Design and Simulation of a DDS-PLL Hybrid Based Fast Settling Wideband Frequency Synthesiser for Frequency Hopping Radios

Size: px
Start display at page:

Download "Design and Simulation of a DDS-PLL Hybrid Based Fast Settling Wideband Frequency Synthesiser for Frequency Hopping Radios"

Transcription

1 Design and Simulation of a DDS-PLL Hybrid Based Fast Settling Wideband Frequency Synthesiser for Frequency Hopping Radios R. Vishnu Broadcast and Communication Group, Centre for Development of Advanced Technology (CDAC), Trivandrum, India vishnur@cdac.in ABSTRACT: Modern software defined spread spectrum radios call for a wideband front-end coupled with an agile frequency synthesizer. In this paper, the design and simulation of a single wideband synthesizer is explained based on a translation loop architecture. This design uses a Direct Digital Synthesis (DDS) and two PLLs in conjunction with a frequency mixer. The main highlights of this design include fast switching speed and narrow channel spacing advantages of the DDS combined with the very low phase noise and spurious performance of PLL. The simulation was done in NI AWR Visual System Simulator (VSS). Analog Devices, ADISimPLL, simulation tool was used for designing loop filters. The method relies on the PLL s ability to switch frequencies in less than 50μs when the step size is >0MHz. The coarse tuning of 0MHz steps will be done in the PLL while fine resolution will be achieved through the DDS. A wideband synthesizer operating in the 00-5MHz frequency range, with a settling time <50μs and phase noise better than -0dBc/Hz is proposed. Spurious performance was better than -75dBc. The paper gives emphasis on the settling time relationship between the two PLLs, which must be taken care in the design or else the loop fails to attain lock. KEYWORDS: Frequency Hopping Synthesizer; DDS-PLL Hybrid architecture; Spread Spectrum; Translation loop; Software Defined Radio CONCLUSION: The simulation work has saved a lot of time and cost for the architecture design. This was done for the design of frequency hopping synthesiser module intended for use in frequency hopping radios. Prototype testing with evaluation board hookups was done and the hardware development is in progress. Quick Response Code Paper URL: ISSN: 0-67 Access this article online Citation Vishnu R, Design and Simulation of a DDS-PLL Hybrid Based Fast Settling Wideband Frequency Synthesiser for Frequency Hopping Radios, International Journal of Research in Wireless Systems (IJRWS), Vol. 4, No., pp. 0-4, December, 05 International Journal of Research in Wireless Systems (IJRWS), Volume 4, Issue, December (05) 0

2 Design and simulation of a DDS-PLL hybrid based fast settling wideband frequency synthesiser for frequency hopping radios R. Vishnu Broadcast and Communication Group Centre for Development of Advanced Technology (CDAC) Trivandrum, India Abstract Modern software defined spread spectrum radios call for a wideband front-end coupled with an agile frequency synthesizer. In this paper, the design and simulation of a single wideband synthesizer is explained based on a translation loop architecture. This design uses a Direct Digital Synthesis (DDS) and two PLLs in conjunction with a frequency mixer. The main highlights of this design include fast switching speed and narrow channel spacing advantages of the DDS combined with the very low phase noise and spurious performance of PLL. The simulation was done in NI AWR Visual System Simulator (VSS). Analog Devices, ADISimPLL, simulation tool was used for designing loop filters. The method relies on the PLL s ability to switch frequencies in less than 50µs when the step size is >0MHz. The coarse tuning of 0MHz steps will be done in the PLL while fine resolution will be achieved through the DDS. A wideband synthesizer operating in the 00-5MHz frequency range, with a settling time <50µs and phase noise better than - 0dBc/Hz is proposed. Spurious performance was better than - 75dBc. The paper gives emphasis on the settling time relationship between the two PLLs, which must be taken care in the design or else the loop fails to attain lock. Keywords Frequency Hopping Synthesizer; DDS-PLL Hybrid architecture; Spread Spectrum; Translation loop; Software Defined Radio I. INTRODUCTION The DDS has the advantage of very low tuning resolution and fast hopping speed but poor wideband spurious performance and the maximum frequency generated can be low. On the other hand, PLL has very good spurious performance, phase noise performance and high frequency generation but the loop dynamics takes finite settling time and the tuning resolution is quite poor. Several architectures evolved using DDS and PLL taking advantage of the merits of both the technologies and trying to avoid the pitfalls [4], [5], [6], [7], [8], and [9]. The performances of various architectures was studied by the evaluation board hook-up and the translation loop based architecture was chosen. The circuit translates the DDS output to a high frequency and hence the name translation loop. Some attractive features of this architecture are: () Frequency translation is used and not division, hence the loop doesn t augment the spurious and phase noise of the DDS within its loop bandwidth, () A spur free region can be identified for the DDS operation as it needs to work within a small bandwidth () The PLL acts as a tracking filter, removing spurious components coming outside its loop bandwidth, (4) The PLL requires coarse tuning thus the integer spurs are far off allowing the loop bandwidth to be widened for increasing the tuning speed, (5) Spurious sources are integer boundary spurs which can be avoided by careful frequency planning. The paper does a system level analysis of the translation loop. DDS is not included in the simulation and a tunable frequency source is used in place of that. The architecture comprises multi-loop PLL using two PLLs in conjunction with a mixer. The overall settling time of the loop is dependent on the settling times of both the PLLs. Moreover the settling time of one must be a factor greater than the other to maintain loop stability. The design inputs for the loop filters of both the PLLs are based on these settling time figures. II. FREQUENCY PLANNING AND ARCHITECTURE Figure shows the frequency plan of the RF front-end which converts the RF frequency range to the fixed IF of 70MHz using a high side LO configuration. The 70-58Mhz is the hopping frequency range of the LO MHz Figure : Front-end frequency plan International Journal of Research in Wireless Systems (IJRWS), Volume 4, Issue, December (05)

3 Figure : Frequency synthesizer block diagram A. ARCHITECTURE The block diagram of the frequency hopping synthesizer is shown in Figure. The major blocks of this synthesizer are:. DDS and its clock synthesizer. The DDS output is fed as a reference to PLL.. PLL generates the fundamental output. Frequency Mixer 4. PLL feeds the LO to the mixer 5. Reference Oscillator 6. Frequency divider which divides the fundamental output to the main output frequency The circuit translates the DDS output frequency to a high frequency signal, which is divided down by the divider to the required LO. The mixer translates the high frequency output of PLL to a low IF frequency which is fed to the feedback input of PLL. Once the loop is locked, this feedback signal frequency will be equal to the DDS output frequency. The O/P frequency will be fout= (fpll±fdds)/div () The polarity in equation () will be decided by the phase detector polarity set in PLL. In the present design, we have used the positive polarity, therefore, fpll=fpll+fdds () Output frequency of the DDS, fdds = FTW x fclk / ^, () where FTW Frequency Tuning Word of DDS and fclk DDS Clock frequency fpll = N x fref, (4) where fref = 0MHz reference, N N counter of PLL So PLL will be tuned to a coarse frequency at 0MHz and a fine tuning of 0.Hz will be done in the DDS. B. FREQUENCY PLAN TABLE : Design Frequency Plan Divider Start Freq Stop Freq (MHz) (MHz) The present frequency plan of the synthesizer is given in Table. PLL operates between 0MHz and 750MHz. By using divisions from to 9, the final LO with the frequency range can be synthesized. III. PHASE NOISE ANALYSIS PLL N=R=7, PFD = varies from 7.8MHz to.4mhz (DDS O/P from 50 MHz to 80MHz) PLL FOM = -dbc/hz Phase noise of PLL = PLL FOM + 0log (PFD) +0log (N) = - + 0log (0e6) + 0log (7) = -5dBc/Hz () PLL R=, PFD=0MHz, PLL FOM = -dbc/hz Max N = 74 Phase noise of PLL = PLL FOM + 0log (PFD) +0log (N) = - + 0log (0e6) + 0log (74) = -08dBc/Hz () DDS CLK PLL Ø noise of DDS CLK PLL = PLL FOM + 0log (PFD) +0log (N) = -0+0log (5e6) + 0log (6) = -08dBc/Hz () DDS Output The highest O/P frequency of DDS=70MHz Phase noise at DDS O/P = Phase noise of DDS CLK+0log (fdds/fclk) = log (70/655.6) = -7dBc/Hz (4) These calculations were for the highest LO frequency where the N counter will be largest thus possessing the least phase noise. From the aforementioned results it can be deduced that the output phase noise of the PLL at the divider input will be approximately -08dBc/Hz influenced mainly by PLL. Here the output divider will be (which is the lowest), hence a phase noise advantage of 9.5dB. International Journal of Research in Wireless Systems (IJRWS), Volume 4, Issue, December (05)

4 ID=VCO5 FRQ=0 MHz PWR=0 dbm K50e6 ID=VCO FRQ=0 MHz PWR=0 dbm K50e6 ID=R ID=V ID=R ID=V PFDCP ID=C4 IUP=5 ma IDN=5 ma ILEAK=0 ma DELAY= us R V PFD DLY_SMP ID=A DLY= IVAL=0 PFDCP ID=C IUP=5 ma IDN=5 ma ILEAK=0 ma ID=Current DELAY= us R V PFD DLY_SMP ID=A DLY= IVAL=0 ID=Current ID=aftDIV ID=aftDIV RD_PASS ID=LP C=000 pf C=800 pf C=90 pf R=47 Ohm R=49 Ohm RD_PASS ID=LP C=80 pf C=000 pf C=4700 pf R=00 Ohm R=00 Ohm DIVIDER ID=C N=Div VP= DIVIDER ID=C N=Div VP= ID=Vcont PHASENS ID=A5 PNMASK="Phmask" ID=Vcont PHASENS ID=A6 PNMASK="Phmask" ID=preDIV ID=preDIV ID=VCO4 FRQ=500 MHz PWR=7 dbm K60e6 ID=VCO FRQ=400 MHz PWR=0 dbm K60e6 LPFB ID=F LOSS=0 db N= FP=80 MHz NOISE=Auto ID=OUT ID=FirstLO MIXER_B ID=A MODE=DIFF GCON-6.5 db N6.5 db NOISE=Auto ID=MIX_OUT Design and Simulation of a DDS-PLL Hybrid Based Fast Settling Wideband Frequency Synthesiser for Frequency Hopping Radios IV. SIMULATION RESULTS AND MEASUREMENTS Translation loop PLL section is used for simulation. The divider is excluded and the DDS is replaced with a tunable frequency source. The overall loop settling time is decided by the settling time of PLL as well as PLL. System Simulation of the translation loop synthesiser was done in NI AWR VSS and the loop filter designs were done using Analog Devices, ADISimPLL. The system requirements call for a settling time <50µs and phase noise better than -0dBc/Hz. Based on these initial requirements, PLL was designed for a settling time of 50µs, which corresponds to a loop bandwidth of 85kHz. After simulation it was found that the PLL settling time should be a factor lower than the PLL settling time to guarantee a lock. The settling time of PLL was found out empirically by reducing it from 50µs until a value was reached that supported stable operation. This is a cyclic procedure where the loop filter for a particular settling time is designed in Analog Devices, ADISimPLL and the values were entered in NI AWR VSS and checked for stability. If the design was not stable, the loop filter was redesigned and applied where a marginal value was chosen and the loop filter fixed. The simulation showed that the PLL settling time has to be <5µs for the loop to lock correctly. But this would be a different value for the PLL loop filter. The simulation circuit is shown in Figure and the simulation result for the 50µs settling time design is shown in Figure 4. Figure 4: Simulation result of the designed 50µs settling time Figure 5 demonstrates unstable conditions observed when the settling times of the PLLs are not configured properly. The instability is caused when the loop bandwidth of PLL was increased to 00kHz (settling time to 0µs). The PLL loop filter should thus be widened to reduce its settling time to achieve stability. R IN OUT C R C C Loop BW=00kHz LO Figure 5: Simulation showing the instability condition Div=7 N Figure 6 shows the frequency spectrum at PLL output, PLL output and the mixer IF output. This was for the PLL output of 740MHz, in which case the PLL is operating at 670MHz and the DDS tuned to 70MHz. R C R C C Loop BW=00kHz N Div=67 Figure : Simulation in NI AWR VSS Figure 6: Frequency spectrum at various nodes of the simulation International Journal of Research in Wireless Systems (IJRWS), Volume 4, Issue, December (05)

5 V. CONCLUSION The simulation work has saved a lot of time and cost for the architecture design. This was done for the design of frequency hopping synthesiser module intended for use in frequency hopping radios. Prototype testing with evaluation board hookups was done and the hardware development is in progress. REFERENCES [] David Crook, Hybrid Synthesizer Tutorial, Microwave Journal, February, 00 [] Dean Banerjee, PLL performance,simulation and design, Dog Ear Publishing, LLC, 00, Second Edition, pp [] National Instruments (NI) AWR Design Environment (AWRDE) help documentation [4] Meng Hu; Ling Wang; Xiaohong Tang, "A low spurious and small step frequency synthesizer based on PLL-DDS-PLL architecture," ICCS 008. th IEEE Singapore International Conference on Communication Systems, 008., vol., no., pp.47,474, 9- Nov. 008 [5] Li YongKe, "The design of wide BW frequency synthesizer based on the DDS&PLL hybrid method," ICEMI '09. 9th International Conference on Electronic Measurement & Instruments, 009., vol., no., pp.-689,-69, 6-9 Aug. 009 [6] Bonfanti, A.; Amorosa, F.; Samori, C.; Lacaita, A.L., "A DDSbased PLL for.4-ghz frequency synthesis," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.50, no., pp.007,00, Dec. 00 [7] Longjun Zhai; Yonghua Jiang; Xiang Ling; Weilang Gao, "DDS-driven PLL frequency synthesizer for X-band radar signal simulation," ISSCAA 006. st International Symposium on Systems and Control in Aerospace and Astronautics, 006, vol., no., pp. pp., 46, 9- Jan. 006 [8] Jaehung Choi; Minsu Kim; Seungha Shin; Youngoo Yang, "Low phase noise S-band PLL frequency synthesizer using DDS and offset mixing techniques," Microwave Conference, 009. APMC 009. Asia Pacific, vol., no., pp.409, 4, 7-0 Dec. 009 [9] Zhao, Z.Y.; Li, X.Y.; Chang, W.G., "LFM-CW signal generator based on hybrid DDS-PLL structure," Electronics Letters, vol.49, no.6, pp., March 4 0 International Journal of Research in Wireless Systems (IJRWS), Volume 4, Issue, December (05) 4

Analysis of Control-Loop Parameters for Effective Jamming in Missile Borne Monopulse Receivers

Analysis of Control-Loop Parameters for Effective Jamming in Missile Borne Monopulse Receivers International Conference on Electronics Engineering and Informatics (ICEEI ) IPCSIT vol. 49 () () IACSIT Press, Singapore DOI:.776/IPCSIT..V49. 4 Analysis of Control-Loop Parameters for Effective Jamming

More information

Break-lock Conditions estimation in Missile Borne Mono-pulse Receiver Dr. Phanikar, Sugandha Ghorpode

Break-lock Conditions estimation in Missile Borne Mono-pulse Receiver Dr. Phanikar, Sugandha Ghorpode IJASCSE Vol, Issue, Break-lock Conditions estimation in Missile Borne Mono-pulse Receiver Dr. Phanikar, Sugandha Ghorpode Abstract: Missile borne Monopulse receivers invariably track the target in three

More information

Phase Noise and Tuning Speed Optimization of a MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution

Phase Noise and Tuning Speed Optimization of a MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution Phase Noise and Tuning Speed Optimization of a 5-500 MHz Hybrid DDS-PLL Synthesizer with milli Hertz Resolution BRECHT CLAERHOUT, JAN VANDEWEGE Department of Information Technology (INTEC) University of

More information

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN

5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE a/b/g WLAN 5.5: A 3.2 to 4GHz, 0.25µm CMOS Frequency Synthesizer for IEEE 802.11a/b/g WLAN Manolis Terrovitis, Michael Mack, Kalwant Singh, and Masoud Zargari 1 Atheros Communications, Sunnyvale, California 1 Atheros

More information

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop J. Handique, Member, IAENG and T. Bezboruah, Member, IAENG 1 Abstract We analyzed the phase noise of a 1.1 GHz phaselocked loop system for

More information

Fabricate a 2.4-GHz fractional-n synthesizer

Fabricate a 2.4-GHz fractional-n synthesizer University of Malaya From the SelectedWorks of Professor Mahmoud Moghavvemi Summer June, 2013 Fabricate a 2.4-GHz fractional-n synthesizer H Ameri Mahmoud Moghavvemi, University of Malaya a Attaran Available

More information

A 3 TO 30 MHZ HIGH-RESOLUTION SYNTHESIZER CONSISTING OF A DDS, DIVIDE-AND-MIX MODULES, AND A M/N SYNTHESIZER. Richard K. Karlquist

A 3 TO 30 MHZ HIGH-RESOLUTION SYNTHESIZER CONSISTING OF A DDS, DIVIDE-AND-MIX MODULES, AND A M/N SYNTHESIZER. Richard K. Karlquist A 3 TO 30 MHZ HIGH-RESOLUTION SYNTHESIZER CONSISTING OF A DDS, -AND-MIX MODULES, AND A M/N SYNTHESIZER Richard K. Karlquist Hewlett-Packard Laboratories 3500 Deer Creek Rd., MS 26M-3 Palo Alto, CA 94303-1392

More information

Section 8. Replacing or Integrating PLL s with DDS solutions

Section 8. Replacing or Integrating PLL s with DDS solutions Section 8. Replacing or Integrating PLL s with DDS solutions By Rick Cushing, Applications Engineer, Analog Devices, Inc. DDS vs Standard PLL PLL (phase-locked loop) frequency synthesizers are long-time

More information

A COMPACT, AGILE, LOW-PHASE-NOISE FREQUENCY SOURCE WITH AM, FM AND PULSE MODULATION CAPABILITIES

A COMPACT, AGILE, LOW-PHASE-NOISE FREQUENCY SOURCE WITH AM, FM AND PULSE MODULATION CAPABILITIES A COMPACT, AGILE, LOW-PHASE-NOISE FREQUENCY SOURCE WITH AM, FM AND PULSE MODULATION CAPABILITIES Alexander Chenakin Phase Matrix, Inc. 109 Bonaventura Drive San Jose, CA 95134, USA achenakin@phasematrix.com

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz

LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz LNS ultra low phase noise Synthesizer 8 MHz to 18 GHz Datasheet The LNS is an easy to use 18 GHz synthesizer that exhibits outstanding phase noise and jitter performance in a 3U rack mountable chassis.

More information

Agile Low-Noise Frequency Synthesizer A. Ridenour R. Aurand Spectrum Microwave

Agile Low-Noise Frequency Synthesizer A. Ridenour R. Aurand Spectrum Microwave Agile Low-Noise Frequency Synthesizer A. Ridenour R. Aurand Spectrum Microwave Abstract Simultaneously achieving low phase noise, fast switching speed and acceptable levels of spurious outputs in microwave

More information

Development of Signal Analyzer MS2840A with Built-in Low Phase-Noise Synthesizer

Development of Signal Analyzer MS2840A with Built-in Low Phase-Noise Synthesizer Development of Signal Analyzer MS2840A with Built-in Low Phase-Noise Synthesizer Toru Otani, Koichiro Tomisaki, Naoto Miyauchi, Kota Kuramitsu, Yuki Kondo, Junichi Kimura, Hitoshi Oyama [Summary] Evaluation

More information

INC. MICROWAVE. A Spectrum Control Business

INC. MICROWAVE. A Spectrum Control Business DRO Selection Guide DIELECTRIC RESONATOR OSCILLATORS Model Number Frequency Free Running, Mechanically Tuned Mechanical Tuning BW (MHz) +10 MDR2100 2.5-6.0 +10 6.0-21.0 +20 Free Running, Mechanically Tuned,

More information

Choosing Loop Bandwidth for PLLs

Choosing Loop Bandwidth for PLLs Choosing Loop Bandwidth for PLLs Timothy Toroni SVA Signal Path Solutions April 2012 1 Phase Noise (dbc/hz) Choosing a PLL/VCO Optimized Loop Bandwidth Starting point for setting the loop bandwidth is

More information

Military End-Use. Phased Array Applications. FMCW Radar Systems

Military End-Use. Phased Array Applications. FMCW Radar Systems Features RF Bandwidth: 9.05 ghz to 10.15 ghz Fractional or Integer Modes Ultra Low Phase Noise 9.6 ghz; 50 MHz Ref. -106 / -102 dbc/hz @ 10 khz (Int / frac) dbc/hz @ 1 MHZ (Open Loop) Figure of Merit (FOM)

More information

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL 2.1 Background High performance phase locked-loops (PLL) are widely used in wireless communication systems to provide

More information

SPECIFICATION FREQUENCY RANGE: IBS-6

SPECIFICATION FREQUENCY RANGE: IBS-6 IBS Series SYNTHESIZER SPECIFICATION FREQUENCY RANGE: IBS-6 0.1 to 6 GHz IBS-18 2 to 18 GHz IBS-20 0.1 to 20 GHz FEATURES Wide Frequency Bandwidth: 0.1 to 20 GHz Fast Switching Speed: 200 usec, Full Band

More information

Design of Transmitter-Receiver for FM-CW Imaging Radar at L-band

Design of Transmitter-Receiver for FM-CW Imaging Radar at L-band Design of Transmitter-Receiver for FM-CW Imaging Radar at L-band Ashish Kr. Roy 2, Bakul Bapat 1, C. Bhattacharya 1 and S.A.Gangal 2 1 Electronics Engineering Dept, DIAT, Pune - 411025, India 2 Department

More information

PTX-0350 RF UPCONVERTER, MHz

PTX-0350 RF UPCONVERTER, MHz PTX-0350 RF UPCONVERTER, 300 5000 MHz OPERATING MODES I/Q upconverter RF = LO + IF upconverter RF = LO - IF upconverter Synthesizer 10 MHz REFERENCE INPUT/OUTPUT EXTERNAL LOCAL OSCILLATOR INPUT I/Q BASEBAND

More information

Hybrid Frequency Synthesizer Combines Octave Tuning Range and Millihertz Steps

Hybrid Frequency Synthesizer Combines Octave Tuning Range and Millihertz Steps Hybrid Frequency Synthesizer Combines Octave Tuning Range and Millihertz Steps DDS and PLL techniques are combined in this high-resolution synthesizer By Benjamin Sam Analog Devices Northwest Laboratories

More information

THE UNIVERSITY OF NAIROBI

THE UNIVERSITY OF NAIROBI THE UNIVERSITY OF NAIROBI ELECTRICAL AND INFORMATION ENGINEERING DEPARTMENT FINAL YEAR PROJECT. PROJECT NO. 085. TITLE: A PHASE-LOCKED LOOP FREQUENCY SYNTHESIZER BY: TUNDULI W. MICHAEL F17/2143/2004. SUPERVISOR:

More information

PN9000 PULSED CARRIER MEASUREMENTS

PN9000 PULSED CARRIER MEASUREMENTS The specialist of Phase noise Measurements PN9000 PULSED CARRIER MEASUREMENTS Carrier frequency: 2.7 GHz - PRF: 5 khz Duty cycle: 1% Page 1 / 12 Introduction When measuring a pulse modulated signal the

More information

DS H01 DIGITAL SYNTHESIZER MODULE SYSTEM SOLUTIONS. Features Applications 174 x 131 x 54 mm. Technical Description

DS H01 DIGITAL SYNTHESIZER MODULE SYSTEM SOLUTIONS. Features Applications 174 x 131 x 54 mm. Technical Description DS H01 The DS H01 is a high performance dual digital synthesizer with wide output bandwidth specially designed for Defense applications where generation of wideband ultra-low noise signals along with very

More information

VCO Based Injection-Locked Clock Multiplier with a Continuous Frequency Tracking Loop

VCO Based Injection-Locked Clock Multiplier with a Continuous Frequency Tracking Loop IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 4, Ver. I (Jul.-Aug. 2018), PP 26-30 www.iosrjournals.org VCO Based Injection-Locked

More information

<180 fs RMS Jitter 24-bit Step Size, Resolution 3 Hz typ Exact Frequency Mode Built in Digital Self Test 40 Lead 6x6 mm SMT Package: 36 mm 2

<180 fs RMS Jitter 24-bit Step Size, Resolution 3 Hz typ Exact Frequency Mode Built in Digital Self Test 40 Lead 6x6 mm SMT Package: 36 mm 2 Features RF Bandwidth: Maximum Phase Detector Rate 1 MHz Ultra Low Phase Noise -11 dbc/hz in Band Typ. Figure of Merit (FOM) -227 dbc/hz Typical Applications Cellular/4G, WiMax Infrastructure Repeaters

More information

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application J Electr Eng Technol Vol. 9, No.?: 742-?, 2014 http://dx.doi.org/10.5370/jeet.2014.9.?.742 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK Features RF Bandwidth: 9.05 GHz to

More information

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver Hamid Rategh Center for Integrated Systems Stanford University OUTLINE Motivation Introduction

More information

A Novel Hybrid Fast Switching Adaptive No Delay Tanlock Loop Frequency Synthesizer

A Novel Hybrid Fast Switching Adaptive No Delay Tanlock Loop Frequency Synthesizer A Novel Hybrid Fast Switching Adaptive No Delay Tanlock Loop Frequency Synthesizer Ehab Salahat, Saleh R. Al-Araji, Mahmoud Al-Qutayri Department of Electrical and Computer Engineering, Khalifa University,

More information

<180 fs RMS Jitter 24-bit Step Size, Resolution 3 Hz typ Exact Frequency Mode Built in Digital Self Test 40 Lead 6x6 mm SMT Package: 36 mm 2

<180 fs RMS Jitter 24-bit Step Size, Resolution 3 Hz typ Exact Frequency Mode Built in Digital Self Test 40 Lead 6x6 mm SMT Package: 36 mm 2 Features RF Bandwidth: Maximum Phase Detector Rate 1 MHz Ultra Low Phase Noise -11 dbc/hz in Band Typ. Figure of Merit (FOM) -227 dbc/hz Typical Applications Cellular/4G Infrastructure Repeaters and Femtocells

More information

A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER

A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER 3 A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER Milan STORK University of West Bohemia UWB, P.O. Box 314, 30614 Plzen, Czech Republic stork@kae.zcu.cz Keywords: Coincidence, Frequency mixer,

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Network Theory Broadband Circuit Design Fall 014 Lecture 13: Frequency Synthesizer Examples Sam Palermo Analog & Mixed-Signal Center Texas A&M University Agenda Frequency Synthesizer Examples Design

More information

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 17, NO. 2, 98~104, APR. 2017 http://dx.doi.org/10.5515/jkiees.2017.17.2.98 ISSN 2234-8395 (Online) ISSN 2234-8409 (Print) CMOS 120 GHz Phase-Locked

More information

Ten-Tec Orion Synthesizer - Design Summary. Abstract

Ten-Tec Orion Synthesizer - Design Summary. Abstract Ten-Tec Orion Synthesizer - Design Summary Lee Jones 7/21/04 Abstract Design details of the low phase noise, synthesized, 1 st local oscillator of the Ten-Tec model 565 Orion transceiver are presented.

More information

AN4: Application Note

AN4: Application Note : Introduction The PE3291 fractional-n PLL is a dual VHF/UHF integrated frequency synthesizer with fractional ratios of 2, 4, 8, 16 and 32. Its low power, low phase noise and low spur content make the

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com HMC767* Product Page Quick Links Last Content Update: 08/30/2016 Comparable

More information

Introduction to Single Chip Microwave PLLs

Introduction to Single Chip Microwave PLLs Introduction to Single Chip Microwave PLLs ABSTRACT Synthesizer and Phase Locked Loop (PLL) figures of merit including phase noise spurious output and lock time at microwave frequencies are examined Measurement

More information

Glossary of VCO terms

Glossary of VCO terms Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

More information

Measuring ACPR of W-CDMA signals with a spectrum analyzer

Measuring ACPR of W-CDMA signals with a spectrum analyzer Measuring ACPR of W-CDMA signals with a spectrum analyzer When measuring power in the adjacent channels of a W-CDMA signal, requirements for the dynamic range of a spectrum analyzer are very challenging.

More information

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology Xiang Yi, Chirn Chye Boon, Junyi Sun, Nan Huang and Wei Meng Lim VIRTUS, Nanyang Technological

More information

AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR

AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR H. McPherson Presented at IEE Conference Radar 92, Brighton, Spectral Line Systems Ltd England, UK., October 1992. Pages

More information

SIR-4011 MICROWAVE WIDEBAND DSP RECEIVER. WIDE FREQUENCY RANGE: GHz

SIR-4011 MICROWAVE WIDEBAND DSP RECEIVER. WIDE FREQUENCY RANGE: GHz SIR-4011 MICROWAVE WIDEBAND DSP RECEIVER WIDE FREQUENCY RANGE: 0.5 18.0 GHz FEATURES Advanced Front Panel Graphics Display High Dynamic Range: In band Input IP3 > 0 dbm, NF< 15 db DSP Based AM, FM Video

More information

THE PHS 8500 FAMILY OF VERY LOW PHASE NOISE HIGH PERFORMANCE MICROWAVE SYNTHESIZERS BENCHTOP

THE PHS 8500 FAMILY OF VERY LOW PHASE NOISE HIGH PERFORMANCE MICROWAVE SYNTHESIZERS BENCHTOP SUBTITLE THE PHS 8500 FAMILY OF VERY LOW PHASE NOISE HIGH PERFORMANCE MICROWAVE SYNTHESIZERS BENCHTOP MODULAR HANDHELD The PHS 8500 Family SUBTITLE Features: Standard Range : 700 MHz to 18 GHz Extendable

More information

FS5000 COMSTRON. The Leader In High Speed Frequency Synthesizers. An Ideal Source for: Agile Radar and Radar Simulators.

FS5000 COMSTRON. The Leader In High Speed Frequency Synthesizers. An Ideal Source for: Agile Radar and Radar Simulators. FS5000 F R E Q U E N C Y S Y N T H E S I Z E R S Ultra-fast Switching < 200 nsec Wide & Narrow Band Exceptionally Clean An Ideal Source for: Agile Radar and Radar Simulators Radar Upgrades Fast Antenna

More information

Available online at ScienceDirect. International Conference On DESIGN AND MANUFACTURING, IConDM 2013

Available online at  ScienceDirect. International Conference On DESIGN AND MANUFACTURING, IConDM 2013 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 64 ( 2013 ) 377 384 International Conference On DESIGN AND MANUFACTURING, IConDM 2013 A Novel Phase Frequency Detector for a

More information

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz Application Note Overview This application note describes accuracy considerations

More information

Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note Keysight Technologies Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note 02 Keysight Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note 1. Introduction

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand ni.com Design and test of RADAR systems Agenda Radar Overview Tools Overview VSS LabVIEW PXI Design and Simulation

More information

7 GHz INTEGER N SYNTHESIZER CONTINUOUS (N = ), NON-CONTINUOUS (N = 16-54) Features

7 GHz INTEGER N SYNTHESIZER CONTINUOUS (N = ), NON-CONTINUOUS (N = 16-54) Features HMC99LP5 / 99LP5E CONTINUOUS (N = 5-519), NON-CONTINUOUS (N = 1-54) Typical Applications The HMC99LP5(E) is ideal for: Satellite Communication Systems Point-to-Point Radios Military Applications Sonet

More information

Gert Veale / Christo Nel Grintek Ewation

Gert Veale / Christo Nel Grintek Ewation Phase noise in RF synthesizers Gert Veale / Christo Nel Grintek Ewation Introduction & Overview Where are RF synthesizers used? What is phase noise? Phase noise eects Classic RF synthesizer architecture

More information

Multiple Reference Clock Generator

Multiple Reference Clock Generator A White Paper Presented by IPextreme Multiple Reference Clock Generator Digitial IP for Clock Synthesis August 2007 IPextreme, Inc. This paper explains the concept behind the Multiple Reference Clock Generator

More information

Varactor-Tuned Oscillators. Technical Data. VTO-8000 Series

Varactor-Tuned Oscillators. Technical Data. VTO-8000 Series Varactor-Tuned Oscillators Technical Data VTO-8000 Series Features 600 MHz to 10.5 GHz Coverage Fast Tuning +7 to +13 dbm Output Power ± 1.5 db Output Flatness Hermetic Thin-film Construction Description

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com HMC83* Product Page Quick Links Last Content Update: 11/1/216 Comparable

More information

Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator

Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator Abhishek Mishra Department of electronics &communication, suresh gyan vihar university Mahal jagatpura, jaipur (raj.), india Abstract-There

More information

Phase Locked Loop Design for Fast Phase and Frequency Acquisition

Phase Locked Loop Design for Fast Phase and Frequency Acquisition Phase Locked Loop Design for Fast Phase and Frequency Acquisition S.Anjaneyulu 1,J.Sreepavani 2,K.Pramidapadma 3,N.Varalakshmi 4,S.Triven 5 Lecturer,Dept.of ECE,SKU College of Engg. & Tech.,Ananthapuramu

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Noise is an unwanted signal. In communication systems, noise affects both transmitter and receiver performance. It degrades

More information

How To Design RF Circuits - Synthesisers

How To Design RF Circuits - Synthesisers How To Design RF Circuits - Synthesisers Steve Williamson Introduction Frequency synthesisers form the basis of most radio system designs and their performance is often key to the overall operation. This

More information

Phase Matrix / National Instruments uw Components

Phase Matrix / National Instruments uw Components Phase Matrix / National Instruments uw Components April 2014 Introducing NI uw Components Microwave Components Introduction: Phase Matrix, Inc Background 1999: Founded by former EIP employees 2004: Custom

More information

700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO ADRF6614

700 MHz to 3000 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO ADRF6614 7 MHz to 3 MHz, Dual Passive Receive Mixer with Integrated PLL and VCO ADRF664 FEATURES RF frequency: 7 MHz to 3 MHz, continuous LO input frequency: 2 MHz to 27 MHz, high-side or lowside injection IF range:

More information

A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation. Outline

A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation. Outline A Wide-Bandwidth 2.4GHz ISM Band Fractional-N PLL with Adaptive Phase Noise Cancellation Ashok Swaminathan,2, Kevin J. Wang, Ian Galton University of California, San Diego, CA 2 NextWave Broadband, San

More information

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc.

Understanding Low Phase Noise Signals. Presented by: Riadh Said Agilent Technologies, Inc. Understanding Low Phase Noise Signals Presented by: Riadh Said Agilent Technologies, Inc. Introduction Instabilities in the frequency or phase of a signal are caused by a number of different effects. Each

More information

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 4929 Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI APPLICATION NOTE 4929 Adapting

More information

24-bit Step Size, Resolution 3 Hz typ Exact Frequency Mode Built-in Digital Self Test 40 Lead 6x6mm SMT Package: 36mm 2. Phased Array Applications

24-bit Step Size, Resolution 3 Hz typ Exact Frequency Mode Built-in Digital Self Test 40 Lead 6x6mm SMT Package: 36mm 2. Phased Array Applications FRACTIONAL-N PLL WITH INTEGRATED VCO, 80-80 MHz Features RF Bandwidth: 80 to 80 MHz Ultra Low Phase Noise -110 dbc/hz in Band Typ. Figure of Merit (FOM) -22 dbc < 180 fs RMS Jitter 24-bit Step Size, Resolution

More information

Model 7000 Series Phase Noise Test System

Model 7000 Series Phase Noise Test System Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Model 7000 Series Phase Noise Test System Fully Integrated System Cross-Correlation Signal Analysis to 26.5 GHz Additive

More information

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc.

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc. SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter Datasheet Rev 1.2 2017 SignalCore, Inc. support@signalcore.com P R O D U C T S P E C I F I C A T I O N S Definition of Terms The following terms are used

More information

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators RF Signal Generators SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators SG380 Series RF Signal Generators DC to 2 GHz, 4 GHz or 6 GHz 1 µhz resolution AM, FM, ΦM, PM and sweeps OCXO timebase

More information

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD Teerachot Siriburanon, Tomohiro Ueno, Kento Kimura, Satoshi Kondo, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan

More information

APPH6040B / APPH20G-B Specification V2.0

APPH6040B / APPH20G-B Specification V2.0 APPH6040B / APPH20G-B Specification V2.0 (July 2014, Serial XXX-XX33XXXXX-XXXX or higher) A fully integrated high-performance cross-correlation signal source analyzer for to 7 or 26 GHz 1 Introduction

More information

24-bit Step Size, Resolution 3 Hz typ Exact Frequency Mode Built-in Digital Self Test 40 Lead 6x6mm SMT Package: 36mm 2. Phased Array Applications

24-bit Step Size, Resolution 3 Hz typ Exact Frequency Mode Built-in Digital Self Test 40 Lead 6x6mm SMT Package: 36mm 2. Phased Array Applications Features RF Bandwidth: 1815 to 2010 MHz Ultra Low Phase Noise -110 dbc/hz in Band Typ. Figure of Merit (FOM) -22 dbc < 180 fs RMS Jitter 24-bit Step Size, Resolution 3 Hz typ Exact Frequency Mode Built-in

More information

MICROWAVE CRYSTEK. Features. Applications CPLL " 0.800" SMD CORPORATION GHz. Standard 3 Wire Interface

MICROWAVE CRYSTEK. Features. Applications CPLL  0.800 SMD CORPORATION GHz. Standard 3 Wire Interface Features 4.240 GHz Standard 3 Wire Interface Small layout 0.582" 0.8" Applications Digital Radio Equipment Fixed Wireless Access Satellite Communications Systems Base Stations Personal Communications Systems

More information

HS9000 SERIES. RoHS. Multi-Channel RF Synthesizers

HS9000 SERIES. RoHS. Multi-Channel RF Synthesizers Holzworth has refined its multi-channel platform in the form of the HS9000 Series for integration of the HSM Series Single Channel Synthesizers. The HS9000 series is designed to achieve optimal channel-to-channel

More information

On the Design of Software and Hardware for a WSN Transmitter

On the Design of Software and Hardware for a WSN Transmitter 16th Annual Symposium of the IEEE/CVT, Nov. 19, 2009, Louvain-La-Neuve, Belgium 1 On the Design of Software and Hardware for a WSN Transmitter Jo Verhaevert, Frank Vanheel and Patrick Van Torre University

More information

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition P. K. Rout, B. P. Panda, D. P. Acharya and G. Panda 1 Department of Electronics and Communication Engineering, School of Electrical

More information

Design and Implementation of a Low Noise Block for Extended C-Band Earth Station

Design and Implementation of a Low Noise Block for Extended C-Band Earth Station THE INSTITUTE OF ELECTRONICS, VJMW 2015 INFORMATION AND COMMUNICATION ENGINEERS Design and Implementation of a Low Noise Block for Extended C-Band Earth Station Khanh Duy NGUYEN 1, Doai Van NGUYEN 2, Duc

More information

Radiofrequency Measurements. Frequency Synthesizers

Radiofrequency Measurements. Frequency Synthesizers Radiofrequency Measurements Frequency Synthesizers The next slides material is taken from AGILENT Fundamentals of Quartz Oscillators, Application Note 200-2 AGILENT Source Basics John R. Vig Quartz Crystal

More information

1 MHz 6 GHz RF Mixer with built in PLL Synthesizer

1 MHz 6 GHz RF Mixer with built in PLL Synthesizer Windfreak Technologies Preliminary Data Sheet v0.1a MixNV Active Mixer v1.4a $499.00US 1 MHz 6 GHz RF Mixer with built in PLL Synthesizer Features Open source Labveiw GUI software control via USB Run hardware

More information

8 Hints for Better Spectrum Analysis. Application Note

8 Hints for Better Spectrum Analysis. Application Note 8 Hints for Better Spectrum Analysis Application Note 1286-1 The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope provides

More information

A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique

A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique A Sub-0.75 RMS-Phase-Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique Lei Lu, Lingbu Meng, Liang Zou, Hao Min and Zhangwen Tang Fudan University,

More information

ALMA Memo No NRAO, Charlottesville, VA NRAO, Tucson, AZ NRAO, Socorro, NM May 18, 2001

ALMA Memo No NRAO, Charlottesville, VA NRAO, Tucson, AZ NRAO, Socorro, NM May 18, 2001 ALMA Memo No. 376 Integration of LO Drivers, Photonic Reference, and Central Reference Generator Eric W. Bryerton 1, William Shillue 2, Dorsey L. Thacker 1, Robert Freund 2, Andrea Vaccari 2, James Jackson

More information

RFID Systems: Radio Architecture

RFID Systems: Radio Architecture RFID Systems: Radio Architecture 1 A discussion of radio architecture and RFID. What are the critical pieces? Familiarity with how radio and especially RFID radios are designed will allow you to make correct

More information

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer

PXIe Contents SPECIFICATIONS. 14 GHz and 26.5 GHz Vector Signal Analyzer SPECIFICATIONS PXIe-5668 14 GHz and 26.5 GHz Vector Signal Analyzer These specifications apply to the PXIe-5668 (14 GHz) Vector Signal Analyzer and the PXIe-5668 (26.5 GHz) Vector Signal Analyzer with

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

Source Serves FMCW Radar

Source Serves FMCW Radar Source Serves FMCW Radar Direct-digital-synthesizer (DDS) technology can provide the agility and frequency and phase control needed to drive high-performance frequency-modulated-continuous-wave radar systems.

More information

Noise Analysis of Phase Locked Loops

Noise Analysis of Phase Locked Loops Noise Analysis of Phase Locked Loops MUHAMMED A. IBRAHIM JALIL A. HAMADAMIN Electrical Engineering Department Engineering College Salahaddin University -Hawler ERBIL - IRAQ Abstract: - This paper analyzes

More information

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers 6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Bandwidth Constraints

More information

THE PHS 8340 FAMILY OF HIGH VALUE BROADBAND MICROWAVE SYNTHESIZERS

THE PHS 8340 FAMILY OF HIGH VALUE BROADBAND MICROWAVE SYNTHESIZERS SUBTITLE THE PHS 8340 FAMILY OF HIGH VALUE BROADBAND MICROWAVE SYNTHESIZERS BENCHTOP Multi Output MODULAR HANDHELD The PHS 8340 Family SUBTITLE Features: Standard Range: 700 MHz to 18 GHz Extendable to

More information

NON-CATALOG Frequency Synthesizer

NON-CATALOG Frequency Synthesizer Frequency Synthesizer 50 700 MHz Low phase noise and spurious Fixed frequency without external programming Integrated microcontroller Robust design and construction Small size 0.80" x 0.58" x 0.15" CASE

More information

FlexDDS-NG DUAL. Dual-Channel 400 MHz Agile Waveform Generator

FlexDDS-NG DUAL. Dual-Channel 400 MHz Agile Waveform Generator FlexDDS-NG DUAL Dual-Channel 400 MHz Agile Waveform Generator Excellent signal quality Rapid parameter changes Phase-continuous sweeps High speed analog modulation Wieserlabs UG www.wieserlabs.com FlexDDS-NG

More information

Chapter 2 Architectures for Frequency Synthesizers

Chapter 2 Architectures for Frequency Synthesizers Chapter 2 Architectures for Frequency Synthesizers 2.1 Overview This chapter starts with an overview of the conventional frequency synthesis techniques as well as the hybrid architectures that can be used

More information

A new method of spur reduction in phase truncation for DDS

A new method of spur reduction in phase truncation for DDS A new method of spur reduction in phase truncation for DDS Zhou Jianming a) School of Information Science and Technology, Beijing Institute of Technology, Beijing, 100081, China a) zhoujm@bit.edu.cn Abstract:

More information

Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture

Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture Zhi Hu, Cheng Wang, and Ruonan Han Massachusetts Institute of Technology

More information

UM TFF11xxxHN. User Manual TFF11xxxHN evaluation board Feb User manual. Document information

UM TFF11xxxHN. User Manual TFF11xxxHN evaluation board Feb User manual. Document information User Manual TFF11xxxHN evaluation board 0.53 11 Feb. 2011 User manual Document information Info Keywords Abstract Content TFF11xxxHN, LO generator, Ku-band, Satellite, VSAT, PLL, phase noise This document

More information

PLL Building Blocks. Presented by: Dean Banerjee, Wireless Applications Engineer

PLL Building Blocks. Presented by: Dean Banerjee, Wireless Applications Engineer PLL Building Blocks Presented by: Dean Banerjee, Wireless Applications Engineer Phased-Locked Loop Building Blocks Basic PLL Operation VCO Dividers R Counter Divider Relation to Crystal Reference Frequency

More information

Frequency Synthesizer

Frequency Synthesizer 50Ω 3700 MHz (fixed) The Big Deal Low phase noise and spurious Fixed frequency without external programming Integrated microcontroller Robust design and construction Case size 2.75" x 1.96" x 0.62" CASE

More information

A voltage controlled oscillator for obtaining a frequency reference constantly locked to L1 GPS carrier for power quality assessment applications

A voltage controlled oscillator for obtaining a frequency reference constantly locked to L1 GPS carrier for power quality assessment applications A voltage controlled oscillator for obtaining a frequency reference constantly locked to L1 GPS carrier for power quality assessment applications M. Caciotta 1, F. Leccese 1, S. Pisa 2, E. Piuzzi 2 1 Dept.

More information

60 GHz Receiver (Rx) Waveguide Module

60 GHz Receiver (Rx) Waveguide Module The PEM is a highly integrated millimeter wave receiver that covers the GHz global unlicensed spectrum allocations packaged in a standard waveguide module. Receiver architecture is a double conversion,

More information