to perform tasks, a robot needs to be able to know what to do. This means it must be able to think and make decisions. In computers, this is called Artificial Intelligence orai. What do you think it means to be intelligent? Can you give some examples of intelligent things?

4 Artificial Intelligence (continued) Can you give some examples of things that possess artificial intelligence? Let's watch more movie clips that show Hollywood's interpretations of artificial intelligence and robotics. While you watch the movie clips, think about how Hollywood's version is the same as and different from the definitions we have just been discussing.

5 Artificial Intelligence (AI)! Artificial Intelligence (2001) This trailer shows a bit about a robot who looks like a boy and provides the opportunity to discuss the possible fine line between a highly intelligent robot and a human. What makes a boy real as opposed to a robot? Can you compare this story to the classic story Pinocchio?

6 Artificial Intelligence: Discussion! How is Hollywood's version of robotics the same as what we have discussed here?! How is it different?! How is Hollywood's version of artificial intelligence the same as what we have discussed here?! How is it different?! How has Hollywood's vision of robotics changed in the last 100 years?

7 Introduction to Braitenberg Vehicles We have discussed that robots need intelligence in order to be controlled. We often use the term behavior to describe how the controller works and reacts to its environment. There are many, many different ways to design robot behaviors. Here we will look at one simple way of defining behaviors, created by a psychologist named Valentino Braitenberg.

8 Braitenberg Vehicles (continued) Valentino Braitenberg described a series of vehicles, from simple to more complex. Each vehicle has one or more abstract motors and sensors. Here is what a simple "Braitenberg Vehicle" looks like: Its sensors are in the front Its motors are on each side

9 Braitenberg Vehicles (continued) In order for a robot to move, there must be physical connections (e.g., wires) between the robot's sensors and its motors. These connections can be: Positive A sensed property has a positive effect on a motor by providing more power in relation to higher sensory input. Negative A sensed property has a negative effect on a motor by providing less power in relation to higher sensory input.

10 Braitenberg Vehicles (continued) Braitenberg labeled robot reactions in terms that describe how humans react. The next slides shows one examples of simple vehicles that Braitenberg created andnamed: "aggression" "fear" "love" "exploration"

11 Braitenberg Vehicles: Aggression Aggression is a vehicle that speeds up as it gets closer to an input source.

12 Braitenberg Vehicles: Fear Fear steers quickly away from an input source.

13 Braitenberg Vehicles: Love Love is a vehicle that slows down as it gets closer to an input source.

14 Braitenberg Vehicles: Exploration Exploration turns away from an input source slowly, as if looking for another source to investigate.

15 Robotics Introduction Robots come in different sizes and shapes because of the functions and use that they provide to humans. Input Devices: Sensors provide input to the computers. Output Devices: LED s, Display screens, motors, actuators, servo motors Processing Unit: CPU is an ARM processor on Arduino Uno motherboard Multiple sensors on board : Light sensor Sound Sensor Multiple LEDs, Button, Buzzer for sounds, Wi-fi Connection to connect to the One computer Next slide shows the main computer picture.

16 Arduino mbot vehicle onboard sensors and external sensors

17 mbot Robot Movement : Activity! Now you will experiment with an mbot robot vehicle using Programming language Scratch and Robot extension to connect to mbot! Follow the instructions on the lab worksheet.! The lab has two parts: 1. Each student identifies the part of the robot including sensors 2. Object collision hands on 3. Each student program the movement to complete the robot route/journey

18 Scratch MakeBlock mbot Robot commands

19 Robot Programming activity Step 1 Make the robot move forward at speed 50 Turn LED Light Green Step 3 Make the robot turn right Turn LED Light Red Step 5 Make robot read Ultrasonic sensor values Step 2 Make the robot turn left Step 4 Make the robot reverse (backward) Make sound C4, E4 C4 E4 Step 6 Collision detection and avoidance Robot act based on the value Move forward check for condition If Reading value is < 5, Stop

20 Step 1, 2, 3

21 Robot Collision detection and avoidance logic Flow chart

22 Robot Programming Object Collision detection and avoidance Step 6

23 Homework Identify 5 different kinds of robots that you may have seen or heard about and identify their function/what they are used for. Continue to refine your project and presentation. Setup 1-on-1 time.

24 Session 11 Extra How to Present Guide Hints and Tips >_ {Code4Loop}; Roochir Purani

25 Organizing your presentation Duration of Presentation: 10 Minute or less per Student Here are some steps to follow when organizing your project presentation: Make sure your project is fully tested and complete. Plan to demonstrate how you used the concepts learned in this course. If it is a group presentation, plan who will do which parts of the presentation. Be clear and Loud so everyone can hear you. No hands in the pocket Look at Audience (they are all familiar to you, and feel comfortable) No Umm s and Uhh s Try to avoid these if possible. Say Short and Clear Sentences.

26 Preparing Presentation Guidelines Create a presentation outline to plan your complete animation project presentation. : Introduction, Presentation of the project, Conclusions Section 1: Introduction Introduce yourself. Gain your listeners attention. Say the theme of the project. Give the overview of your project. Give the audience a reason to listen to the presentation. Say why you picked it and what you liked about it. What is the usefulness of the project and may be One or Two features.

27 Project Presentation Guidelines Section 2: Presentation of the project Organize the presentation in a logical flow. Show all capabilities of your project. User screens, navigation, action, menu, help, documentation etc. Demonstrate how different course concepts were used in the over project. e.g. Use of Flow chart, Screen design (Show printout OR on the Screen) If-then-else, Forever loop, variables and data, events and messages testing, debugging, documentation, If possible, include helpful transitions between different topic. e.g How does a different scene work? How does user get score, what happens when some events occur?

28 Project Presentation Guidelines Section 3: Conclusion Summarize the project in a memorable way. Motivate the audience to respond. Ask questions : Did you like it? What would you like to see different? Have the audience Try and Share with others!! Provide closure. Thank the audience for listening.

29 Thank you!

How to present good. Rebecca Barter

How to present good. Rebecca Barter How to present good Rebecca Barter How to present good Rebecca Barter Sources: www.colorado.edu/ibs/hs/barham/courses/econ4999/preparingpresentations.ppt http://blog.ted.com/10-tips-for-better-slide-decks/

More information

I.1 Smart Machines. Unit Overview:

I.1 Smart Machines. Unit Overview: I Smart Machines I.1 Smart Machines Unit Overview: This unit introduces students to Sensors and Programming with VEX IQ. VEX IQ Sensors allow for autonomous and hybrid control of VEX IQ robots and other

More information

Morse Code Autonomous Challenge. Overview. Challenge. Activity. Difficulty. Materials Needed. Class Time. Grade Level. Learning Focus.

Morse Code Autonomous Challenge. Overview. Challenge. Activity. Difficulty. Materials Needed. Class Time. Grade Level. Learning Focus. Overview Challenge Students will design, program, and build a robot that communicates with Morse code. The robot must use its communication system to tell the operator when the robot completes each task

More information

Some prior experience with building programs in Scratch is assumed. You can find some introductory materials here:

Some prior experience with building programs in Scratch is assumed. You can find some introductory materials here: Robotics 1b Building an mbot Program Some prior experience with building programs in Scratch is assumed. You can find some introductory materials here: http://www.mblock.cc/edu/ The mbot Blocks The mbot

More information

A Day in the Life CTE Enrichment Grades 3-5 mblock Programs Using the Sensors

A Day in the Life CTE Enrichment Grades 3-5 mblock Programs Using the Sensors Activity 1 - Reading Sensors A Day in the Life CTE Enrichment Grades 3-5 mblock Programs Using the Sensors Computer Science Unit This tutorial teaches how to read values from sensors in the mblock IDE.

More information

University of Florida Department of Electrical and Computer Engineering Intelligent Machine Design Laboratory EEL 4665 Spring 2013 LOSAT

University of Florida Department of Electrical and Computer Engineering Intelligent Machine Design Laboratory EEL 4665 Spring 2013 LOSAT University of Florida Department of Electrical and Computer Engineering Intelligent Machine Design Laboratory EEL 4665 Spring 2013 LOSAT Brandon J. Patton Instructors: Drs. Antonio Arroyo and Eric Schwartz

More information

How Do You Make a Program Wait?

How Do You Make a Program Wait? How Do You Make a Program Wait? How Do You Make a Program Wait? Pre-Quiz 1. What is an algorithm? 2. Can you think of a reason why it might be inconvenient to program your robot to always go a precise

More information

ACTIVITY 1: Measuring Speed

ACTIVITY 1: Measuring Speed CYCLE 1 Developing Ideas ACTIVITY 1: Measuring Speed Purpose In the first few cycles of the PET course you will be thinking about how the motion of an object is related to how it interacts with the rest

More information

The light sensor, rotation sensor, and motors may all be monitored using the view function on the RCX.

The light sensor, rotation sensor, and motors may all be monitored using the view function on the RCX. Review the following material on sensors. Discuss how you might use each of these sensors. When you have completed reading through this material, build a robot of your choosing that has 2 motors (connected

More information

An Introduction to Programming using the NXT Robot:

An Introduction to Programming using the NXT Robot: An Introduction to Programming using the NXT Robot: exploring the LEGO MINDSTORMS Common palette. Student Workbook for independent learners and small groups The following tasks have been completed by:

More information

Line-Follower Challenge

Line-Follower Challenge Line-Follower Challenge Pre-Activity Quiz 1. How does a color sensor work? Does the color sensor detect white or black as a higher amount of light reflectivity? Absorbance? 2. Can you think of a method

More information

Lesson Plans. Lesson 1 Lesson 2 Lesson 3. Lesson 4 Lesson 5

Lesson Plans. Lesson 1 Lesson 2 Lesson 3. Lesson 4 Lesson 5 Lesson Plans Lesson 1 Lesson 2 Lesson 3 Lesson 4 Lesson 5 2 The Ice Breaker Activity Learning Objectives: Class Activity: Activity Instructions: Definition: Understanding Computers Without Using a Computer!

More information

Ev3 Robotics Programming 101

Ev3 Robotics Programming 101 Ev3 Robotics Programming 101 1. EV3 main components and use 2. Programming environment overview 3. Connecting your Robot wirelessly via bluetooth 4. Starting and understanding the EV3 programming environment

More information

How to Present a 4 H Computer Assisted Demonstra on

How to Present a 4 H Computer Assisted Demonstra on How to Present a 4 H Computer Assisted Demonstra on Copyright Rules If you look under the insert menu of many applications, you may find the option to insert pictures or clip art. If you are going to use

More information

PLEASE NOTE: EVERY ACTIVITY IN THIS SECTION MUST BE SAVED AS A WAV AND UPLOADED TO YOUR BOX.COM FOLDER FOR GRADING.

PLEASE NOTE: EVERY ACTIVITY IN THIS SECTION MUST BE SAVED AS A WAV AND UPLOADED TO YOUR BOX.COM FOLDER FOR GRADING. PLEASE NOTE: EVERY ACTIVITY IN THIS SECTION MUST BE SAVED AS A WAV AND UPLOADED TO YOUR BOX.COM FOLDER FOR GRADING. Multitrack Recording There will often be times when you will want to record more than

More information

Lab 7: Introduction to Webots and Sensor Modeling

Lab 7: Introduction to Webots and Sensor Modeling Lab 7: Introduction to Webots and Sensor Modeling This laboratory requires the following software: Webots simulator C development tools (gcc, make, etc.) The laboratory duration is approximately two hours.

More information

TETRIX PULSE Workshop Guide

TETRIX PULSE Workshop Guide TETRIX PULSE Workshop Guide 44512 1 Who Are We and Why Are We Here? Who is Pitsco? Pitsco s unwavering focus on innovative educational solutions and unparalleled customer service began when the company

More information

understanding sensors

understanding sensors The LEGO MINDSTORMS EV3 set includes three types of sensors: Touch, Color, and Infrared. You can use these sensors to make your robot respond to its environment. For example, you can program your robot

More information

Sample Pages. Classroom Activities for the Busy Teacher: NXT. 2 nd Edition. Classroom Activities for the Busy Teacher: NXT -

Sample Pages. Classroom Activities for the Busy Teacher: NXT. 2 nd Edition. Classroom Activities for the Busy Teacher: NXT - Classroom Activities for the Busy Teacher: NXT 2 nd Edition Table of Contents Chapter 1: Introduction... 1 Chapter 2: What is a robot?... 5 Chapter 3: Flowcharting... 11 Chapter 4: DomaBot Basics... 15

More information

Worksheet Answer Key: Tree Measurer Projects > Tree Measurer

Worksheet Answer Key: Tree Measurer Projects > Tree Measurer Worksheet Answer Key: Tree Measurer Projects > Tree Measurer Maroon = exact answers Magenta = sample answers Construct: Test Questions: Caliper Reading Reading #1 Reading #2 1492 1236 1. Subtract to find

More information

Robotic Programming. Skills Checklist

Robotic Programming. Skills Checklist Robotic Programming Skills Checklist Name: Motors Motors Direction Steering Power Duration Complete B & C Forward Straight 75 3 Rotations B & C Forward Straight 100 5 Rotatins B & C Forward Straight 50

More information

COSC343: Artificial Intelligence

COSC343: Artificial Intelligence COSC343: Artificial Intelligence Lecture 2: Starting from scratch: robotics and embodied AI Alistair Knott Dept. of Computer Science, University of Otago Alistair Knott (Otago) COSC343 Lecture 2 1 / 29

More information

Setup Download the Arduino library (link) for Processing and the Lab 12 sketches (link).

Setup Download the Arduino library (link) for Processing and the Lab 12 sketches (link). Lab 12 Connecting Processing and Arduino Overview In the previous lab we have examined how to connect various sensors to the Arduino using Scratch. While Scratch enables us to make simple Arduino programs,

More information

Inspiring Creative Fun Ysbrydoledig Creadigol Hwyl. LEGO Bowling Workbook

Inspiring Creative Fun Ysbrydoledig Creadigol Hwyl. LEGO Bowling Workbook Inspiring Creative Fun Ysbrydoledig Creadigol Hwyl LEGO Bowling Workbook Robots are devices, sometimes they run basic instructions via electric circuitry or on most occasions they can be programmable.

More information

Industrial Automation Training Academy. Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours)

Industrial Automation Training Academy. Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours) nfi Industrial Automation Training Academy Presents Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours) For: Electronics & Communication Engineering Electrical Engineering Instrumentation

More information

Module. Introduction to Scratch

Module. Introduction to Scratch EGN-1002 Circuit analysis Module Introduction to Scratch Slide: 1 Intro to visual programming environment Intro to programming with multimedia Story-telling, music-making, game-making Intro to programming

More information

1 Lab + Hwk 4: Introduction to the e-puck Robot

1 Lab + Hwk 4: Introduction to the e-puck Robot 1 Lab + Hwk 4: Introduction to the e-puck Robot This laboratory requires the following: (The development tools are already installed on the DISAL virtual machine (Ubuntu Linux) in GR B0 01): C development

More information

Robots in Town Autonomous Challenge. Overview. Challenge. Activity. Difficulty. Materials Needed. Class Time. Grade Level. Objectives.

Robots in Town Autonomous Challenge. Overview. Challenge. Activity. Difficulty. Materials Needed. Class Time. Grade Level. Objectives. Overview Challenge Students will design, program, and build a robot that drives around in town while avoiding collisions and staying on the roads. The robot should turn around when it reaches the outside

More information

Flowcharts and Programs

Flowcharts and Programs Flowcharts and Programs Engineering with Labview Laptop Program Schematic Editor Front Panel & Block Diagram Block Diagram: Program Code Front Panel: Virtual Dashboard Front Panel Block Diagram

More information

Adaptive Touch Sampling for Energy-Efficient Mobile Platforms

Adaptive Touch Sampling for Energy-Efficient Mobile Platforms Adaptive Touch Sampling for Energy-Efficient Mobile Platforms Kyungtae Han Intel Labs, USA Alexander W. Min, Dongho Hong, Yong-joon Park Intel Corporation, USA April 16, 2015 Touch Interface in Today s

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Introduction to Game AI Fall 2018 What does the A stand for? 2 What is AI? AI is the control of every non-human entity in a game The other cars in a car game The opponents

More information

Your EdVenture into Robotics 10 Lesson plans

Your EdVenture into Robotics 10 Lesson plans Your EdVenture into Robotics 10 Lesson plans Activity sheets and Worksheets Find Edison Robot @ Search: Edison Robot Call 800.962.4463 or email custserv@ Lesson 1 Worksheet 1.1 Meet Edison Edison is a

More information

CS494/594: Software for Intelligent Robotics

CS494/594: Software for Intelligent Robotics CS494/594: Software for Intelligent Robotics Spring 2007 Tuesday/Thursday 11:10 12:25 Instructor: Dr. Lynne E. Parker TA: Rasko Pjesivac Outline Overview syllabus and class policies Introduction to class:

More information

Contents. Mental Commit Robot (Mental Calming Robot) Industrial Robots. In What Way are These Robots Intelligent. Video: Mental Commit Robots

Contents. Mental Commit Robot (Mental Calming Robot) Industrial Robots. In What Way are These Robots Intelligent. Video: Mental Commit Robots Human Robot Interaction for Psychological Enrichment Dr. Takanori Shibata Senior Research Scientist Intelligent Systems Institute National Institute of Advanced Industrial Science and Technology (AIST)

More information

RoboCup Sumo Workshop. Margaux Edwards July 2018

RoboCup Sumo Workshop. Margaux Edwards July 2018 RoboCup Sumo Workshop Margaux Edwards July 2018 Plan for today: The Challenge Designing your Robot Programming your Robot Ultrasonic Sensor Light/Colour Sensor Competition Time! The Challenge: What is

More information

Explore and Challenge:

Explore and Challenge: Explore and Challenge: The Pi-Stop Traffic Light Sequence SEE ALSO: Discover: The Pi-Stop: For more information about Pi-Stop and how to use it. Setup: Scratch GPIO: For instructions on how to setup Scratch

More information

Pickin. Objective. Resources. The Skills Map. Assessments

Pickin. Objective. Resources. The Skills Map. Assessments Pickin Objective You re objective for this module is to develop your fingerpicking skills. If you ve never played fingerstyle before it s likely to feel a little clumsy at first, like the first time you

More information

CRAZY LOVE c-group Study

CRAZY LOVE c-group Study CRAZY LOVE c-group Study Throughout this book, you REALLY want to encourage your group to read, underline, star, highlight and engage the book. That way they will come in prepared to have a discussion.

More information

Capstone Python Project Features CSSE 120, Introduction to Software Development

Capstone Python Project Features CSSE 120, Introduction to Software Development Capstone Python Project Features CSSE 120, Introduction to Software Development General instructions: The following assumes a 3-person team. If you are a 2-person or 4-person team, see your instructor

More information

Robot Programming Manual

Robot Programming Manual 2 T Program Robot Programming Manual Two sensor, line-following robot design using the LEGO NXT Mindstorm kit. The RoboRAVE International is an annual robotics competition held in Albuquerque, New Mexico,

More information

Tilt Sensor Maze Game

Tilt Sensor Maze Game Tilt Sensor Maze Game How to Setup the tilt sensor This describes how to set up and subsequently use a tilt sensor. In this particular example, we will use the tilt sensor to control a maze game, but it

More information

5a. Reactive Agents. COMP3411: Artificial Intelligence. Outline. History of Reactive Agents. Reactive Agents. History of Reactive Agents

5a. Reactive Agents. COMP3411: Artificial Intelligence. Outline. History of Reactive Agents. Reactive Agents. History of Reactive Agents COMP3411 15s1 Reactive Agents 1 COMP3411: Artificial Intelligence 5a. Reactive Agents Outline History of Reactive Agents Chemotaxis Behavior-Based Robotics COMP3411 15s1 Reactive Agents 2 Reactive Agents

More information

RUNNYMEDE COLLEGE & TECHTALENTS

RUNNYMEDE COLLEGE & TECHTALENTS RUNNYMEDE COLLEGE & TECHTALENTS Why teach Scratch? The first programming language as a tool for writing programs. The MIT Media Lab's amazing software for learning to program, Scratch is a visual, drag

More information

Dipartimento di Elettronica Informazione e Bioingegneria Robotics

Dipartimento di Elettronica Informazione e Bioingegneria Robotics Dipartimento di Elettronica Informazione e Bioingegneria Robotics Behavioral robotics @ 2014 Behaviorism behave is what organisms do Behaviorism is built on this assumption, and its goal is to promote

More information

6.081, Fall Semester, 2006 Assignment for Week 6 1

6.081, Fall Semester, 2006 Assignment for Week 6 1 6.081, Fall Semester, 2006 Assignment for Week 6 1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.099 Introduction to EECS I Fall Semester, 2006 Assignment

More information

Devastator Tank Mobile Platform with Edison SKU:ROB0125

Devastator Tank Mobile Platform with Edison SKU:ROB0125 Devastator Tank Mobile Platform with Edison SKU:ROB0125 From Robot Wiki Contents 1 Introduction 2 Tutorial 2.1 Chapter 2: Run! Devastator! 2.2 Chapter 3: Expansion Modules 2.3 Chapter 4: Build The Devastator

More information

15 TUBE CLEANER: A SIMPLE SHOOTING GAME

15 TUBE CLEANER: A SIMPLE SHOOTING GAME 15 TUBE CLEANER: A SIMPLE SHOOTING GAME Tube Cleaner was designed by Freid Lachnowicz. It is a simple shooter game that takes place in a tube. There are three kinds of enemies, and your goal is to collect

More information

Chapter 11-Shooting Action

Chapter 11-Shooting Action Chapter 11-Shooting Action Interpreting Action There are three basic ways of interpreting action in a still photograph: Stopping action (42) Blurring movement Combining both in the same image Any

More information

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Ahmed Okasha, Assistant Lecturer okasha1st@gmail.com Objective Have a

More information

Sensor and. Motor Control Lab. Abhishek Bhatia. Individual Lab Report #1

Sensor and. Motor Control Lab. Abhishek Bhatia. Individual Lab Report #1 Sensor and 10/16/2015 Motor Control Lab Individual Lab Report #1 Abhishek Bhatia Team D: Team HARP (Human Assistive Robotic Picker) Teammates: Alex Brinkman, Feroze Naina, Lekha Mohan, Rick Shanor I. Individual

More information

OZOBLOCKLY BASIC TRAINING LESSON 1 SHAPE TRACER 1

OZOBLOCKLY BASIC TRAINING LESSON 1 SHAPE TRACER 1 OZOBLOCKLY BASIC TRAINING LESSON 1 SHAPE TRACER 1 PREPARED FOR OZOBOT BY LINDA MCCLURE, M. ED. ESSENTIAL QUESTION How can we make Ozobot move using programming? OVERVIEW The OzoBlockly games (games.ozoblockly.com)

More information

Exercise 5: PWM and Control Theory

Exercise 5: PWM and Control Theory Exercise 5: PWM and Control Theory Overview In the previous sessions, we have seen how to use the input capture functionality of a microcontroller to capture external events. This functionality can also

More information

E90 Project Proposal. 6 December 2006 Paul Azunre Thomas Murray David Wright

E90 Project Proposal. 6 December 2006 Paul Azunre Thomas Murray David Wright E90 Project Proposal 6 December 2006 Paul Azunre Thomas Murray David Wright Table of Contents Abstract 3 Introduction..4 Technical Discussion...4 Tracking Input..4 Haptic Feedack.6 Project Implementation....7

More information

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment

Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free Human Following Navigation in Outdoor Environment Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,, March 16-18, 2016, Hong Kong Motion Control of a Three Active Wheeled Mobile Robot and Collision-Free

More information

VIDEO COACHING PROGRAM FREQUENTLY ASKED QUESTIONS

VIDEO COACHING PROGRAM FREQUENTLY ASKED QUESTIONS Geneviève Benoit VifArgent Horsemanship Licensed Parelli 3 Star Instructor THE SIMPLE AND AFFORDABLE SOLUTION FOR CUSTOMIZED COACHING AND GREAT RESULTS! VIDEO COACHING PROGRAM FREQUENTLY ASKED QUESTIONS

More information

production RECORD SOUND To access our full set of Into Film mini filmmaking guides visit intofilm.org mini filmmaking guides INTOFILM.

production RECORD SOUND To access our full set of Into Film mini filmmaking guides visit intofilm.org mini filmmaking guides INTOFILM. PRODUCTION mini filmmaking guides production 4. To access our full set of Into Film mini filmmaking guides visit intofilm.org DEVELOPMENT (3 guides) PRE-PRODUCTION (4 guides) PRODUCTION (5 guides) 1. LIGHT

More information

OZOBOT BASIC TRAINING LESSON 1 WHAT IS OZOBOT?

OZOBOT BASIC TRAINING LESSON 1 WHAT IS OZOBOT? OZOBOT BASIC TRAINING LESSON 1 WHAT IS OZOBOT? What students will learn What kind of a robot is Ozobot? How does Ozobot sense its environment and move in it? How can you give commands to Ozobot? Topics

More information

Peek-a-BOO Kit JAMECO PART NO / / Experience Level: Beginner Time Required: 1+ hour

Peek-a-BOO Kit JAMECO PART NO / / Experience Level: Beginner Time Required: 1+ hour Peek-a-BOO Kit JAMECO PART NO. 2260076/2260084/2260092 Experience Level: Beginner Time Required: 1+ hour Make a ghost that reacts to an approaching object in the room. When idle, the ghost will keep its

More information

Properties of Special Parallelograms

Properties of Special Parallelograms Properties of Special Parallelograms Lab Summary: This lab consists of four activities that lead students through the construction of a trapezoid. Students then explore the shapes, making conclusions about

More information

Introduction to programming with Fable

Introduction to programming with Fable How to get started. You need a dongle and a joint module (the actual robot) as shown on the right. Put the dongle in the computer, open the Fable programme and switch on the joint module on the page. The

More information

EQ-ROBO Programming : bomb Remover Robot

EQ-ROBO Programming : bomb Remover Robot EQ-ROBO Programming : bomb Remover Robot Program begin Input port setting Output port setting LOOP starting point (Repeat the command) Condition 1 Key of remote controller : LEFT UP Robot go forwards after

More information

A servo is an electric motor that takes in a pulse width modulated signal that controls direction and speed. A servo has three leads:

A servo is an electric motor that takes in a pulse width modulated signal that controls direction and speed. A servo has three leads: Project 4: Arduino Servos Part 1 Description: A servo is an electric motor that takes in a pulse width modulated signal that controls direction and speed. A servo has three leads: a. Red: Current b. Black:

More information

Marine Debris Cleaner Phase 1 Navigation

Marine Debris Cleaner Phase 1 Navigation Southeastern Louisiana University Marine Debris Cleaner Phase 1 Navigation Submitted as partial fulfillment for the senior design project By Ryan Fabre & Brock Dickinson ET 494 Advisor: Dr. Ahmad Fayed

More information

Driver Education Classroom and In-Car Curriculum Unit 3 Space Management System

Driver Education Classroom and In-Car Curriculum Unit 3 Space Management System Driver Education Classroom and In-Car Curriculum Unit 3 Space Management System Driver Education Classroom and In-Car Instruction Unit 3-2 Unit Introduction Unit 3 will introduce operator procedural and

More information

Collective Robotics. Marcin Pilat

Collective Robotics. Marcin Pilat Collective Robotics Marcin Pilat Introduction Painting a room Complex behaviors: Perceptions, deductions, motivations, choices Robotics: Past: single robot Future: multiple, simple robots working in teams

More information

Introduction to Arduino HW Labs

Introduction to Arduino HW Labs Introduction to Arduino HW Labs In the next six lab sessions, you ll attach sensors and actuators to your Arduino processor This session provides an overview for the devices LED indicators Text/Sound Output

More information

Module: Arduino as Signal Generator

Module: Arduino as Signal Generator Name/NetID: Teammate/NetID: Module: Laboratory Outline In our continuing quest to access the development and debugging capabilities of the equipment on your bench at home Arduino/RedBoard as signal generator.

More information

2D Platform. Table of Contents

2D Platform. Table of Contents 2D Platform Table of Contents 1. Making the Main Character 2. Making the Main Character Move 3. Making a Platform 4. Making a Room 5. Making the Main Character Jump 6. Making a Chaser 7. Setting Lives

More information

Module 5 Control for a Purpose

Module 5 Control for a Purpose Module 5 Control for a Purpose Learning Objectives Student is able to: Pass/ Merit 1 Design a control system P 2 Build a sequence of events to activate multiple devices concurrently P 3 Correct and improve

More information

Welcome to EGN-1935: Electrical & Computer Engineering (Ad)Ventures

Welcome to EGN-1935: Electrical & Computer Engineering (Ad)Ventures : ECE (Ad)Ventures Welcome to -: Electrical & Computer Engineering (Ad)Ventures This is the first Educational Technology Class in UF s ECE Department We are Dr. Schwartz and Dr. Arroyo. University of Florida,

More information

GrovePi Temp-Humidity Sensor Lesson Video Script. Slide 1

GrovePi Temp-Humidity Sensor Lesson Video Script. Slide 1 Slide 1 Grove Pi Temp-Humidity Lesson In this GrovePi lesson we will Kick it up with a Temperature-Humidity sensor. A temperature-humidity sensor is used to detect temperature and to detect humidity level

More information

Ensuring the Safety of an Autonomous Robot in Interaction with Children

Ensuring the Safety of an Autonomous Robot in Interaction with Children Machine Learning in Robot Assisted Therapy Ensuring the Safety of an Autonomous Robot in Interaction with Children Challenges and Considerations Stefan Walke stefan.walke@tum.de SS 2018 Overview Physical

More information

Robot: icub This humanoid helps us study the brain

Robot: icub This humanoid helps us study the brain ProfileArticle Robot: icub This humanoid helps us study the brain For the complete profile with media resources, visit: http://education.nationalgeographic.org/news/robot-icub/ Program By Robohub Tuesday,

More information

Instructors. Manual GEARED. After-School Robotics Program By Haley Hanson

Instructors. Manual GEARED. After-School Robotics Program By Haley Hanson Instructors GEARED UP Manual After-School Robotics Program By Haley Hanson Table of Contents Introduction 3 Before you Start 4 Program Overview 5 Proposed Timeline 6 Itemized Materials List and Sample

More information

Neural Models for Multi-Sensor Integration in Robotics

Neural Models for Multi-Sensor Integration in Robotics Department of Informatics Intelligent Robotics WS 2016/17 Neural Models for Multi-Sensor Integration in Robotics Josip Josifovski 4josifov@informatik.uni-hamburg.de Outline Multi-sensor Integration: Neurally

More information

CARD SORTING BOX USER S GUIDE. Model 20011

CARD SORTING BOX USER S GUIDE. Model 20011 CARD SORTING BOX USER S GUIDE Model 20011 Congratulations! You have just acquired an innovative, high quality product. We have put our highest effort into each development stage. We are sure that you will

More information

CURIE Academy, Summer 2014 Lab 2: Computer Engineering Software Perspective Sign-Off Sheet

CURIE Academy, Summer 2014 Lab 2: Computer Engineering Software Perspective Sign-Off Sheet Lab : Computer Engineering Software Perspective Sign-Off Sheet NAME: NAME: DATE: Sign-Off Milestone TA Initials Part 1.A Part 1.B Part.A Part.B Part.C Part 3.A Part 3.B Part 3.C Test Simple Addition Program

More information

PUBLICITY. Five Rules of Good News

PUBLICITY. Five Rules of Good News PUBLICITY Most Project Celebration organizers agree that getting media coverage before, during and after their event helps spread the word about why Project Celebration is needed and how the community

More information

PHYSICS 220 LAB #1: ONE-DIMENSIONAL MOTION

PHYSICS 220 LAB #1: ONE-DIMENSIONAL MOTION /53 pts Name: Partners: PHYSICS 22 LAB #1: ONE-DIMENSIONAL MOTION OBJECTIVES 1. To learn about three complementary ways to describe motion in one dimension words, graphs, and vector diagrams. 2. To acquire

More information

Project 27 Joystick Servo Control

Project 27 Joystick Servo Control Project 27 Joystick Servo Control For another simple project, let s use a joystick to control the two servos. You ll arrange the servos in such a way that you get a pan-tilt head, such as is used for CCTV

More information

Traffic Controller Timing Processes

Traffic Controller Timing Processes 4 Actuated Traffic Controller Timing Processes In Chapter 4, you will learn about the timing processes that run an actuated traffic controller. Many transportation engineers begin their study of signalized

More information

Exercise 10. Linear Slides EXERCISE OBJECTIVE

Exercise 10. Linear Slides EXERCISE OBJECTIVE Exercise 10 Linear Slides EXERCISE OBJECTIVE In this exercise, you will learn to use a linear slide. You will learn how to use the Linear Slide, Model 5209, to extend the work envelope of the Servo Robot.

More information

Section One: Prep PREP YOUR MOVIE

Section One: Prep PREP YOUR MOVIE Section One: Prep PREP YOUR MOVIE You ve got the urge to make a movie. You might not know what it s about yet, but you ve got something to say and you want people to hear it. This section has 11 chapters

More information

Laboratory Seven Stepper Motor and Feedback Control

Laboratory Seven Stepper Motor and Feedback Control EE3940 Microprocessor Systems Laboratory Prof. Andrew Campbell Spring 2003 Groups Names Laboratory Seven Stepper Motor and Feedback Control In this experiment you will experiment with a stepper motor and

More information

Revision for Grade 7 in Unit #1&3

Revision for Grade 7 in Unit #1&3 Your Name:.... Grade 7 / SEION 1 Matching :Match the terms with its explanations. Write the matching letter in the correct box. he first one has been done for you. (1 mark each) erm Explanation 1. electrical

More information

Introducing Scratch Game development does not have to be difficult or expensive. The Lifelong Kindergarten Lab at Massachusetts Institute

Introducing Scratch Game development does not have to be difficult or expensive. The Lifelong Kindergarten Lab at Massachusetts Institute Building Games and Animations With Scratch By Andy Harris Computers can be fun no doubt about it, and computer games and animations can be especially appealing. While not all games are good for kids (in

More information

CS148 - Building Intelligent Robots Lecture 2: Robotics Introduction and Philosophy. Instructor: Chad Jenkins (cjenkins)

CS148 - Building Intelligent Robots Lecture 2: Robotics Introduction and Philosophy. Instructor: Chad Jenkins (cjenkins) Lecture 2 Robot Philosophy Slide 1 CS148 - Building Intelligent Robots Lecture 2: Robotics Introduction and Philosophy Instructor: Chad Jenkins (cjenkins) Lecture 2 Robot Philosophy Slide 2 What is robotics?

More information

Learn about the RoboMind programming environment

Learn about the RoboMind programming environment RoboMind Challenges Getting Started Learn about the RoboMind programming environment Difficulty: (Easy), Expected duration: an afternoon Description This activity uses RoboMind, a robot simulation environment,

More information

Arduino and Servo Motor

Arduino and Servo Motor Arduino and Servo Motor 1. Basics of the Arduino Board and Arduino a. Arduino is a mini computer that can input and output data using the digital and analog pins b. Arduino Shield: mounts on top of Arduino

More information

Part II Coding the Animation

Part II Coding the Animation Part II Coding the Animation Welcome to Part 2 of a tutorial on programming with Alice and Garfield using the Alice 2 application software. In Part I of this tutorial, you created a scene containing characters

More information

Agent-based/Robotics Programming Lab II

Agent-based/Robotics Programming Lab II cis3.5, spring 2009, lab IV.3 / prof sklar. Agent-based/Robotics Programming Lab II For this lab, you will need a LEGO robot kit, a USB communications tower and a LEGO light sensor. 1 start up RoboLab

More information

The Discussion of this exercise covers the following points: Angular position control block diagram and fundamentals. Power amplifier 0.

The Discussion of this exercise covers the following points: Angular position control block diagram and fundamentals. Power amplifier 0. Exercise 6 Motor Shaft Angular Position Control EXERCISE OBJECTIVE When you have completed this exercise, you will be able to associate the pulses generated by a position sensing incremental encoder with

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

Behaviour-Based Control. IAR Lecture 5 Barbara Webb

Behaviour-Based Control. IAR Lecture 5 Barbara Webb Behaviour-Based Control IAR Lecture 5 Barbara Webb Traditional sense-plan-act approach suggests a vertical (serial) task decomposition Sensors Actuators perception modelling planning task execution motor

More information

Perception. The process of organizing and interpreting information, enabling us to recognize meaningful objects and events.

Perception. The process of organizing and interpreting information, enabling us to recognize meaningful objects and events. Perception The process of organizing and interpreting information, enabling us to recognize meaningful objects and events. At any moment our awareness focuses, like a flashlight beam, on only

More information

Autonomous Obstacle Avoiding and Path Following Rover

Autonomous Obstacle Avoiding and Path Following Rover Volume 114 No. 9 2017, 271-281 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Autonomous Obstacle Avoiding and Path Following Rover ijpam.eu Sandeep Polina

More information

Robotics Engineering DoDEA Career Technology Education Robot Programming

Robotics Engineering DoDEA Career Technology Education Robot Programming Robotics Engineering DoDEA Career Technology Education Robot Programming Area Competency G. Robot Programming 1. Introduction to Robot Programming ( / / ) ( / / ) Before you get started, print out this

More information

ZZZ (Advisor: Dr. A.A. Rodriguez, Electrical Engineering)

ZZZ (Advisor: Dr. A.A. Rodriguez, Electrical Engineering) Using a Fleet of Low-Cost Ground Robotic Vehicles to Play Complex Games: Development of an Artificial Intelligence (AI) Vehicle Fleet Coordination Engine GOALS. The proposed research shall focus on developing

More information

Objectives: Learn what an Arduino is and what it can do Learn what an LED is and how to use it Be able to wire and program an LED to blink

Objectives: Learn what an Arduino is and what it can do Learn what an LED is and how to use it Be able to wire and program an LED to blink Objectives: Learn what an Arduino is and what it can do Learn what an LED is and how to use it Be able to wire and program an LED to blink By the end of this session: You will know how to use an Arduino

More information

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT F. TIECHE, C. FACCHINETTI and H. HUGLI Institute of Microtechnology, University of Neuchâtel, Rue de Tivoli 28, CH-2003

More information