FULLY INTEGRATED CURRENT-MODE SUBAPERTURE CENTROID CIRCUITS AND PHASE RECONSTRUCTOR Alushulla J. Ambundo 1 and Paul M. Furth 2

Size: px
Start display at page:

Download "FULLY INTEGRATED CURRENT-MODE SUBAPERTURE CENTROID CIRCUITS AND PHASE RECONSTRUCTOR Alushulla J. Ambundo 1 and Paul M. Furth 2"

Transcription

1 FULLY NTEGRATED CURRENT-MODE SUBAPERTURE CENTROD CRCUTS AND PHASE RECONSTRUCTOR Alushulla J. Ambundo 1 and Paul M. Furth 1 Mixed-Signal-Wireless (MSW), Texas nstruments, Dallas, TX aambundo@ti.com Dept. of Electrical & Computer Engineering, New Mexico State Univ., Las Cruces, NM pfurth@nmsu.edu Abstract This work describes a single-chip solution to the problem of phase reconstruction of an aberrated plane wave. n this solution we amplify a current generated by a CMOS imager, compute the second derivative and inject it directly into a resistive grid in one chip. Four large photodiodes, arranged as a quad cell, generate continuous photocurrents in the picoampere range. We use the translinear characteristics of MOS transistors operating in the subthreshold region to linearly amplify each photocurrent and normalize them by the sum of the photocurrents in the quad cell. Thus, our centroid computation is independent of the absolute light intensity. The finite difference computation is achieved through current summation at the nodes on the resistive grid. This work describes the design, analysis and characterization to solve the problem of computing the phase of an incoming wavefront. ntroduction Compared to digital signal processing, analog signal processing is proving to be the way forward in large-scale neural computation. Analog processing has higher possible bandwidth and, given that the Metal Oxide Semiconductor (MOS) devices operate in the subthreshold region, power consumption is extremely low. Sensory data is in the analog domain and thus compatibility to higher-level analog signal processing blocks is guaranteed. There is no need for costly analog-to-digital (A/D) conversions. Further, current-mode operation provides circuit simplicity, higher operating speed, low power dissipation and wide dynamic range. Finally, low power circuits implemented in subthreshold occupy small silicon area, thus leading to higher yield.

2 The motivation behind this work is to come up with a single chip solution that will reconstruct the phase of an aberrated plane wave incident upon a surface. t is based on research previously published by Furth and Clark [1] in which centroid computations and wave reconstruction are not integrated on one chip. Lenslets focus the slope of the phase onto a spot, which represents the first derivative of the phase. The purpose of our centroid circuit is to determine the position of the focused spot. Signals from the centroid circuit are then processed and injected into a resistive grid, which does phase reconstruction [] by solving Poisson s equation. n this work we are able to integrate the centroid computation, the second derivative and phase reconstruction on one chip. Figure 1 depicts a brief summary of the project implementation. Further hardware testing was carried out on a previously fabricated chip to verify the translinear principle. Aberrated wavefront Lenslets Finite difference R + - inj V node R + - inj V node R + - 1st derivative of phase inj V node R recontructed phase Focused spot location Resistive grid Figure 1 One-dimensional diagram of fully integrated current-mode subaperture centroid circuits and phase reconstructor.

3 The second derivative can be computed by taking the difference between the centroid currents at neighboring quad cells. Equation (1) shows the unnormalized second derivative along the x-axis while equation () shows the same along the y-axis. The resistive grid then yields the solution to the Poisson's equation, i.e. reconstructs the phase of the wavefront. u x u x ( ) ( ) out11 out1 out3 out4 out13 out14 out1 out ( ) ( ) out11 out13 out3 out34 out1 out14 out31 out33 (1) () [1,1] [1,3] out 1,1 out1,3 out,3 out,1 [,1] [,3] V x [1,] [1,4] out1,4 out 1, out, out,4 [,] [,4] V y Figure Current injection into a x resistive grid along the x-axis. x Figure shows how currents are injected into the resistive grid. Consider node V. Currents out1, 1, out1,, out, 3 and out, 4 are amplified photocurrents generated by sensor s [1,1],[1,],[,3] and [,4] respectively. Using PMOS low voltage current mirrors these currents are sourced into node V. Next, currents out1, 3, out1, 4, x out,1 and out, are amplified photocurrents generated by sensor s [1,3] [1,4], [,1] and [,] respectively. Using NMOS low voltage current mirrors these currents are sunk out of node V x. Further we need to keep the centroid computation insensitive to light intensity. According to [3] we can determine the x and y tilt of the wavefront averaged over the subaperture defined by the lenslet using a difference between neighbors divided by the sum of all the photocurrents in a centroid. The normalized second derivative along the x-

4 axis is now given by (4) while the normalized second derivative along the y-axis is given by (5). x y u u ( photo11 photo1 photo3 photo4 ) ( ) photo11 photo1 photo13 photo14 ( photo11 photo13 photo3 photo34 ) ( ) photo11 photo13 photo1 photo14 ( photo13 photo14 photo1 photo ) ( ) photo1 photo photo3 photo4 ( photo1 photo14 photo31 photo33 ) ( ) photo31 photo3 photo34 photo33 ( 4) ( 5) n designing a current we make use of the translinear loop principle [4]. This principle should hold as long as the source to bulk voltage is made equal to zero or constant [6]. Using the translinear principle on the current and looking at the loop -A- B-C- of Figure 3 we are able to generate the following relation: V CW CCW V + V V 0 (3) Assuming κ 1 κ κ3 κ 4 that the gate-to-source voltages are approximately given by V GS VT κ ln S D o it follows that V T κ 1 ln S 0 ln S o 3 ln S o 4 ln S o 0 (4) 1 34 ln ln (5) So S o f the device dimensions are similar then or out

5 V DD V DD M1 V 1 B V 3 M3 4 out 1 A M C 3 V 4 M4 V photodiode V SS Figure 3 Simple Current [4 and 5] As equations (4) and (5) suggest the normalizing current is the sum of the currents going into each of the sense s, we generate a copy of the photocurrent going into the sense so that we can feed it back to the summing node (Figure 4). Using low-voltage cascode current mirrors [7] a modified current is shown in Figure 4. M4 M5 M14 VD D M15 M16 M17 M18 M6 ph 1 photodiode M1 M7 A V M19 B Mcasc1 D M M9 4 i 1 V3 ph1 M3 M10 M0 M1 M M3 scaler outp outp outn outn M11 M1 M13 V1 M5 M6 V4 M4 M7 M8 VSS Figure 4 Modified current that computes the centroid by dividing by the sum of the four photocurrents in the quad cell.

6 Simulations generated from hooking up a two by two resistive grid (Figure 5) are shown in Figure 6. NMOS and PMOS devices connected as a transmission gate and operated in subthreshold make pseudo resistors that replace all resistors in the resistive grid. [1,1] [1,3] [,1] [,3] V top [1,] [1,4] [,] [,4] V left V right V node [3,1] [3,3] [4,1] [4,3] [3,] [3,4] V bott [4,] [4,4] Figure 5 Two by two resistive grid. For a change along the y-axis, photocurrents going into sensor s [1,1] [1,3] [,1] [,3] [3,] [3,4] [4,] and [4,4] are varied from 0.1pA to 9.9pA while photocurrents going into sensor s [1,] [1,4] [,] [,4] [3,1] [3,3] [4,1] and [4,3] are varied from 9.9pA to 0.1pA. Here we expect V right and V left to have a higher voltage than Vtop and V bott. We also increase the total intensity of the incoming currents to see what effect it will have on the overall behavior of the circuit. This is a test for normalization; an increase in photocurrent should have no effect on the node voltage.

7 Figure 6 shows thatv right and V left have higher voltages than V top and V bott since there is little activity along the x-axis. Figure 6 Simulated node voltages for y-axis variation of a two by two phase reconstructor using pseudo-resistors. The three curves on the left correspond to a total photocurrent of 10pA, whereas the three curves on the right correspond to a total photocurrent of 0pA. Note that the voltage response is virtually independent of the absolute light intensity, or total photocurrent.

8 Figure 7 Simulated voltages for the three by three pseudo resistive grid in response to the y-axis variations in the input photocurrents. Simulations were also done on a three by three-resistive grid and the results are shown in Figure 7. To show that normalization has been achieved we have increased the current to 19.8 pa for comparison. From Figure 7 we may also note that node voltages do not change with an increase in photocurrent. Further V1 and V voltages have been offset by.5mv for clarity. We then went into the laboratory to verify that the cell is going to work. Using a transistor array that we designed and tested using the 0.5-µm AM n-well process, we verified the operation of the basic translinear. Results in Figure 8 show that the actual measured data may be split into two regions. Region A is a high gain region. This region is characterized by a steep slope. n this region leakage currents are on the order of the photocurrents that we are injecting into the. Region B has reduced gain, very close to the ideal value. This implies that working in this region will give results that are concurrent with the translinear principle. This is true because as we increase the photocurrents, κ could be changing as a function of V SB.

9 Figure 8 Plots of output current versus input photo current. shown below. Further we make a layout for the cell and the quad cell. The proposed layout is Figure 9 Proposed chip layout.

10 Summary This work has dealt with phase reconstruction based on centroid location. The motivation behind this project was to come up with a single chip solution that will reconstruct the phase of a plane wave incident upon a surface. We need to keep the centroid computation independent to light intensity. This is achieved using normalization. According to [3] we can determine the x and y phase of the wavefront averaged over the subaperture defined by the lenslet using a difference between neighbors divided by the sum of all the photocurrents in a centroid. n the current solution lenslets focus the phasal orientation onto a spot and our centroid circuit should be able to determine the position of the focused spot. Signals from the centroid circuit are then injected into a resistive grid, which does phase reconstruction by giving a solution to Poisson s equation. Further, simulations are done to verify operation at the cell level. Based on the work by Meitzler and Andreou [8] we expect the circuit simulator not to converge for large dimensional systems. We therefore performed simulations for a two by two-resistive grid and hooked up the whole system, predicting that the system is going to conform to theory. We also did a simulation for a three by three-resistive grid. We should note that in this case we are simulating a total of approximately 1400 devices. This work will only be complete once we are able to read out the voltages at the nodes from the resistive grid. With this in mind, we need to be able to define the boundary conditions. deally integrating the photo detector, Poisson equation solver and voltage to phase conversion in one chip will make the system very compact. References [1] P. M Furth and N. Clark, Analog VLS Subaperture Centroid Circuits, Proc. 7 th NASA Symp. VLS Design, Albuquerque, NM, Oct [] Ramirez Angulo, J. Treece, K Deyoung M., Real time Solution of Laplace Equation Using Analog VLS Circuits, EEE nternational Symposium on Circuits and Systems, London, England, May 1994.

11 [3] David H. Pollock, Countermeasure Systems: The nfrared and Electro- Optical Systems Handbook. Volume 7,the society of Photo-Optical nstrumentation Engineers, Page56. [4] A. G. Andreou and K. A. Boahen, Current Mode Subthreshold MOS circuit for analog VLS neural systems. EEE transactions neural networks, Vol No., [5] A. G. Andreou and K. A. Boahen, Translinear Circuits in subthreshold CMOS. J. Analog nteg. Circ.Sig. Proc, [6] Teresa Serrano-Gotarredona, Bernabé Linares-Barranco and Andreas G Andreou, A general Translinear principle for subthreshold MOS transistors, EEE transactions on circuits and systems. Fundamental theory and applications,vol 46 No.5,1999. [7] R. Jacob Baker, Harry W. Li, David E. Boyce, CMOS Circuit Design, Layout and Simulation. EEE. nc pages 118, 446 [8] Meitzler, R.C.; Andreou, A.G., On the simulation of analog VLS systems operating in the subthreshold and transition regions." University/Government/ndustry Microelectronics Symposium, Proceedings of the Tenth Biennial, Page(s): , 1993.

FULLY INTEGRATED CURRENT-MODE SUBAPERTURE CENTROID CIRCUITS AND PHASE RECONTRUCTOR. ALUSHULLA JACK AMBUNDO, B.Sc.E.E

FULLY INTEGRATED CURRENT-MODE SUBAPERTURE CENTROID CIRCUITS AND PHASE RECONTRUCTOR. ALUSHULLA JACK AMBUNDO, B.Sc.E.E FULLY NTEGRATED CURRENT-MODE SUBAPERTURE CENTROD CRCUTS AND PHASE RECONTRUCTOR BY ALUSHULLA JACK AMBUNDO, B.Sc.E.E A Thesis submitted to the Graduate School in partial fulfillment of the requirements for

More information

Sensor. Sensor 1,1 1,2. Sensor. Sensor 2,2 2, x-trans y-trans. i x

Sensor. Sensor 1,1 1,2. Sensor. Sensor 2,2 2, x-trans y-trans. i x 0 This is a blank page. Analog VLSI Subaperture Centroid Circuits æ Paul M. Furth The Klipsch School of Electrical & Computer Engineering New Mexico State University, MSC 3-0 Las Cruces NM 88003, USA pfurth@nmsu.edu

More information

HIGH-SPEED IMAGE CENTROID COMPUTATION CIRCUITS IMPLEMENTED IN ANALOG VLSI ANANTH BASHYAM, B.E. A thesis submitted to the Graduate School

HIGH-SPEED IMAGE CENTROID COMPUTATION CIRCUITS IMPLEMENTED IN ANALOG VLSI ANANTH BASHYAM, B.E. A thesis submitted to the Graduate School HIGH-SPEED IMAGE CENTROID COMPUTATION CIRCUITS IMPLEMENTED IN ANALOG VLSI BY ANANTH BASHYAM, B.E A thesis submitted to the Graduate School in partial fulfillment of the requirements for the degree Master

More information

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407 Index A Accuracy active resistor structures, 46, 323, 328, 329, 341, 344, 360 computational circuits, 171 differential amplifiers, 30, 31 exponential circuits, 285, 291, 292 multifunctional structures,

More information

Basic Layout Techniques

Basic Layout Techniques Basic Layout Techniques Rahul Shukla Advisor: Jaime Ramirez-Angulo Spring 2005 Mixed Signal VLSI Lab Klipsch School of Electrical and Computer Engineering New Mexico State University Outline Transistor

More information

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 Objective: The objective of this laboratory experiment is to become more familiar with the operation of

More information

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

More information

High Voltage Operational Amplifiers in SOI Technology

High Voltage Operational Amplifiers in SOI Technology High Voltage Operational Amplifiers in SOI Technology Kishore Penmetsa, Kenneth V. Noren, Herbert L. Hess and Kevin M. Buck Department of Electrical Engineering, University of Idaho Abstract This paper

More information

FDTD SPICE Analysis of High-Speed Cells in Silicon Integrated Circuits

FDTD SPICE Analysis of High-Speed Cells in Silicon Integrated Circuits FDTD Analysis of High-Speed Cells in Silicon Integrated Circuits Neven Orhanovic and Norio Matsui Applied Simulation Technology Gateway Place, Suite 8 San Jose, CA 9 {neven, matsui}@apsimtech.com Abstract

More information

18-Mar-08. Lecture 5, Transistor matching and good layout techniques

18-Mar-08. Lecture 5, Transistor matching and good layout techniques Transistor mismatch & Layout techniques 1. Transistor mismatch its causes and how to estimate its magnitude 2. Layout techniques for good matching 3. Layout techniques to minimize parasitic effects Part

More information

A STABLE AND HIGH-SPEED CMOS IMAGE CENTROID COMPUTATION CIRCUIT KARTHIK REDDY KOTHAPALLI, B.E. A thesis submitted to the Graduate School

A STABLE AND HIGH-SPEED CMOS IMAGE CENTROID COMPUTATION CIRCUIT KARTHIK REDDY KOTHAPALLI, B.E. A thesis submitted to the Graduate School A STABLE AND HIGH-SPEED CMOS IMAGE CENTROID COMPUTATION CIRCUIT BY KARTHIK REDDY KOTHAPALLI, B.E. A thesis submitted to the Graduate School in partial fulfillment of the requirements for the degree Master

More information

Active Decap Design Considerations for Optimal Supply Noise Reduction

Active Decap Design Considerations for Optimal Supply Noise Reduction Active Decap Design Considerations for Optimal Supply Noise Reduction Xiongfei Meng and Resve Saleh Dept. of ECE, University of British Columbia, 356 Main Mall, Vancouver, BC, V6T Z4, Canada E-mail: {xmeng,

More information

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology

CMOS Digital Logic Design with Verilog. Chapter1 Digital IC Design &Technology CMOS Digital Logic Design with Verilog Chapter1 Digital IC Design &Technology Chapter Overview: In this chapter we study the concept of digital hardware design & technology. This chapter deals the standard

More information

Winner-Take-All Networks with Lateral Excitation

Winner-Take-All Networks with Lateral Excitation Analog Integrated Circuits and Signal Processing, 13, 185 193 (1997) c 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Winner-Take-All Networks with Lateral Excitation GIACOMO

More information

Memristor Load Current Mirror Circuit

Memristor Load Current Mirror Circuit Memristor Load Current Mirror Circuit Olga Krestinskaya, Irina Fedorova, and Alex Pappachen James School of Engineering Nazarbayev University Astana, Republic of Kazakhstan Abstract Simple current mirrors

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

Design of a Voltage Reference based on Subthreshold MOSFETS

Design of a Voltage Reference based on Subthreshold MOSFETS Advances in ntelligent Systems Research (ASR), volume 14 17 nternational Conference on Electronic ndustry and Automation (EA 17) esign of a oltage Reference based on Subthreshold MOSFES an SH, Bo GAO*,

More information

CMOS Circuit for Low Photocurrent Measurements

CMOS Circuit for Low Photocurrent Measurements CMOS Circuit for Low Photocurrent Measurements W. Guggenbühl, T. Loeliger, M. Uster, and F. Grogg Electronics Laboratory Swiss Federal Institute of Technology Zurich, Switzerland A CMOS amplifier / analog-to-digital

More information

THE demand for analog circuits which can operate at low

THE demand for analog circuits which can operate at low IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 8, AUGUST 1997 1173 An Improved Tail Current Source for Low Voltage Applications Fan You, Sherif H. K. Embabi, Member, IEEE, J. Francisco Duque-Carrillo,

More information

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a rail-to-rail input and output operational amplifier is introduced.

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

More information

Atypical op amp consists of a differential input stage,

Atypical op amp consists of a differential input stage, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents

More information

Adaptive Resonance Theory Microchips

Adaptive Resonance Theory Microchips Adaptive Resonance Theory Microchips Teresa Serrano-Gotarredona and Bernab6 Linares-Barranco National Microelectronics Center (CNM), Ed. CCA, Av. Reina Mercedes s/n, 41012 Sevilla,SPAN. Phone: (34) 5-4239923,

More information

Operational Amplifier with Two-Stage Gain-Boost

Operational Amplifier with Two-Stage Gain-Boost Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 482 Operational Amplifier with Two-Stage Gain-Boost FRANZ SCHLÖGL

More information

Rail to rail CMOS complementary input stage with only one active differential pair at a time

Rail to rail CMOS complementary input stage with only one active differential pair at a time LETTER IEICE Electronics Express, Vol.11, No.12, 1 5 Rail to rail CMOS complementary input stage with only one active differential pair at a time Maria Rodanas Valero 1a), Alejandro Roman-Loera 2, Jaime

More information

LOGARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING

LOGARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING ARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING Eric J Newman Sr. Applications Engineer in the Advanced Linear Products Division, Analog Devices, Inc., email: eric.newman@analog.com Optical power

More information

A NOVEL DESIGN OF CURRENT MODE MULTIPLIER/DIVIDER CIRCUITS FOR ANALOG SIGNAL PROCESSING

A NOVEL DESIGN OF CURRENT MODE MULTIPLIER/DIVIDER CIRCUITS FOR ANALOG SIGNAL PROCESSING Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,

More information

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing

Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing Design and Implementation of Current-Mode Multiplier/Divider Circuits in Analog Processing N.Rajini MTech Student A.Akhila Assistant Professor Nihar HoD Abstract This project presents two original implementations

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #4 Lab Report MOSFET Amplifiers and Current Mirrors Submission Date: 07/03/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

Keywords - Analog Multiplier, Four-Quadrant, FVF Differential Structure, Source Follower.

Keywords - Analog Multiplier, Four-Quadrant, FVF Differential Structure, Source Follower. Characterization of CMOS Four Quadrant Analog Multiplier Nipa B. Modi*, Priyesh P. Gandhi ** *(PG Student, Department of Electronics & Communication, L. C. Institute of Technology, Gujarat Technological

More information

Wavefront Sensing In Other Disciplines. 15 February 2003 Jerry Nelson, UCSC Wavefront Congress

Wavefront Sensing In Other Disciplines. 15 February 2003 Jerry Nelson, UCSC Wavefront Congress Wavefront Sensing In Other Disciplines 15 February 2003 Jerry Nelson, UCSC Wavefront Congress QuickTime and a Photo - JPEG decompressor are needed to see this picture. 15feb03 Nelson wavefront sensing

More information

LOW CURRENT REFERENCES WITH SUPPLY INSENSITIVE BIASING

LOW CURRENT REFERENCES WITH SUPPLY INSENSITIVE BIASING Annals of the Academy of Romanian Scientists Series on Science and Technology of Information ISSN 2066-8562 Volume 3, Number 2/2010 7 LOW CURRENT REFERENCES WITH SUPPLY INSENSITIVE BIASING Vlad ANGHEL

More information

HIGH GAIN, HIGH BANDWIDTH AND LOW POWER FOLDED CASCODE OTA WITH SELF CASCODE AND DTMOS TECHNIQUE

HIGH GAIN, HIGH BANDWIDTH AND LOW POWER FOLDED CASCODE OTA WITH SELF CASCODE AND DTMOS TECHNIQUE HIGH GAIN, HIGH BANDWIDTH AND LOW POWER FOLDED CASCODE OTA WITH SELF CASCODE AND DTMOS TECHNIQUE * Kirti, ** Dr Jasdeep kaur Dhanoa, *** Dilpreet Badwal Indira Gandhi Delhi Technical University For Women,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): 2321-0613 Design & Analysis of CMOS Telescopic Operational Transconductance Amplifier (OTA) with

More information

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA Analog Integrated Circuits and Signal Processing, 43, 127 136, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA IVAN

More information

Designing Of A New Low Voltage CMOS Schmitt Trigger Circuit And Its Applications on Reduce Power Dissipation

Designing Of A New Low Voltage CMOS Schmitt Trigger Circuit And Its Applications on Reduce Power Dissipation IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. Issue 1, December 015. www.ijiset.com ISSN 348 7968 Designing Of A New Low Voltage CMOS Schmitt Trigger Circuit And

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

Lecture-45. MOS Field-Effect-Transistors Threshold voltage

Lecture-45. MOS Field-Effect-Transistors Threshold voltage Lecture-45 MOS Field-Effect-Transistors 7.4. Threshold voltage In this section we summarize the calculation of the threshold voltage and discuss the dependence of the threshold voltage on the bias applied

More information

NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME

NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME Neeta Pandey 1, Kirti Gupta 2, Rajeshwari Pandey 3, Rishi Pandey 4, Tanvi Mittal 5 1, 2,3,4,5 Department of Electronics and Communication Engineering, Delhi Technological

More information

INF4420. Switched capacitor circuits. Spring Jørgen Andreas Michaelsen

INF4420. Switched capacitor circuits. Spring Jørgen Andreas Michaelsen INF4420 Switched capacitor circuits Spring 2012 Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no) Outline Switched capacitor introduction MOSFET as an analog switch z-transform Switched capacitor integrators

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Design of High-Speed Op-Amps for Signal Processing

Design of High-Speed Op-Amps for Signal Processing Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS

More information

DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s.

DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s. http:// DESIGN AND ANALYSIS OF SUB 1-V BANDGAP REFERENCE (BGR) VOLTAGE GENERATORS FOR PICOWATT LSI s. Shivam Mishra 1, K. Suganthi 2 1 Research Scholar in Mech. Deptt, SRM University,Tamilnadu 2 Asst.

More information

LOW POWER FOLDED CASCODE OTA

LOW POWER FOLDED CASCODE OTA LOW POWER FOLDED CASCODE OTA Swati Kundra 1, Priyanka Soni 2 and Anshul Kundra 3 1,2 FET, Mody Institute of Technology & Science, Lakshmangarh, Sikar-322331, INDIA swati.kundra87@gmail.com, priyankamec@gmail.com

More information

Hartmann-Shack sensor ASIC s for real-time adaptive optics in biomedical physics

Hartmann-Shack sensor ASIC s for real-time adaptive optics in biomedical physics Hartmann-Shack sensor ASIC s for real-time adaptive optics in biomedical physics Thomas NIRMAIER Kirchhoff Institute, University of Heidelberg Heidelberg, Germany Dirk DROSTE Robert Bosch Group Stuttgart,

More information

INF4420 Switched capacitor circuits Outline

INF4420 Switched capacitor circuits Outline INF4420 Switched capacitor circuits Spring 2012 1 / 54 Outline Switched capacitor introduction MOSFET as an analog switch z-transform Switched capacitor integrators 2 / 54 Introduction Discrete time analog

More information

Designing Information Devices and Systems II Fall 2017 Note 1

Designing Information Devices and Systems II Fall 2017 Note 1 EECS 16B Designing Information Devices and Systems II Fall 2017 Note 1 1 Digital Information Processing Electrical circuits manipulate voltages (V ) and currents (I) in order to: 1. Process information

More information

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers Chapter 4 CMOS Cascode Amplifiers 4.1 Introduction A single stage CMOS amplifier cannot give desired dc voltage gain, output resistance and transconductance. The voltage gain can be made to attain higher

More information

STATISTICAL DESIGN AND YIELD ENHANCEMENT OF LOW VOLTAGE CMOS ANALOG VLSI CIRCUITS

STATISTICAL DESIGN AND YIELD ENHANCEMENT OF LOW VOLTAGE CMOS ANALOG VLSI CIRCUITS STATISTICAL DESIGN AND YIELD ENHANCEMENT OF LOW VOLTAGE CMOS ANALOG VLSI CIRCUITS Istanbul Technical University Electronics and Communications Engineering Department Tuna B. Tarim Prof. Dr. Hakan Kuntman

More information

ANALOG circuits require, in general, a set of bias currents

ANALOG circuits require, in general, a set of bias currents 760 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 9, SEPTEMBER 2007 The Stochastic I-Pot: A Circuit Block for Programming Bias Currents Rafael Serrano-Gotarredona, Luis Camuñas-Mesa,

More information

A Novel Low Power Profile for Mixed-Signal Design of SARADC

A Novel Low Power Profile for Mixed-Signal Design of SARADC Electrical and Electronic Engineering 2012, 2(2): 82-87 DOI: 10.5923/j.eee.20120202.15 A Novel Low Power Profile for Mixed-Signal Design of SARADC Saeed Roshani 1,*, Sobhan Roshani 1, Mohammad B. Ghaznavi

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.2, pp ,

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.2, pp , International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 974-429 Vol.7, No.2, pp 85-857, 24-25 ICONN 25 [4 th -6 th Feb 25] International Conference on Nanoscience and Nanotechnology-25 SRM

More information

IN digital circuits, reducing the supply voltage is one of

IN digital circuits, reducing the supply voltage is one of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 61, NO. 10, OCTOBER 2014 753 A Low-Power Subthreshold to Above-Threshold Voltage Level Shifter S. Rasool Hosseini, Mehdi Saberi, Member,

More information

Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory

Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory J. Astrophys. Astr. (2008) 29, 353 357 Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory A. R. Bayanna, B. Kumar, R. E. Louis, P. Venkatakrishnan & S. K. Mathew Udaipur Solar

More information

IN RECENT years, low-dropout linear regulators (LDOs) are

IN RECENT years, low-dropout linear regulators (LDOs) are IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators

More information

THE CCD RIDDLE REVISTED: SIGNAL VERSUS TIME LINEAR SIGNAL VERSUS VARIANCE NON-LINEAR

THE CCD RIDDLE REVISTED: SIGNAL VERSUS TIME LINEAR SIGNAL VERSUS VARIANCE NON-LINEAR THE CCD RIDDLE REVISTED: SIGNAL VERSUS TIME LINEAR SIGNAL VERSUS VARIANCE NON-LINEAR Mark Downing 1, Peter Sinclaire 1. 1 ESO, Karl Schwartzschild Strasse-2, 85748 Munich, Germany. ABSTRACT The photon

More information

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Measurement of low-order aberrations with an autostigmatic microscope William P. Kuhn Measurement of low-order aberrations with

More information

Open-loop performance of a high dynamic range reflective wavefront sensor

Open-loop performance of a high dynamic range reflective wavefront sensor Open-loop performance of a high dynamic range reflective wavefront sensor Jonathan R. Andrews 1, Scott W. Teare 2, Sergio R. Restaino 1, David Wick 3, Christopher C. Wilcox 1, Ty Martinez 1 Abstract: Sandia

More information

Study of Differential Amplifier using CMOS

Study of Differential Amplifier using CMOS Study of Differential Amplifier using CMOS Mr. Bhushan Bangadkar PG Scholar Mr. Amit Lamba Assistant Professor Mr. Vipin Bhure Assistant Professor Electronics and Communication Electronics and Communication

More information

PROCESS and environment parameter variations in scaled

PROCESS and environment parameter variations in scaled 1078 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 10, OCTOBER 2006 Reversed Temperature-Dependent Propagation Delay Characteristics in Nanometer CMOS Circuits Ranjith Kumar

More information

Class-AB Low-Voltage CMOS Unity-Gain Buffers

Class-AB Low-Voltage CMOS Unity-Gain Buffers Class-AB Low-Voltage CMOS Unity-Gain Buffers Mariano Jimenez, Antonio Torralba, Ramón G. Carvajal and J. Ramírez-Angulo Abstract Class-AB circuits, which are able to deal with currents several orders of

More information

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure

More information

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 5: Basic CMOS Inverter Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture

More information

Chapter 13: Introduction to Switched- Capacitor Circuits

Chapter 13: Introduction to Switched- Capacitor Circuits Chapter 13: Introduction to Switched- Capacitor Circuits 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4 Switched-Capacitor Integrator 13.5 Switched-Capacitor

More information

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process

Design of a Folded Cascode Operational Amplifier in a 1.2 Micron Silicon-Carbide CMOS Process University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2017 Design of a Folded Cascode Operational Amplifier in a 1.2 Micron

More information

Performance of CMOS and Floating-Gate Full-Adders Circuits at Subthreshold Power Supply

Performance of CMOS and Floating-Gate Full-Adders Circuits at Subthreshold Power Supply Performance of CMOS and Floating-Gate Full-Adders Circuits at Subthreshold Power Supply Jon Alfredsson 1 and Snorre Aunet 2 1 Department of Information Technology and Media, Mid Sweden University SE-851

More information

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 20, Number 4, 2017, 301 312 A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset

More information

Transconductance Amplifier Structures With Very Small Transconductances: A Comparative Design Approach

Transconductance Amplifier Structures With Very Small Transconductances: A Comparative Design Approach 770 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 6, JUNE 2002 Transconductance Amplifier Structures With Very Small Transconductances: A Comparative Design Approach Anand Veeravalli, Student Member,

More information

Digital Signature Generator for Mixed-Signal Testing

Digital Signature Generator for Mixed-Signal Testing igital Signature Generator for Mixed-Signal Testing R. Sanahuja, A. Gómez, L. Balado, and J. Figueras epartament d'enginyeria Electrònica, Universitat Politècnica de Catalunya Av. iagonal 647, planta 9,

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor Neamen Microelectronics, 4e Chapter 3-1 In this chapter, we will: Study and understand the operation

More information

Short Channel Bandgap Voltage Reference

Short Channel Bandgap Voltage Reference Short Channel Bandgap Voltage Reference EE-584 Final Report Authors: Thymour Legba Yugu Yang Chris Magruder Steve Dominick Table of Contents Table of Figures... 3 Abstract... 4 Introduction... 5 Theory

More information

Analysis and Design of Analog Integrated Circuits Lecture 6. Current Mirrors

Analysis and Design of Analog Integrated Circuits Lecture 6. Current Mirrors Analysis and Design of Analog Integrated Circuits ecture 6 Current Mirrors Michael H. Perrott February 8, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. From ecture 5: Basic Single-Stage

More information

Laboratory #9 MOSFET Biasing and Current Mirror

Laboratory #9 MOSFET Biasing and Current Mirror Laboratory #9 MOSFET Biasing and Current Mirror. Objectives 1. Review the MOSFET characteristics and transfer function. 2. Understand the relationship between the bias, the input signal and the output

More information

PROJECT ON MIXED SIGNAL VLSI

PROJECT ON MIXED SIGNAL VLSI PROJECT ON MXED SGNAL VLS Submitted by Vipul Patel TOPC: A GLBERT CELL MXER N CMOS AND BJT TECHNOLOGY 1 A Gilbert Cell Mixer in CMOS and BJT technology Vipul Patel Abstract This paper describes a doubly

More information

Adaptive Optics for LIGO

Adaptive Optics for LIGO Adaptive Optics for LIGO Justin Mansell Ginzton Laboratory LIGO-G990022-39-M Motivation Wavefront Sensor Outline Characterization Enhancements Modeling Projections Adaptive Optics Results Effects of Thermal

More information

Chapter 2 CMOS at Millimeter Wave Frequencies

Chapter 2 CMOS at Millimeter Wave Frequencies Chapter 2 CMOS at Millimeter Wave Frequencies In the past, mm-wave integrated circuits were always designed in high-performance RF technologies due to the limited performance of the standard CMOS transistors

More information

Paul M. Furth and Andreas G. Andreou. The Johns Hopkins University We ignore the eect of a non-zero drain conductance

Paul M. Furth and Andreas G. Andreou. The Johns Hopkins University We ignore the eect of a non-zero drain conductance Transconductors in Subthreshold CMOS Paul M. Furth and Andreas G. Andreou Department of Electrical and Computer Engineering The Johns Hopkins University Baltimore, MD 228 Abstract Four schemes for linearizing

More information

A Fully Programmable Novel Cmos Gaussian Function Generator Based On Square-Root Circuit

A Fully Programmable Novel Cmos Gaussian Function Generator Based On Square-Root Circuit Technical Journal of Engineering and Applied Sciences Available online at www.tjeas.com 01 TJEAS Journal-01--11/366-371 SSN 051-0853 01 TJEAS A Fully Programmable Novel Cmos Gaussian Function Generator

More information

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design and Performance analysis of Low power CMOS Op-Amp Anand Kumar Singh *1, Anuradha 2, Dr. Vijay Nath 3 *1,2 Department of

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 Lecture 10: Electroabsorption Modulator Transmitters Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

Self-timed Refreshing Approach for Dynamic Memories

Self-timed Refreshing Approach for Dynamic Memories Self-timed Refreshing Approach for Dynamic Memories Jabulani Nyathi and Jos6 G. Delgado-F'rias Department of Electrical Engineering State University of New York Binghamton, NY 13902-6000 Abstract Refreshing

More information

Lecture Integrated circuits era

Lecture Integrated circuits era Lecture 1 1.1 Integrated circuits era Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell laboratories. In 1961, first IC was introduced. Levels of Integration:-

More information

Introduction to VLSI ASIC Design and Technology

Introduction to VLSI ASIC Design and Technology Introduction to VLSI ASIC Design and Technology Paulo Moreira CERN - Geneva, Switzerland Paulo Moreira Introduction 1 Outline Introduction Is there a limit? Transistors CMOS building blocks Parasitics

More information

PSD Characteristics. Position Sensing Detectors

PSD Characteristics. Position Sensing Detectors PSD Characteristics Position Sensing Detectors Silicon photodetectors are commonly used for light power measurements in a wide range of applications such as bar-code readers, laser printers, medical imaging,

More information

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1 Contents 1 FUNDAMENTAL CONCEPTS 1 1.1 What is Noise Coupling 1 1.2 Resistance 3 1.2.1 Resistivity and Resistance 3 1.2.2 Wire Resistance 4 1.2.3 Sheet Resistance 5 1.2.4 Skin Effect 6 1.2.5 Resistance

More information

Proposed Adaptive Optics system for Vainu Bappu Telescope

Proposed Adaptive Optics system for Vainu Bappu Telescope Proposed Adaptive Optics system for Vainu Bappu Telescope Essential requirements of an adaptive optics system Adaptive Optics is a real time wave front error measurement and correction system The essential

More information

FOR applications such as implantable cardiac pacemakers,

FOR applications such as implantable cardiac pacemakers, 1576 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 10, OCTOBER 1997 Low-Power MOS Integrated Filter with Transconductors with Spoilt Current Sources M. van de Gevel, J. C. Kuenen, J. Davidse, and

More information

Extreme Temperature Invariant Circuitry Through Adaptive DC Body Biasing

Extreme Temperature Invariant Circuitry Through Adaptive DC Body Biasing Extreme Temperature Invariant Circuitry Through Adaptive DC Body Biasing W. S. Pitts, V. S. Devasthali, J. Damiano, and P. D. Franzon North Carolina State University Raleigh, NC USA 7615 Email: wspitts@ncsu.edu,

More information

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic.

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic. Digital Electronics Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region Positive Logic Logic 1 Negative Logic Logic 0 Voltage Transition Region Transition

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

A 2-V 10.7-MHz CMOS Limiting Amplifier/RSSI

A 2-V 10.7-MHz CMOS Limiting Amplifier/RSSI 1474 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 10, OCTOBER 2000 A 2-V 10.7-MHz CMOS Limiting Amplifier/RSSI Po-Chiun Huang, Yi-Huei Chen, and Chorng-Kuang Wang, Member, IEEE Abstract This paper

More information

Chapter 11. Differential Amplifier Circuits

Chapter 11. Differential Amplifier Circuits Chapter 11 Differential Amplifier Circuits 11.0 ntroduction Differential amplifier or diff-amp is a multi-transistor amplifier. t is the fundamental building block of analog circuit. t is virtually formed

More information

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application Author Mohd-Yasin, Faisal, Yap, M., I Reaz, M. Published 2006 Conference Title 5th WSEAS Int. Conference on

More information

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V power-efficient rail-to-rail Op-Amp from a lower total supply voltage.

More information

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs Integrated Circuit Amplifiers Comparison of MOSFETs and BJTs 17 Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 )

More information

Microelectronics Exercises of Topic 5 ICT Systems Engineering EPSEM - UPC

Microelectronics Exercises of Topic 5 ICT Systems Engineering EPSEM - UPC Microelectronics Exercises of Topic 5 ICT Systems Engineering EPSEM - UPC F. Xavier Moncunill Autumn 2018 5 Analog integrated circuits Exercise 5.1 This problem aims to follow the steps in the design of

More information