Atmospheric phase screen correction in ground based SAR with PS technique

Size: px
Start display at page:

Download "Atmospheric phase screen correction in ground based SAR with PS technique"

Transcription

1 DOI /s RESEARCH Open Access Atmospheric phase screen correction in ground based SAR with PS technique Zhiwei Qiu 1,2*, Yuxiao Ma 2 and Xiantao Guo 1 *Correspondence: qiuzhiwei 2008@163.com 1 Earth Science and Engineering, Hohai University, Xikang Road 1, Nanjing , China Full list of author information is available at the end of the article Abstract Ground-based synthetic aperture radar (GBSAR) is a powerful tool used in monitoring structures, such as bridges and dams. However, despite the extremely short range of GBSAR interferometry, the atmosphere effects cannot be neglected. The permanent scatterer technique is an effective operational tool that utilizes a long series of SAR data and detects information with high accuracy. An algorithm based on the permanent scatterer technique is developed in accordance with the phase model used in GBSAR interferometry. In this study, atmospheric correction is carried out on a real campaign (Geheyan Dam, China). The atmosphere effects created using this method, which utilizes SAR data, can be reduced effectively compared to when plumb line data are used. Keywords: Atmosphere effects, Permanent scatterers analysis, Monitoring structures, GBSAR interferometry Background Ground-based interferometry, with its two-dimensional imaging capability and ranging accuracy in millimeter, is increasingly recognized as an effective tool for monitoring structures, landslides, glaciers, and settlements. A number of studies have demonstrated the effectiveness of ground-based synthetic aperture radar (GBSAR) for remote monitoring of terrain slopes as an early warning system to assess the risk of rapid landslides and for retrieving the digital elevation model of illuminated terrains. Compared with satellite SAR systems, ground-based radar instrumentation can be set up specifically for a particular scenario geometry and can be operated without requiring special knowledge on interferometry theory. Whereas large-scale scenario can be acquired quickly through satellite SAR, ground-based observations appear to be more suitable for mapping localized terrain deformation (in the order of 1 1 km area). As a displacement detecting technique, ground-based interferometry is characterized by the following advantages (Bozzano et al. 2010; Brunner et al. 2003): 1. Continuous illumination of the interest area; 2. Safe operability (especially for unstable landslides with potential hazards); 3. Two-dimensional imaging capability under all weather conditions; 4. Sensitivity of submillimeter movements (less than 0.1 mm) along the line of sight The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

2 Page 2 of 15 The phase is very important for SAR interferometry, and similar to satellite survey, GBSAR has three contributions to phase measurement including (1) phase derived by the distance between targets and radar; (2) phase due to atmospheric effects; and (3) phase caused by noise. The latter two phases should be removed in the data processing, but atmospheric phase reduction is more critical than noise phase reduction in terms of their contributions to the observed phase. Although a number of studies have been conducted on atmospheric disturbance on satellite SAR interferometric measurements, the effects of atmospheric disturbance on GBSAR interferometric measurements have yet to be investigated comprehensively (Zhang et al. 2011). In this paper, an intensive phase model that considers time- and space-varying characteristics is introduced to provide accurate compensation for atmospheric effects. GBSAR interferometry and IBIS system section presents brief principles on groundbased SAR interferometry and a comparison with other remote measurements is also performed. A GB-InSAR instrument is also introduced in detail. In Permanent scatters analysis section. atmospheric delay is addressed by presenting a mathematical model based on permanent scatterer analysis. Methods of atmospheric correction based on PS section focuses on the proposed compensation approach. In Measurement campaign in the geheyan dam section, the experimental results on a real campaign data set are demonstrated and conclusions are presented in Conclusion section. GBSAR interferometry and IBIS system Synthetic aperture radar interferometry (InSAR) is a powerful technique for displacement monitoring, with its short revisiting time and active imaging for illuminated areas using the microwave technique. Theoretically, differential InSAR (DInSAR) techniques allow the generation of large-scale maps of the line-of-sight (LOS) component of terrain displacement with a cm-to-mm precision as well as the exposure of many geophysical phenomena, such as earthquake, volcanic movement, and surface subsidence (Casagli et al. 2010). GBSAR is a new type of radar system that can generate high-range and cross-range resolution by integrating step-frequency continuous waves instead of impulse radar and synthetic aperture techniques. The decorrelations due to space time limitation and low resolution for satellite SAR can be overcomed by GBSAR. Step frequency continuous wave (SFCW) technique The ground radar sensor adopts the SFCW technique to resolve the scenario in the range direction by detecting the position in the range of different targets placed along the line of sight of the radar. Range resolution is determined by the ground based radar waveform, because the precise range of Δr is related to the pulse durationτby the following (Massonnet and Adragna 1993): r = cτ 2 (1) where c refers to the speed of light in free space. For the signal of duration τ, time-band width product satisfies the equality τb = 1, where B is the equivalent bandwidth in Hz. Hence, the range resolution Δr may be expressed as follows:

3 Page 3 of 15 r = c 2B. (2) Equations (1) and (2) show that a better range resolution (corresponding to a smaller numerical value of Δr) can be obtained either by decreasing τ or increasing B. However, the points with long distance cannot be illuminated by the echoes with shorter pulse duration. Thus, instead of using short-time pulses, SFCW utilizes a large bandwidth by increasing the frequency of successive pulses linearly in discrete steps, as shown in Fig. 1. An SFCW radar has a narrow instantaneous bandwidth (corresponding to individual pulse) and a large effective bandwidth (see Fig. 1) as B = (N 1) f. (3) In SFCW radar, the signal source dwells sufficiently at each frequency f k = f 0 + kδf (k = 0, 1,, N 1) to allow the received echoes to reach the receiver, which allows the radar system to produce a group of electromagnetic waves with linearly increased frequency to guarantee long-distance transmission for electromagnetic wave during sweep time. If the max frequency bandwidth is 3 10 (Jianping et al. 2007) Hz, the range resolution calculated by formula Δr = C/2B is 0.5 m; hence, every 0.5 m of the monitoring area is divided into one unit along the radial direction (see Fig. 2). Synthetic aperture radar (SAR) technique Synthetic aperture technology is also a Doppler analysis technology, wherein Doppler shifts between different scatters with the same range can be acquired by radar motion to improve azimuth resolution. The synthetic aperture technique aims to use a real antenna with small motion as a long motion antenna, called synthetic aperture. A small antenna with a broad beam width contains high-frequency information on a point scatterer s response, which results in broader cross-range bandwidth. Fig. 1 Representation of SF-CW waveform in a frequency domain and b time domain

4 Page 4 of 15 Fig. 2 Resolution unit for IBIS system The inverse problem of reconstructing the scatterers response from a series of pulse return signals is called SAR focusing or synthetic aperture processing. This methodology, which was first demonstrated by Graham (1974) based on the concepts of Wiley (1954), improves azimuth resolution from the 4.5-km beam width for a single pulse to approximately 5 m for the full synthetic aperture. Focusing was first developed using optical processors, based on the concepts of holography (Hovanessian 1980). Currently however, all processors are digital. Several electronic algorithms for SAR focusing have been developed including the range-doppler (Curlander and McDonough 1991), seismic migration (Graham 1974), PRISME architecture (Jianping et al. 2007), and chirp scaling (Mingsheng and Hui 2003; Zhiwei et al. 2010; Strozzi et al. 2005). The same technique in the satellite system is employed in GBSAR, with a motion along the rail to acquire fine resolution in the azimuth direction (Noferini et al. 2007). Description of GBSAR System IBIS IBIS system is a GBSAR developed by IDS, Italy. In this system, the radio-frequency section radiates at a central frequency of 17.2 GHz (Ku-band), with a maximum bandwidth of 300 MHz. The synthetic aperture resolution is 0.5 m in range and 4.5 mrad in crossrange, with a maximum range of 4 km. The highest possible sampling rate is between 5 and 10 min, depending on the maximum range. More measurement param are listed in Table 1. This instrument has the following advantages in terms of accomplishing remote measurement as compared with the traditional tools (Wiley 1954): high mobility for quick deployment; high temporal and spatial resolution; continuous automated monitoring; real-time evaluation.

5 Page 5 of 15 Table 1 System param of IBIS Parameter name Target distance Bandwidth Central frequency Range resolution Cross-range resolution Measurement accuracy Weight Parameter value km 300 MHz 17.2 GHz 0.5 m 4.5 mrad 0.1 mm 100 kg This monitoring system consists of three main parts (Fig. 3) (1) radar sensor that includes two horn antennas for transmission and reception of electromagnetic waves, which is the most important component for this instrument; (2) a power supply, which can provide stable electricity and safety for the equipment; and (3) a 2-m long linear rail, which is critical for realizing the synthetic aperture. Permanent scatters analysis SAR interferometry can be used to generate DEM to monitor terrain changes with phase difference (interferometric fringes). High-quality interferogram is a precondition for acquiring accurate displacement. Thus, coherence is extremely important in defining interferogram quality. Coherence denotes a constant phase difference between the carrier wave of the LFM signal and the basic signal. In SAR interferometry, the pixels in the radar image with consistently high coherence over the entire observation period can be called as permanent scatterers (PSs) (Herrera et al. 2009; Hovanessian 1980). PS extraction begins with an estimation of the amplitude dispersion index for each pixel in the radar image because of its phase stability. The amplitude dispersion index of a given pixel is defined as D A = σ A m A, (4) Fig. 3 IBIS-L instrument

6 Page 6 of 15 where m A and σ A are the mean and standard deviation of the pixel amplitude respectively, value Athrough a temporal sequence of images. The pixels of PS are selected by considering only those pixels exhibiting D A values under a given threshold (typically D A 0.25). After PS extraction procedure, the interferometric phase modelφ diff,n,k of kth stable target in the nth interferogram can be written as ϕ diff,n,k = ϕ los,n,k + ϕ aps,n,k + ϕ scat,n,k + ϕ noise,n,k (5) where φ los,n,k refers to the phase difference along the line of sight between two adjacent observations. The interferogram can be divided into two parts, namely, linear displacement φ L,n,k and nonlinear displacement φ NL,n,k, based on its different characteristics. In Eq. 5, φ aps,n,k is the phase difference that occurs because of additional atmospheric disturbance (Murray 1966), and φ scat,n, k is the phase caused by the change of echo characteristic. For GBSAR, this part can be ignored because of the short sampling interval (approximately 6 min). The phase φ noise,n,k included in this phase model is obtained from the time and space decorrelation. The displacement phase can further be expressed as ϕ los,n,k = ϕ L,n,k + ϕ NL,n,k. (6) Considering the relationship of linear displacement and linear velocity, we can write ϕ L,n,k = 4π λ v(k) t ϕ los,n,k = 4π λ v(k) t + ϕ NL,n,k (7) where λ is the system wavelength (approximately 1.7 cm), v refers to the velocity of the target, and t is the illuminated interval. Finally, the expression of the interferometric phase model for GBSAR is ϕ diff,n,k = 4π λ v(k) t + e n,k, e n,k = ϕ NL,n,k + ϕ aps,n,k + ϕ noise,n,k, (8) where e n,k called phase residue, denotes the residue components except for the linear displacement phase in the interferometric phase. The interferometric phase model presents the qualitative phase contribution of these components. The displacement phase can be extracted from Eq. 8 based on their statistical characteristics. The equivalent atmospheric delay expressed in millimeter (or centimeter) is larger than the other measurement errors, making atmospheric compensation a critical problem in GBSAR interferometry. The approach of atmospheric correction based on PS theory is proposed in a later section, and the scheme of this procedure is shown in Fig. 4. Methods of atmospheric correction based on PS Accurate interferometric phase must be extracted from the corresponding complex data in two radar acquisitions. However, the pixels in the IBIS image suffer constantly from the effects of system frequency shift and thermal noise, different geometry, and unsuitable imaging algorithm. The radar system undergoes constant frequency shifts

7 Page 7 of 15 Radar Data Least square Image Registration M S x1, y1 x 1, y 1 Interferometric Phase model diff, nk, PSC selection Coherence Index D A Atmosphere phase compensation Linear fitting Master atmosphere 1 Phase extraction n e enk, N i 1 Linear velocity estimation v en, k enk, e Smoothing procedure For slaves Noise reduction with low pass filter APS Estimation APS master Atmosphere correction with Kriging Yes PS selection by 0.8 No Fig. 4 Diagram for the atmospheric phase compensation method in GBSAR data processing when the instrument is working and mismatch error caused by a different Doppler centroid will occur after the radar imaging procedure. Thermal noise can be received by the radar sensor, and the phase calculated from the signal can be affected by this disturbance. IBIS sensors acquire two-dimensional images by moving along a 2-m rail, and the vibrations caused by the motor can destroy the original geometry of radar to the target (Mario et al. 2008). Using an unsuitable imaging approach in data set acquisition would lead to wrong estimation for Doppler centroid or imaging param. Therefore, registration should be used to determine the corresponding pixels before interferometric processing of two SAR images. Pixel level registration is inadequate for SAR interferometry with respect to correct phase extraction. Hence, in this study, a high-accuracy registration method using least square algorithm is adopted for sub-pixel matching (Dei et al. 2009). GBSAR data for registration based on the least square method can be used by the following equations:

8 Page 8 of 15 v = M x1,y 1 S x2,y 2 x 2 = a 0 a 1 x 1 + a 2 y 1. y 2 = b 0 b 1 x 1 + b 2 y 1 (9) In Eq. 9, M x1,y 1 represents the intensity of pixel (x 1, y 1 ) in the master image and S x2,y 2 is the pixel intensity (x 2, y 2 ) in the slave image. a 0, a 1, a 2, b 0, b 1, and b 2 refer to the param for geometric correction. The slave image can be rectified using the equations above, which can be solved based on least square theory vv = min. After slave image registration, the interferometry procedure can be performed as follows: ϕ diff,n,k = ϕ master,n,k ϕ slave,n,k ϕ = arctan Im(u) Re(u), (10) where the phases φ master,n,k and φ slave,n,k belong to the corresponding pixels in the master and slave radar acquisition, respectively, and Im(u) and Re(u) refer to the imaginary and real components of radar data, respectively. The interferogram for monitoring can be calculated using the formula above (Pipia et al. 2007). The coherence maps associated with the dispersion index can be used in identifying stable targets. The easiest approach would be to use correlation thresholding. If a target constantly exhibits coherence greater than a suitable value, it would be selected as a PS candidate (PSC). However, the selection of PSCs should be reliable, because a larger window dimension for coherence estimation brings higher accuracy, but lowers the resolution. A small percentage of pixels affected by the decorrelation noise would be selected as PSC only when the correlation threshold is used. Better results in terms of PSC selection can be achieved using two strategies, namely, coherence and dispersion index (see Eq. 4). Pixel coherence estimated by 5 5 windows should be greater than 0.75; the index selected procedure can be performed next. Finally, pixels with a dispersion index smaller than 0.25 will be chosen as PS candidates (Leva et al. 2003). After PSC selection, Eq. 8 can be solved using the linear fitting method based on the discussion on the permanent scatterer analysis. The interferometric phase φ diff,n,k and sampling interval t are observed values. Linear velocity v and phase residuale n,k can be calculated using the least square linear fitting method. The linear displacement phase subtracted from the interferometric phase (phase residual including nonlinear displacement, atmospheric, and scatterer characteristics, as well as noise phase components) is left for processing. The other phases should be stripped one by one from the phase residual to enable estimation of the atmospheric phase for compensation. The average of residual phases for interferograms can be calculated as follows: e = 1 N n e n,k i=1 (11)

9 Page 9 of 15 The equation can be considered the master atmospheric phase APS master. Given the high-frequency signal distribution of the noise phase in the time series, the noise effects can be wiped from e n,k e by exploiting a low pass filter. This effect has spatial correlation and low-frequency signal distribution in the space domain based on the atmosphere distribution characteristics. The atmosphere phase screens the APS slave because atmosphere distribution can be solved using the smoothing algorithm for every e n,k e image. The atmospheric distribution phase for slaves can be acquired as follows (Bernardini et al. 2007; Dei et al. 2009): ϕ aps,n,k = APS slave + APS master (12) After atmospheric phase extraction, the coherence of PS candidates should be estimated once more according to the following formula: r = 1 N N ϕ scat,n,k n=1 (13) PSCs with coherence less than 0.8 can be chosen as the final permanent scatterers. A better atmosphere phase for SAR images can be achieved using these permanent scatterer points. In this paper, the Kriging interpolation method is utilized to estimate the atmosphere phase for every pixel. The formula for interpolation is APS(s 0 ) = M λ i APS(s i ) i=1 M d i λ i = 1, λ i = Mi=1 d i i=1 (14) where APS (s i ) denotes the atmosphere phase of the ith PS point, s 0 refers to the pixel for interpolation, and M is the number of PS points required for calculation. In the weighting function, λ i is the inverse distance weight and d i describes the distance between the PS point and the pixel for interpolation in the radar image (Noferini et al. 2005; Qihuang and Lixiang 2011). Thus far, atmosphere phase for selected radar image pixels has been estimated using the permanent scatterer selection. Once the APSs have been estimated and resampled on the uniform image grid, data can be compensated for this phase contribution (Strozzi et al. 2005; Pipia et al. 2008). After accurate atmosphere phase estimation and removal, we can compute the displacement phase including the linear and nonlinear components on a pixel-by-pixel basis (Lee et al. 2008). Measurement campaign in the Geheyan Dam The test site A measurement campaign was tailored to test the capacity of the GBSAR system for dam deformation monitoring. This campaign was carried out for Geheyan Dam (see in Fig. 5), which is built on the Qing River near Changyang County in Hubei Province and

10 Page 10 of 15 Fig. 5 Geheyan Dam Fig. 6 IBIS-L equipment and the scenario from the radar point of view has a total reservoir capacity of 3.4 billion cubic meter. The reservoir was built in 1994 and has an installed capacity of million KW. The dam is a hyperbolic gravity arch dam with a height of 151 m, length of m, and elevation of 206 m. Dam foundation is composed of limestone formed during the Cambrian period, and the rocks on the dam shoulders are composed of limestone and shale interbred. This structure was monitored constantly during the period from 00:00 to 03:30 on July 12 to 30. The device works in the Ku-band with a central wavelength of approximately 1.7 cm, and can achieve a maximum cross-range resolution of approximately 4.5 mard. An estimated 40 synthetic images were produced during the test campaign, and the revisit interval was approximately 6 min. Figure 6 shows the IBIS-L equipment and the relative position between the dam and IBIS. The maximum illuminated distance is 4 km, but the maximum observation distance is approximately 1.3 km; more param are shown in Table 2. The ground where the radar was placed has a stable geological structure. No obstructions existed between the equipment and the dam and the illuminated scene covers the entire dam body and its surroundings. Fig. 6 IBIS-L equipment and the scenario from the radar point of view

11 Page 11 of 15 Table 2 Param in the campaign Parameter name Parameter value Scenario distance About 1.1 km Bandwidth 200 MHz Central frequency 17.0 GHz Illumination interval 5 min Range resolution 0.5 m Measurement accuracy About 0.1 mm Acquisitions number 40 Data analysis Data collected by the IBIS-L system were initially analyzed before processing the measurement data. Figure 7a shows the reflection power for the illuminated area, and highlights the fact that the monitoring system can accurately receive radar reflection information from the scenario, including the entire dam. The bedrock, riverbank, and power station can also be identified clearly from the reflection power map. Figure 7b shows that the signal-to-noise ratio on the surface of the dam body was over 15 db, correlation coefficients were above 0.7, and phase stability was above 3.0. Therefore, the IBIS system can collect radar reflection information on the structure surface, and the device has high reliability (Bernard Ini et al. 2007). Fig. 7 IBIS-L radar signal feature analysis. a Reflection power map of IBIS-L data. b Surface signal-to-noise ratio of the dam. c Coherent coefficient map of IBIS-L data. d P phase stability map of IBIS-L data

12 Page 12 of 15 Displacement along the line of sight (LOS) was obtained by applying the proposed atmosphere correction approach. Figure 9 shows the final experimental results with compensation of the image of the entire dam, whereas Fig. 8 shows the results without compensation. Several measurement errors can be observed in the monitoring results without correction; however, an accurate displacement of the dam surface can be reserved after compensation. For the analysis of the deformation process on the PS basis, point P1 on top of the dam and the base point P2 are chosen for the diagram (marked in Fig. 9). The LOS displacement series is described in Fig. 10. The results with corrections are smoother than those without correction because of the existence of errors, including atmospheric delay, noise, and so on. Notably, atmosphere compensation effectively reduced the measurement error for GBSAR data processing, and atmospheric effects were necessary in the dam monitoring. When the dam was illuminated by GBSAR, monitoring by the plumb line was also conducted. The difference between the results as measured by the pendulum wire and vertical displacement extracted from GBSAR results can be observed in Fig. 11. The results with atmospheric compensation were obviously more precise than those without compensation. Some residual errors are Fig. 8 LOS displacement without compensation Fig. 9 LOS displacement with compensation

13 Page 13 of 15 Fig. 10 LOS displacement series diagrams for P1 (a) and displacement series for P2 (b) Fig. 11 Discrepancy between the vertical displacements obtained through the GBSAR and the results measured by pendulum wire reasonably expected, such as the atmosphere or noise affecting the vertical displacement measurement from GBSAR, because of the discrepancy with results measured using the plumb line data. Conclusion This paper reported a method for extracting and correcting the atmosphere disturbance phase in dam monitoring using a GBSAR instrument. Thus far, acquiring exact space time dimensional meteorological data for the illuminated area for atmospheric effect reduction has been difficult. Identifying artificial corners in the radar image cluster is also a challenge, even when submerged in the side lobe effects. The proposed method can reduce atmospheric effects based on the PS theory without need for humidity data and corner reflectors, and works on the interferometric phase model for GBSAR (Yue

14 Page 14 of 15 et al. 2009). The effectiveness of this technique was demonstrated by the differences in the results of dam monitoring obtained through the method as compared with that obtained through pendulum wire. Although the method can be imperfect in some cases because of the complexity and uncertainty of SAR imaging and configuration, the good experimental results confirm the potential of ground-based radar interferometry for structure monitoring. Authors contributions ZQ carried out the preliminary studies, participated in the drafted the manuscript. YM participated in the design of the study and performed the statistical analysis. XG conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript. Author details 1 Earth Science and Engineering, Hohai University, Xikang Road 1, Nanjing , China. 2 Henan University of Urban Construction, Longxiang Avenue, New Urban District, Pingdingshan , China. Acknowledgements This work has been supported in part by the Foundation and Advanced Technology Research Plan of Henan Province (Grant No ), and in part by the Jiangsu Province Ordinary University Graduate Student Innovation Projects (Grant No. KYLX_0498). Competing interests The authors declare that they have no competing interests. Received: 15 June 2016 Accepted: 7 September 2016 References Bernardini G et al (2007a) Dynamic monitoring of civil engineering structures by microwave interferometer, vol 6. Proc Concept Approach Struct Design, Venice BernardIni G, Ricc IP, Coppi F (2007b) A ground based microwave interferometer with imaging capabilities for remote measurements of displacements. In: M GALAHAD workshop within the 7th geometric week and the 3rd international Geo telematics Fair. Global Geo, Barcelona, pp Bozzano F, Mazzanti P, Prestininzi A, Scarascia Mugnozza G (2010) Research and development of advanced technologies for landslide hazard analysis in Italy. Landslides 7(3): Brunner FK, Zobl F, Gassner G (2003) On the capability of GPS for landslide monitoring. Felsbau RockSoil Eng 21(2):51 54 Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning usingground-based radar interferometry. Landslides 7(3): Curlander JC, McDonough RN (1991) Synthetic aperture radar systems and signal processing. Wiley-Interscience, New York Dei Devis, Pieraccini Massimiliano et al (2009a) Detection of vertical bending and torsional movements of a bridge using a coherent radar. NDTE Int 6: Dei Devis, Pieraccini Massimiliano et al (2009b) Detection of vertical bending and torsional movements of a bridge using a coherent radar. NDTE Int 7: Graham LC (1974) Synthetic interferometer radar for topographic mapping. Proc IEEE 62(6): Herrera G et al (2009) A landslide forecasting model using ground based SAR data: the portalet case study. Eng Geol 105(3/4): Hovanessian SA (1980) Introduction to synthetic array and imaging radars. Artech House Inc, Dedham Jianping Y, Lu F, Ni L (2007) Research advances of theory and technology in deformation monitoring. Bull Survey Map 7:1 4 Lee H, Lee JH, Cho SJ, Sung NH, Kim JH (2008) An experiment of GB-SAR interferometric measurement of target displacement and atmospheric correction. IEEE Int Geosci Remote Sens Soc, Kualalumpur, pp Leva D, Nico G, Tarchi D et al (2003) Temporal analysis of a landslide by means of a ground-based SAR interferometer. IEEE Trans Geosci Remote Sens 41(4): Mario A, Giulia B, Alberto G (2008) Measurement of dam deformations by terrestrial interferometric techniques. In: Congress of the international society for photogrammetry and remote sensing in beijing (ISPRS). pp Massonnet D, Adragna F (1993) A full-scale validation of radar interferometry with ERS-1: the landers earthquake. Earth Observ 41:1 5 Mingsheng L, Hui L (2003) Synthetic aperture radar interferometry principle and signal processing. Surveying and Mapping Press, Bull Creek Murray FW (1966) On the Computation of Saturation Vapor Pressure. J Appl Meterol 6(1): Noferini L, Pieraccini M et al (2005) Permanent scatterers analysis for atmospheric correction in ground based SAR Interferometry. IEEE Trans Geosci Remote Sens 43(7): Noferini L, Pieraccini M, Mecatti D (2007) Using GBSAR technique to monitor slow moving landslide. Eng Geol 95:88 98 Pipia L, Fabregas X, Aguasca A, Lopez-Martinez C, Mallorqui J, Mora O (2007) A subsidence monitoring project using a polarimetric GB-SAR sensor. Proc Polln SAR 1:22 26

15 Page 15 of 15 Pipia L, Fabregas X, Albert A, Carlos LM (2008) Atmospheric artifact compensation in Ground-Based DInSAR applications. IEEE Geosci Remote Sens Letters 5(1):88 92 Qihuang Huang, Lixiang Zhang (2011) Ground-based synthetic aperture radar interferometry and its application to deformation monitoring. Adv Sci Technol Water Resour 31(3):54 62 Strozzi T, Farina P, Corsini A (2005a) Survey and monitoring of landslide displacements by means of L band satellite SAR interferometry. Landslides 2(3): Strozzi T, Farina P, Corsini A (2005b) Survey and monitoring of landslide displacements by means of l- band satellite SAR interferometry. Landslides 2(3): Wiley CA. Pulsed doppler radar methods and apparatus, United States Patent, (No ) Yue HNQ, He B, Wang Z (2009) Application of movement and surveying radar in the surface displacement monitoring of dam. China Water Resour 8(3):46 47 Zhang X, Lu B, Song Q, Leng M (2011) Atmospheric disturbance correction in ground-based SAR differential interferometry[c]. In: Proceedings of the CIE2011, Chengdu, China, Oct 24 27, pp Zhiwei Qiu, Zhang Lu, Mingsheng Liao (2010) An algorithm for spaceborne interferometric sar signal processing with coherence optimization. Geometric Inf Sci 35(9):

DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE

DISPLACEMENT AND DEFORMATION MEASUREMENT USING GROUND RADAR INTERFEROMETRY TECHNIQUE JOURNAL OF APPLIED ENGINEERING SCIENCES Article Number: 124_VOL. 1(16), issue 1_2013, pp.111-118 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 DISPLACEMENT AND DEFORMATION MEASUREMENT USING

More information

Deformation Monitoring with Terrestrial SAR Interferometry

Deformation Monitoring with Terrestrial SAR Interferometry Lisbon, 12 October 2009 Deformation Monitoring with Terrestrial SAR Interferometry Michele Crosetto Institute of Geomatics Castelldefels (Barcelona) michele.crosetto@ideg.es 1 Content Introduction: Satellite-based

More information

SARscape Modules for ENVI

SARscape Modules for ENVI Visual Information Solutions SARscape Modules for ENVI Read, process, analyze, and output products from SAR data. ENVI. Easy to Use Tools. Proven Functionality. Fast Results. DEM, based on TerraSAR-X-1

More information

PSInSAR VALIDATION BY MEANS OF A BLIND EXPERIMENT USING DIHEDRAL REFLECTORS

PSInSAR VALIDATION BY MEANS OF A BLIND EXPERIMENT USING DIHEDRAL REFLECTORS PSInSAR VALIDATION BY MEANS OF A BLIND EXPERIMENT USING DIHEDRAL REFLECTORS G. Savio (1), A. Ferretti (1) (2), F. Novali (1), S. Musazzi (3), C. Prati (2), F. Rocca (2) (1) Tele-Rilevamento Europa T.R.E.

More information

Development of a Ground-based Synthetic Aperture Radar System for Highly Repeatable Measurements

Development of a Ground-based Synthetic Aperture Radar System for Highly Repeatable Measurements Development of a Ground-based Synthetic Aperture Radar System for Highly Repeatable Measurements Hoonyol LEE, Seong-Jun CHO, Nak-Hoon SUNG and Jung-Ho KIM Department of Geophysics, Kangwon National University

More information

Terrain Motion and Persistent Scatterer InSAR

Terrain Motion and Persistent Scatterer InSAR Terrain Motion and Persistent Scatterer InSAR Andy Hooper University of Leeds ESA Land Training Course, Gödöllő, Hungary, 4-9 th September, 2017 Good Interferogram 2011 Tohoku earthquake Good correlation

More information

Persistent Scatterer InSAR

Persistent Scatterer InSAR Persistent Scatterer InSAR Andy Hooper University of Leeds Synthetic Aperture Radar: A Global Solution for Monitoring Geological Disasters, ICTP, 2 Sep 2013 Good Interferogram 2011 Tohoku earthquake Good

More information

IBIS range. GeoRadar Division. GeoRadar Division. Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry

IBIS range. GeoRadar Division. GeoRadar Division. Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry Static and Dynamic Monitoring of Civil Engineering Structures by Microwave Interferometry Garry Spencer and Mark Bell 1 PRODUCTS IBIS range APPLICATIONS IBIS - FL LANDSLIDE & DAM MONITORING IBIS - FM SLOPE

More information

DEFORMATION MONITORING OF LARGE STRUCTURES BY GROUND-BASED SAR INTERFEROMETRY

DEFORMATION MONITORING OF LARGE STRUCTURES BY GROUND-BASED SAR INTERFEROMETRY BCG - Boletim de Ciências Geodésicas - On-Line version, ISSN 1982-2170 http://dx.doi.org/10.1590/s1982-21702016000100003 Artigo DEFORMATION MONITORING OF LARGE STRUCTURES BY GROUND-BASED SAR INTERFEROMETRY

More information

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing GMAT 9600 Principles of Remote Sensing Week 4 Radar Background & Surface Interactions Acknowledgment Mike Chang Natural Resources Canada Process of Atmospheric Radiation Dr. Linlin Ge and Prof Bruce Forster

More information

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR 3 nd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry POLinSAR 2007 January 25, 2007 ESA/ESRIN Frascati, Italy MULTI-CHANNEL SAR EXPERIMENTS FROM THE

More information

GROUND-BASED RADAR INTERFEROMETRY FOR MONITORING UNSTABLE SLOPES

GROUND-BASED RADAR INTERFEROMETRY FOR MONITORING UNSTABLE SLOPES GROUND-BASED RADAR INTERFEROMETRY FOR MONITORING UNSTABLE SLOPES Massimiliano Pieraccini, Guido Luzi, Daniele Mecatti, Linhsia Noferini, Giovanni Macaluso, and Carlo Atzeni University of Florence Department

More information

Detection of a Point Target Movement with SAR Interferometry

Detection of a Point Target Movement with SAR Interferometry Journal of the Korean Society of Remote Sensing, Vol.16, No.4, 2000, pp.355~365 Detection of a Point Target Movement with SAR Interferometry Jung-Hee Jun* and Min-Ho Ka** Agency for Defence Development*,

More information

URBAN MONITORING USING PERSISTENT SCATTERER INSAR AND PHOTOGRAMMETRY

URBAN MONITORING USING PERSISTENT SCATTERER INSAR AND PHOTOGRAMMETRY URBAN MONITORING USING PERSISTENT SCATTERER INSAR AND PHOTOGRAMMETRY Junghum Yu *, Alex Hay-Man Ng, Sungheuk Jung, Linlin Ge, and Chris Rizos. School of Surveying and Spatial Information Systems, University

More information

RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA

RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA L. Ge a, H.-C. Chang a, A. H. Ng b and C. Rizos a Cooperative Research Centre for Spatial Information School of Surveying & Spatial Information Systems,

More information

Dynamic control of historical buildings through interferometric radar technique.

Dynamic control of historical buildings through interferometric radar technique. . An useful approach for Structural Health Monitoring on earthquake damaged structures. Sergio Vincenzo Calcina, Luca Piroddi and Gaetano Ranieri Università di Cagliari Dipartimento di Ingegneria Civile,

More information

A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation

A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation Progress In Electromagnetics Research M, Vol. 48, 37 44, 216 A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation Jia-Bing Yan *, Ying Liang, Yong-An Chen, Qun Zhang, and Li

More information

Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments. Riccardo Lanari

Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments. Riccardo Lanari Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments Riccardo Lanari Institute for Electromagnetic Sensing of the Environment (IREA) National Research Council of Italy (CNR)

More information

HIGH RESOLUTION DIFFERENTIAL INTERFEROMETRY USING TIME SERIES OF ERS AND ENVISAT SAR DATA

HIGH RESOLUTION DIFFERENTIAL INTERFEROMETRY USING TIME SERIES OF ERS AND ENVISAT SAR DATA HIGH RESOLUTION DIFFERENTIAL INTERFEROMETRY USING TIME SERIES OF ERS AND ENVISAT SAR DATA Javier Duro 1, Josep Closa 1, Erlinda Biescas 2, Michele Crosetto 2, Alain Arnaud 1 1 Altamira Information C/ Roger

More information

Figure 1: C band and L band (SIR-C/X-SAR images of Flevoland in Holland). color scheme: HH: red, HV:green, VV: blue

Figure 1: C band and L band (SIR-C/X-SAR images of Flevoland in Holland). color scheme: HH: red, HV:green, VV: blue L-band PS analysis: JERS-1 results and TerraSAR L predictions Kenji Daito (1), Alessandro Ferretti (), Shigeki Kuzuoka (3),Fabrizio Novali (), Pietro Panzeri (), Fabio Rocca (4) (1) Daido Institute of

More information

Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm

Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm Article Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm Rashid Hussain Faculty of Engineering Science and Technology, Hamdard University, Karachi

More information

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES Jayson Eppler (1), Mike Kubanski (1) (1) MDA Systems Ltd., 13800 Commerce Parkway, Richmond, British Columbia, Canada, V6V

More information

CASE STUDY BRIDGE DYNAMIC MONITORING

CASE STUDY BRIDGE DYNAMIC MONITORING Introduction BRIDGE DYNAMIC MONITORING Monitoring of structure movements and vibrations (bridges, buildings, monuments, towers etc.) is an increasingly important task for today s construction engineers.

More information

Simulation of FMCW Radar Systems Based on Software Defined Radio

Simulation of FMCW Radar Systems Based on Software Defined Radio Simulation of FMCW Radar Systems Based on Software Defined Radio Carlos López-Martínez CARLOS.LOPEZ@TSC.UPC.EDU Universitat Politècnica de Catalunya UPC, Signal Theory and Comms. Dept., Jordi Girona 1-3,

More information

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction Radar, SAR, InSAR; a first introduction Ramon Hanssen Delft University of Technology The Netherlands r.f.hanssen@tudelft.nl Charles University in Prague Contents Radar background and fundamentals Imaging

More information

An Improved DBF Processor with a Large Receiving Antenna for Echoes Separation in Spaceborne SAR

An Improved DBF Processor with a Large Receiving Antenna for Echoes Separation in Spaceborne SAR Progress In Electromagnetics Research C, Vol. 67, 49 57, 216 An Improved DBF Processor a Large Receiving Antenna for Echoes Separation in Spaceborne SAR Hongbo Mo 1, *,WeiXu 2, and Zhimin Zeng 1 Abstract

More information

GeoRadar Division. Geosystems BU A HISTORY OF PROVIDING HIGH TECHNOLOGY. IDS s Pisa Headquarters

GeoRadar Division. Geosystems BU A HISTORY OF PROVIDING HIGH TECHNOLOGY. IDS s Pisa Headquarters A HISTORY OF PROVIDING HIGH TECHNOLOGY IDS s Pisa Headquarters Geology and Environment IBIS-FL and IBIS-FMT, a dedicated configuration to enter into monitoring of landslides and mining market IBIS-FL:

More information

Atmospheric Phase Screen in Ground-Based Radar: Statistics and Compensation

Atmospheric Phase Screen in Ground-Based Radar: Statistics and Compensation 1 Atmospheric Phase Screen in Ground-Based Radar: Statistics and Compensation L. Iannini and A. Monti Guarnieri Dipartimento di Elettronica ed Informazione - Politecnico di Milano Piazza Leonardo Da Vinci,

More information

Environmental Impact Assessment of Mining Subsidence by Using Spaceborne Radar Interferometry

Environmental Impact Assessment of Mining Subsidence by Using Spaceborne Radar Interferometry Environmental Impact Assessment of Mining Subsidence by Using Spaceborne Radar Interferometry Hsing-Chung CHANG, Linlin GE and Chris RIZOS, Australia Key words: Mining Subsidence, InSAR, DInSAR, DEM. SUMMARY

More information

EVALUATING THE EFFECT OF THE OBSERVATION TIME ON THE DISTRIBUTION OF SAR PERMANENT SCATTERERS

EVALUATING THE EFFECT OF THE OBSERVATION TIME ON THE DISTRIBUTION OF SAR PERMANENT SCATTERERS EVALUATING THE EFFECT OF THE OBSERVATION TIME ON THE DISTRIBUTION OF SAR PERMANENT SCATTERERS Alessandro Ferretti (), Carlo Colesanti (), Daniele Perissin (), Claudio Prati (), and Fabio Rocca () () Tele-Rilevamento

More information

Radar phase based near surface meteorological data retrievals

Radar phase based near surface meteorological data retrievals Radar phase based near surface meteorological data retrievals Author: Josep Ruiz Rodon Advisor: Joan Bech Rustullet Facultat de Física, Universitat de Barcelona, Diagonal 645, 828 Barcelona, Spain*. Abstract:

More information

Survey and testing through interferometric radar: applications to Cultural Heritage and public utilities

Survey and testing through interferometric radar: applications to Cultural Heritage and public utilities IV Conferencia Panamericana de END Buenos Aires Octubre 2007 Survey and testing through interferometric radar: applications to Cultural Heritage and public utilities Massimiliano Pieraccini University

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information

Improvement and Validation of Ranging Accuracy with YG-13A

Improvement and Validation of Ranging Accuracy with YG-13A Article Improvement and Validation of Ranging Accuracy with YG-13A Mingjun Deng 1, Guo Zhang 2, *, Ruishan Zhao 3, Jiansong Li 1, Shaoning Li 2 1 School of Remote Sensing and Information Engineering, Wuhan

More information

RESERVOIR MONITORING USING RADAR SATELLITES

RESERVOIR MONITORING USING RADAR SATELLITES RESERVOIR MONITORING USING RADAR SATELLITES Alain Arnaud, Johanna Granda, Geraint Cooksley ALTAMIRA INFORMATION S.L., Calle Córcega 381-387, E-08037 Barcelona, Spain. Key words: Reservoir monitoring, InSAR,

More information

Radar remote sensing from space for monitoring deformations affecting urban areas and infrastructures

Radar remote sensing from space for monitoring deformations affecting urban areas and infrastructures Radar remote sensing from space for monitoring deformations affecting urban areas and infrastructures Riccardo Lanari IREA-CNR Napoli EGU2014, Vienna 30 April, 2014 Why Radar (SAR) Imaging from space?

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Use of ground based radar to monitor the effect of increased axle loading on rail bridges. Evgeny Shilov. IDS GeoRadar

Use of ground based radar to monitor the effect of increased axle loading on rail bridges. Evgeny Shilov. IDS GeoRadar Use of ground based radar to monitor the effect of increased axle loading on rail bridges aa Evgeny Shilov IDS GeoRadar Background of Techniques All rights reserved to IDS GeoRadar 2 Radar technology Radar

More information

Comparison between SAR atmospheric phase screens at 30 by means of ERS and ENVISAT data

Comparison between SAR atmospheric phase screens at 30 by means of ERS and ENVISAT data Fringe 2007 - ESA-ESRIN - Frascati, November 28, 2007 Comparison between SAR atmospheric phase screens at 30 by means of ERS and ENVISAT data D. Perissin Politecnico di Milano Tele-Rilevamento Europa -

More information

PSInSAR validation by means of a blind experiment using dihedral reflectors

PSInSAR validation by means of a blind experiment using dihedral reflectors PSInSAR validation by means of a blind experiment using dihedral reflectors A.Ferretti( 1 )( 2 ), S. Musazzi( 3 ), F.Novali ( 2 ), C. Prati( 1 ), F. Rocca( 1 ), G. Savio ( 2 ) ( 1 ) Politecnico di Milano

More information

Fringe 2015 Workshop

Fringe 2015 Workshop Fringe 2015 Workshop On the Estimation and Interpretation of Sentinel-1 TOPS InSAR Coherence Urs Wegmüller, Maurizio Santoro, Charles Werner and Oliver Cartus Gamma Remote Sensing AG - S1 IWS InSAR and

More information

remote sensing? What are the remote sensing principles behind these Definition

remote sensing? What are the remote sensing principles behind these Definition Introduction to remote sensing: Content (1/2) Definition: photogrammetry and remote sensing (PRS) Radiation sources: solar radiation (passive optical RS) earth emission (passive microwave or thermal infrared

More information

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Tobias Rommel, German Aerospace Centre (DLR), tobias.rommel@dlr.de, Germany Gerhard Krieger, German Aerospace Centre (DLR),

More information

THE NATURE OF GROUND CLUTTER AFFECTING RADAR PERFORMANCE MOHAMMED J. AL SUMIADAEE

THE NATURE OF GROUND CLUTTER AFFECTING RADAR PERFORMANCE MOHAMMED J. AL SUMIADAEE International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN(P): 2249-684X; ISSN(E): 2249-7951 Vol. 6, Issue 2, Apr 2016, 7-14 TJPRC Pvt. Ltd.

More information

Detection of traffic congestion in airborne SAR imagery

Detection of traffic congestion in airborne SAR imagery Detection of traffic congestion in airborne SAR imagery Gintautas Palubinskas and Hartmut Runge German Aerospace Center DLR Remote Sensing Technology Institute Oberpfaffenhofen, 82234 Wessling, Germany

More information

Client: Statens vegvesen, Region midt County: Sør Trondelag

Client: Statens vegvesen, Region midt County: Sør Trondelag Geological Survey of Norway N-7441 Trondheim, Norway REPORT Report no.: 2004.043 ISSN 0800-3416 Grading: Open Title: Preliminary analysis of InSAR data over Trondheim with respect to future road development

More information

Synthetic Aperture Radar. Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London

Synthetic Aperture Radar. Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London Synthetic Aperture Radar Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London CEOI Training Workshop Designing and Delivering and Instrument Concept 15 March

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

CHAPTER 2 WIRELESS CHANNEL

CHAPTER 2 WIRELESS CHANNEL CHAPTER 2 WIRELESS CHANNEL 2.1 INTRODUCTION In mobile radio channel there is certain fundamental limitation on the performance of wireless communication system. There are many obstructions between transmitter

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry

High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry Mario Costantini e-geos - an ASI/Telespazio Company, Rome, Italy mario.costantini@e-geos.it Summary COSMO-SkyMed satellite

More information

RADAR REMOTE SENSING

RADAR REMOTE SENSING RADAR REMOTE SENSING Jan G.P.W. Clevers & Steven M. de Jong Chapter 8 of L&K 1 Wave theory for the EMS: Section 1.2 of L&K E = electrical field M = magnetic field c = speed of light : propagation direction

More information

SYNTHETIC aperture radar (SAR) is a remote sensing

SYNTHETIC aperture radar (SAR) is a remote sensing IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1 Nadir Echo Removal in Synthetic Aperture Radar via Waveform Diversity and Dual-Focus Postprocessing Michelangelo Villano, Member, IEEE, Gerhard Krieger, Fellow,

More information

Ground based SAR interferometry: a novel tool for Geoscience

Ground based SAR interferometry: a novel tool for Geoscience Ground based SAR interferometry: a novel tool for Geoscience 1 X 1 Ground based SAR interferometry: a novel tool for Geoscience Guido Luzi University of Florence Italy 1. Introduction The word Radar is

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Antennas and Propagation

Antennas and Propagation Mobile Networks Module D-1 Antennas and Propagation 1. Introduction 2. Propagation modes 3. Line-of-sight transmission 4. Fading Slides adapted from Stallings, Wireless Communications & Networks, Second

More information

An interferometric radar for remote sensing of deflections on large structures

An interferometric radar for remote sensing of deflections on large structures Structural Studies, Repairs and Maintenance of Heritage Architecture XI 359 An interferometric radar for remote sensing of deflections on large structures C. Gentile, S. Bulgarelli, N. Gallino & A. Oldini

More information

3D radar imaging based on frequency-scanned antenna

3D radar imaging based on frequency-scanned antenna LETTER IEICE Electronics Express, Vol.14, No.12, 1 10 3D radar imaging based on frequency-scanned antenna Sun Zhan-shan a), Ren Ke, Chen Qiang, Bai Jia-jun, and Fu Yun-qi College of Electronic Science

More information

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data *

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data * Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data * O. Lawlor, T. Logan, R. Guritz, R. Fatland, S. Li, Z. Wang, and C. Olmsted Alaska SAR Facility

More information

21-Sep-11. Outline. InSAR monitoring of CO2 sequestration - Complications. Enhanced solution (novel spatiotemporal atmospheric filtering)

21-Sep-11. Outline. InSAR monitoring of CO2 sequestration - Complications. Enhanced solution (novel spatiotemporal atmospheric filtering) Pushing the accuracy limit for CO2 sequestration monitoring: Statistically optimal spatio-temporal removal of the atmospheric component from InSAR Networks Bernhard Rabus Jayson Eppler MacDonald Dettwiler

More information

Set No.1. Code No: R

Set No.1. Code No: R Set No.1 IV B.Tech. I Semester Regular Examinations, November -2008 RADAR SYSTEMS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any

More information

Calibration Concepts of Multi-Channel Spaceborne SAR

Calibration Concepts of Multi-Channel Spaceborne SAR DLR.de Chart 1 > CEOS Workshop 2016 > Tobias Rommel > September 7 th, 2016 Calibration Concepts of Multi-Channel Spaceborne SAR T. Rommel, F. Queiroz de Almeida, S. Huber, M. Jäger, G. Krieger, C. Laux,

More information

Monitoring the Earth Surface from space

Monitoring the Earth Surface from space Monitoring the Earth Surface from space Picture of the surface from optical Imagery, i.e. obtained by telescopes or cameras operating in visual bandwith. Shape of the surface from radar imagery Surface

More information

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2) Remote Sensing Ch. 3 Microwaves (Part 1 of 2) 3.1 Introduction 3.2 Radar Basics 3.3 Viewing Geometry and Spatial Resolution 3.4 Radar Image Distortions 3.1 Introduction Microwave (1cm to 1m in wavelength)

More information

Water Body Extraction Research Based on S Band SAR Satellite of HJ-1-C

Water Body Extraction Research Based on S Band SAR Satellite of HJ-1-C Cloud Publications International Journal of Advanced Remote Sensing and GIS 2016, Volume 5, Issue 2, pp. 1514-1523 ISSN 2320-0243, Crossref: 10.23953/cloud.ijarsg.43 Research Article Open Access Water

More information

Low Frequency 3D Synthetic Aperture Radar for the Remote Intelligence of Building Interiors

Low Frequency 3D Synthetic Aperture Radar for the Remote Intelligence of Building Interiors Aperture Radar for the Remote Intelligence of Building Interiors D. Andre Centre for Electronic Warfare, Cyber and Information, Cranfield University UNITED KINGDOM d.andre@cranfield.ac.uk B. Faulkner Australian

More information

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H Ref.: RV-14524 Doc.: CM-168-01 January 31, 2013 SUBMITTED TO: Southern California Gas Company 555 W. Fifth Street (Mail Location

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

SIDELOBES REDUCTION USING SIMPLE TWO AND TRI-STAGES NON LINEAR FREQUENCY MODULA- TION (NLFM)

SIDELOBES REDUCTION USING SIMPLE TWO AND TRI-STAGES NON LINEAR FREQUENCY MODULA- TION (NLFM) Progress In Electromagnetics Research, PIER 98, 33 52, 29 SIDELOBES REDUCTION USING SIMPLE TWO AND TRI-STAGES NON LINEAR FREQUENCY MODULA- TION (NLFM) Y. K. Chan, M. Y. Chua, and V. C. Koo Faculty of Engineering

More information

Earth Observation from a Moon based SAR: Potentials and Limitations

Earth Observation from a Moon based SAR: Potentials and Limitations Earth Observation from a Moon based SAR: Potentials and Limitations F. Bovenga 1, M. Calamia 2,3, G. Fornaro 5, G. Franceschetti 4, L. Guerriero 1, F. Lombardini 5, A. Mori 2 1 Politecnico di Bari - Dipartimento

More information

Noise-robust compressed sensing method for superresolution

Noise-robust compressed sensing method for superresolution Noise-robust compressed sensing method for superresolution TOA estimation Masanari Noto, Akira Moro, Fang Shang, Shouhei Kidera a), and Tetsuo Kirimoto Graduate School of Informatics and Engineering, University

More information

ASAR Training Course, Hanoi, 25 February 7 March 2008 Introduction to Radar Interferometry

ASAR Training Course, Hanoi, 25 February 7 March 2008 Introduction to Radar Interferometry Introduction to Radar Interferometry Presenter: F.Sarti (ESA/ESRIN) 1 Imaging Radar : reminder 2 Physics of radar Potentialities of radar All-weather observation system (active system) Penetration capabilities

More information

Session2 Antennas and Propagation

Session2 Antennas and Propagation Wireless Communication Presented by Dr. Mahmoud Daneshvar Session2 Antennas and Propagation 1. Introduction Types of Anttenas Free space Propagation 2. Propagation modes 3. Transmission Problems 4. Fading

More information

Overview. Measurement of Ultra-Wideband Wireless Channels

Overview. Measurement of Ultra-Wideband Wireless Channels Measurement of Ultra-Wideband Wireless Channels Wasim Malik, Ben Allen, David Edwards, UK Introduction History of UWB Modern UWB Antenna Measurements Candidate UWB elements Radiation patterns Propagation

More information

Introduction to Microwave Remote Sensing

Introduction to Microwave Remote Sensing Introduction to Microwave Remote Sensing lain H. Woodhouse The University of Edinburgh Scotland Taylor & Francis Taylor & Francis Group Boca Raton London New York A CRC title, part of the Taylor & Francis

More information

Dynamic Phase-Shifting Electronic Speckle Pattern Interferometer

Dynamic Phase-Shifting Electronic Speckle Pattern Interferometer Dynamic Phase-Shifting Electronic Speckle Pattern Interferometer Michael North Morris, James Millerd, Neal Brock, John Hayes and *Babak Saif 4D Technology Corporation, 3280 E. Hemisphere Loop Suite 146,

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Micrometric deformation imaging at W-Band with GBSAR

Micrometric deformation imaging at W-Band with GBSAR doi: 10.5721/EuJRS201649xx Received xx/0x/201x accepted xx/xx/201x European Journal of Remote Sensing An official journal of the Italian Society of Remote Sensing www.aitjournal.com with GBSAR Arturo Martínez*,

More information

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR David G. Long, Bryan Jarrett, David V. Arnold, Jorge Cano ABSTRACT Synthetic Aperture Radar (SAR) systems are typically very complex and expensive.

More information

Very High Resolution and Multichannel SAR/MTI

Very High Resolution and Multichannel SAR/MTI Dr. Patrick Berens Research Institute for High-Frequency Physics and Radar Techniques (FHR) Research Establishment for Applied Science (FGAN) 53343 Wachtberg Germany berens@fgan.de ABSTRACT SAR is widely

More information

ASAR WIDE-SWATH SINGLE-LOOK COMPLEX PRODUCTS: PROCESSING AND EXPLOITATION POTENTIAL

ASAR WIDE-SWATH SINGLE-LOOK COMPLEX PRODUCTS: PROCESSING AND EXPLOITATION POTENTIAL ASAR WIDE-SWATH SINGLE-LOOK COMPLEX PRODUCTS: PROCESSING AND EXPLOITATION POTENTIAL Ralph Cordey (1), Tim Pearson (2), Yves-Louis Desnos (3), Betlem Rosich-Tell (3) (1) European Space Agency, ESTEC, Keplerlaan

More information

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team Photo by Sassan Saatchi UAVSAR in Africa Quality Assurance and Preliminary Results Brian Hawkins, UAVSAR Team CEOS SAR Cal/Val Workshop 2016 Copyright 2016 California Institute of Technology. Government

More information

PALSAR SCANSAR SCANSAR Interferometry

PALSAR SCANSAR SCANSAR Interferometry PALSAR SCANSAR SCANSAR Interferometry Masanobu Shimada Japan Aerospace Exploration Agency Earth Observation Research Center ALOS PI symposium, Greece Nov. 6 2008 1 Introduction L-band PALSAR strip mode

More information

Monitoring of Bridge Deformation with InSAR: An Experimental Study

Monitoring of Bridge Deformation with InSAR: An Experimental Study XXIV FIG International Congress 2010 11-16 April 2010 Sydney, Australia Monitoring of Bridge Deformation with InSAR: An Experimental Study Lei Zhang 1, Xiaoli Ding 1 and Zhong Lu 2 1 Department of Land

More information

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 05921 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney

More information

A Combined Multi-Temporal InSAR Method: Incorporating Persistent Scatterer and Small Baseline Approaches. Andy Hooper University of Iceland

A Combined Multi-Temporal InSAR Method: Incorporating Persistent Scatterer and Small Baseline Approaches. Andy Hooper University of Iceland A Combined Multi-Temporal InSAR Method: Incorporating Persistent Scatterer and Small Baseline Approaches Andy Hooper University of Iceland Time Multi-Temporal InSAR Same area imaged each time Multi-Temporal

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

By Pierre Olivier, Vice President, Engineering and Manufacturing, LeddarTech Inc.

By Pierre Olivier, Vice President, Engineering and Manufacturing, LeddarTech Inc. Leddar optical time-of-flight sensing technology, originally discovered by the National Optics Institute (INO) in Quebec City and developed and commercialized by LeddarTech, is a unique LiDAR technology

More information

Specificities of Near Nadir Ka-band Interferometric SAR Imagery

Specificities of Near Nadir Ka-band Interferometric SAR Imagery Specificities of Near Nadir Ka-band Interferometric SAR Imagery Roger Fjørtoft, Alain Mallet, Nadine Pourthie, Jean-Marc Gaudin, Christine Lion Centre National d Etudes Spatiales (CNES), France Fifamé

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Theory and Applications of Frequency Domain Laser Ultrasonics

Theory and Applications of Frequency Domain Laser Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Theory and Applications of Frequency Domain Laser Ultrasonics Todd W. MURRAY 1,

More information

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA Abstract: Speckle interferometry (SI) has become a complete technique over the past couple of years and is widely used in many branches of

More information

EKATERINA TYMOFYEYEVA GMTSAR BATCH PROCESSING

EKATERINA TYMOFYEYEVA GMTSAR BATCH PROCESSING EKATERINA TYMOFYEYEVA GMTSAR BATCH PROCESSING THANK YOU! Xiaopeng Tong Xiaohua (Eric) Xu David Sandwell Yuri Fialko OUTLINE Batch processing scripts in GMTSAR (focus on Sentinel-1) SBAS: a method for calculating

More information

Receiver Design for Passive Millimeter Wave (PMMW) Imaging

Receiver Design for Passive Millimeter Wave (PMMW) Imaging Introduction Receiver Design for Passive Millimeter Wave (PMMW) Imaging Millimeter Wave Systems, LLC Passive Millimeter Wave (PMMW) sensors are used for remote sensing and security applications. They rely

More information

In-line digital holographic interferometry

In-line digital holographic interferometry In-line digital holographic interferometry Giancarlo Pedrini, Philipp Fröning, Henrik Fessler, and Hans J. Tiziani An optical system based on in-line digital holography for the evaluation of deformations

More information

A SAR Conjugate Mirror

A SAR Conjugate Mirror A SAR Conjugate Mirror David Hounam German Aerospace Center, DLR, Microwaves and Radar Institute Oberpfaffenhofen, D-82234 Wessling, Germany Fax: +49 8153 28 1449, E-Mail: David.Hounam@dlr.de Abstract--

More information

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

INTRODUCTION TO RADAR SIGNAL PROCESSING

INTRODUCTION TO RADAR SIGNAL PROCESSING INTRODUCTION TO RADAR SIGNAL PROCESSING Christos Ilioudis University of Strathclyde c.ilioudis@strath.ac.uk Overview History of Radar Basic Principles Principles of Measurements Coherent and Doppler Processing

More information

Orthogonal Radiation Field Construction for Microwave Staring Correlated Imaging

Orthogonal Radiation Field Construction for Microwave Staring Correlated Imaging Progress In Electromagnetics Research M, Vol. 7, 39 9, 7 Orthogonal Radiation Field Construction for Microwave Staring Correlated Imaging Bo Liu * and Dongjin Wang Abstract Microwave staring correlated

More information

Abstract. Keywords: landslide, Control Point Detection, Change Detection, Remote Sensing Satellite Imagery Data, Time Diversity.

Abstract. Keywords: landslide, Control Point Detection, Change Detection, Remote Sensing Satellite Imagery Data, Time Diversity. Sensor Network for Landslide Monitoring With Laser Ranging System Avoiding Rainfall Influence on Laser Ranging by Means of Time Diversity and Satellite Imagery Data Based Landslide Disaster Relief Kohei

More information