Advanced High-Density Interconnection Technology

Size: px
Start display at page:

Download "Advanced High-Density Interconnection Technology"

Transcription

1 Advanced High-Density Interconnection Technology Osamu Nakao 1 This report introduces Fujikura s all-polyimide IVH (interstitial Via Hole)-multi-layer circuit boards and device-embedding technology. Employing thin polyimide film as insulation layers, the boards using these technologies feature a very thin structure and excellent reliability. As IVHs connecting adjacent layers are filled with special conductive paste, this allows highdensity wiring, as well as simple fabrication. In addition, the embedding technology enables various 3D arrangements of LSIs and passive components in a multi-layer circuit board. IVHs and embedding technology will enable drastically reduced size of circuit board and the shortest signal path and thus accelerate miniaturization and increase in performance of electronic devices. 1. Introduction Recently, FPCs play a more and more important role for high-density interconnection in mobile electronics. They enable free arrangements of components in limited space, and a low-profile structure because of its thin, bendable body. Owing to the surface smoothness, they have advantages in dense mounting of finepitch LSIs and small components such as FBGA and 0402 passive components. To meet the demand for further functionality in future electronics, we developed a high-density, thin, multilayer FPC, APIC (All-Polyimide IVH Colaminated), and WABE technology (Wafer And Board level Embedding) for embedding low-profile devices in a circuit board. APIC is a multi-layer polyimide circuit board with IVHs in any layer, which allows higher density mounting compared with multi-layer circuit boards of the current technology. WABE is a future wiring technology which will enable a slim structure of circuit board and low transmission losses through three dimensional arrangements of electronic components embedded into multi-layer polyimide circuits. This report describes features and examples of the two technologies mentioned above and the product reliability test results. 2. All-Polyimide IVH Colaminated, APIC 2.1 Structure of APIC An APIC is a multilayer circuit board with laminated insulating polyimide layers connected by IVHs filled with conductive paste. 1)2). PTH(plated through hole) technology is usually used for current multi-layer circuit boards while LVH(laser via hole) technology is 1 : Electron Device Laboratory widely applied to making a micro-via in recent years. Using LVH technology and build-up method in combination largely contributes to the rapid progress of miniaturization and high-density wiring of multi-layer circuit board 3). In the case of a typical LVH, it has been impossible to put a via on another via or put a pad on a via because of dented shape of LVH, in which the side wall and the bottom of laser-drilled hole are conformally copper-plated. However, the latest via-filling technology has overcome such difficulties using special additives to deposit conductor metal selectively in a via hole and to create a flat LVH surface 4). Unrestricted via structure brought by via-filling technology has eliminated dead space and provides the shortest interconnection in multi-layer circuit boards. APIC employs conductive paste for via-filling instead of copper plating. Paste via technology enables skipping complicated via-filling plating processes and avoiding increase in conductor thickness, which is obstructive to make a narrow pitch circuit. Polyimide film used as the insulating base material contributes to the thin structure of APIC. In addition to its mechanical strength, as polyimide shows excellent properties of dielectric and thermal toughness, APIC has great durability and reliability even in harsh environments. The cross sectional structures of APIC, PTH and LVH multilayer circuit boards are shown in Figures 1 (a), (b) and (c). 2.2 Manufacturing Process of APIC APIC employs the colamination method where the lamination of circuit layers is carried out at a time regardless of number of layers. In the colamination method, as patterns of all layers are formed in advance and then pressed by one operation, This can simplify 48

2 Abbreviations, Acronyms, and Terms. IVH Interstitial Via Hole APIC All-Polyimide IVH Colaminated WABE Technology Wafer And Board level Embedded Technology PTH Plated Through Hole LVH Laser Via Hole FCBGA Flip Chip Ball Grid Array RDL Redistribution Layer (a) PTH multilayer board the manufacturing process of multilayer circuit board. This method is advantageous in shortening the lead times and controlling the quality. The process is shown in Fig. 2. Conductor patterns on each layer are fabricated by the chemical etching of copper foil laminated on polyimide film. The circuit formation process for each layer proceeds in parallel. We can use roll-to-roll machines for efficiently forming circuits. The circuit layers are laminated with adhesive and drilled to make via holes by laser irradiation. After the via holes are filled with conductive paste by screen printing, the circuit layers are aligned and pressed in a vacuum hot press machine. As shown in Fig. 3, the partial multilayer APIC is manufactured by stacking small islands or strips of circuit on the base layer. In the case of the board having small multilayer, material waste can be significantly cut down compared with the conventional method. 2.3 Structural variation of APIC Various structures of APIC are introduced in Fig. 4. Fig. 4 (a) shows the partial multilayer APIC with small circuits on a single-sided base layer. The multilayer board in Fig. 4 (b) has partially separated layers, which are coated with coverlays and gold, and thus enables freedom of bending, connecting and mounting devices (b) LVH multiayer board (c) APIC Fig. 1. Cross sections of PTH multilayer board, LVH multilayer board and APIC. Single sided flex (a) Cross section circuit Single sided flex (b) Schematic illustration of lamination process Fig. 3. Cross sectional structure and lamination process of partial multilayer board. Copper foil Etching Adhesive lamination Polyimide film alignment (a) Partial multilayer APIC Via drilling adhesive Vacuum press (b) APIC with flexes draw out from any-layer Filling of conductive paste Fig. 2. Process flow of APIC. (c) APIC for FCBGA substrate Fig. 4. Structural variation of APIC. Fujikura Technical Review,

3 Table 1. Summary of reliability test results for APIC. item condition result Low temperature humid Temperature cycle humid bias Insulation resistance High voltage durability 125 C, 1000h -40 C 1000h 60 C, 90%RH 1000h C 1000cyc 85 C, 85%RH, 30V / 1000h 100V/1min 1000V/1min Insulation resistance>10mω resistance>10 12 Ω (in-plane, between layers) No failure (in-plane, between layers) independently in any layer. The BGA substrate of APIC is shown in Fig. 4 (c). A fine-pitch circuit fabricated by semi-additive process is used for the surface layer. Its minimum line width and spacing have achieved 10 microns and 10 microns respectively. As shown in Fig. 4, APIC is expected to find application to many kinds of future high-density wiring. 2.4 Reliability test results of APIC The typical results of reliability test we performed using 6-layer coupons are summarized in Table 1. The test coupons were pre-treated through three-cycle reflow after soaked at 30 degrees C, 60% Rh for 196 hours. Figures 5(a) and 5(b) show the results of temperature-cycle tests and oil-dip tests on stacked vias in Resistance change (%) Temperature cycle test in air Temperatute cycle (a) Results of temperature cycle test Oil dip test 1.9 CH1 CH2 CH3 CH Time (sec) (b) Results of oil dip test L/S 75/75µm L/S 50/50µm Land pitch 300µm Land pitch 300µm Time (hours) (c) Results of insulation test between conductors of comb pattern Time (hours) (d) Results of insulation test between vias Diameter of Via/Land=100µm/250µm Line width/separation=50/50~75/75µm d=300~500µm Between centers of via Fig. 5. Reliability test results of APIC. 50

4 daisy chain. Figures 5(c) and 5(d) show the results of high-temperature-humid-bias tests on the comb-pattern of copper conductors and vias respectively. Neither visual nor electrical failures were observed in any test coupons under each condition of the reliability tests. 3. WABE Technology for device-embedding 3.1 Features We have developed WABE technology, which is used for embedding devices into a polyimide multilayer board. The interconnection method employed in WABE Technology features the combined use of RDL(redistribution layer) formed on LSI through the wafer level packaging process and the copper circuit of CCL(copper clad laminate). The RDL and the circuit on the board are tightly connected by conductive paste vias. The board using polyimide film has not only flexibility and bend-ability but also a quite slim body. Thinness of the board is a strong point of WABE technology in applying it to the manufacturing of module boards and package substrates. The thickness of LSI-embedded board with four circuit layers is 0.22 mm, while that of passivecomponent-embedded board with five circuit layers is 0.26 mm. Both of these thicknesses are the world s minimum of all the currently reported device-embedded boards. The cross sectional views and dimensions of the boards are shown in Fig. 6 and Table 2 respectively. 3.2 Manufacturing process First, copper electrodes are formed on the surface of an LSI to be embedded through the wafer level packaging process. These electrodes act as via pads in multi-layer stacking. The LSI is thinned to less than 0.1 mm by a grinding machine. In the multilayer stacking process as shown in Fig. 7, the thinned LSI is sandwiched between the circuit boards. Via holes are drilled in the board and are filled with raw conductive paste. A cavity is formed in the inner circuit board for putting LSI in it. Passive components are put into the circuit board in the same manner. The stacked board is pressed in a vacuum hot press machine. In the hot press stage, joining of adjacent layers, burying LSI and connecting LSI to circuit board are achieved. A deviceembedded board by WABE Technology has similar structural variations as APIC. Typical embeddable active and passive devices are LSIs with sides ranging from 0.7 mm to 8 mm and passive components of up to 0.15 mm thick. Wafer level packaging Circuit formation WLP Surface layer Inner layer Spacer Bottom layer Alignment Lamination Paste Sintering 500µm (a) LSI-embedded multilayer board (4-layer) Press Embedding Chip Sealing Layers Joining Fig. 7. Process flow of WABE technology. 500µm (b) LSI-and-passive- components-embedded multilayer board (5-layer) Fig. 6. Cross section of device embedded multilayer board. Table 2. Dimensions of device embedded multilayer board employing WABE technology. Wafer level redistribution layer Board level conductor pattern Thickness items Line width separation IC pad pitch Line width separation Via pitch WABE board die dimensions 10 μm 10 μm 80 μm 40 μm 40 μm 300 μm 220 μm 85 μm Table 3. Summary of test results for device-embeddedmultilayer board. item conditions result Low temperature humid Temperature cycle humid bias Autoclave 150 C, 1000h -40 C 1000h 85 C, 85%RH 1000h C 1000cyc 85 C, 85%RH, 30V / 1000h 130 C 85%Rh 336h Reflow cycle 250 C peak 10cyc Pre-conditioning : 85 C85%Rh168h(JEDEC MSL1) 250 C peak reflow 3cyc Insulation resistance>10mω Fujikura Technical Review,

5 3.3 Reliability We examined the reliability of test vehicles embedded with a 4 mm square LSI chip. The performance of the product manufactured with WABE technology met the reliability required for a semiconductor package substrate through temperature cycle tests or autoclave after JEDEC level-1 moisture reflow treatment. The test conditions and results are summarized in Table Conclusion This report describes APIC, an advanced multilayer circuit board based on FPC manufacturing and material technologies, and WABE Technology. These unique technologies will provide high density and low profile assembly solution. The reliability of performance of the circuit boards manufactured by these technologies is high enough even for semiconductor package applications. We expect that miniaturization and reduction in restriction of circuit design brought by these technologies will greatly help our customer to create future electronic devices. References 1) O. Nakao, et al.,: IVH Multi-layer Printed Circuit Board Laminated with Polyimide Films, Fujikura Technical Journal, No.103, pp.48-52, ) T. Hondo, et al.,: The Reliability of All Polyimide Multi Layer Wiring Board, Fujikura Technical Journal, No.116, pp.43-47, ) A. Murakawa, et al.,: High Density Printed Wiring Board, Fujikura Technical Journal, No.111, pp.31-33, ) H. Hashiba, et al.,: Multi-layer Buildup Board with Cu Filled Vias, Fujikura Technical Journal, No.108, pp.31-34, ) M. Okamoto, et al.,: Embedded IC Substrate, Fujikura Technical Journal, No.111, pp.54-58, ) Y. Sano, et al.,: Thin WLP-IC-Embedded Polyimide Printed Wiring Board, Fujikura Technical Journal, No.119, pp.39-43,

Overcoming the Challenges of HDI Design

Overcoming the Challenges of HDI Design ALTIUMLIVE 2018: Overcoming the Challenges of HDI Design Susy Webb Design Science Sr PCB Designer San Diego Oct, 2018 1 Challenges HDI Challenges Building the uvia structures The cost of HDI (types) boards

More information

Processes for Flexible Electronic Systems

Processes for Flexible Electronic Systems Processes for Flexible Electronic Systems Michael Feil Fraunhofer Institut feil@izm-m.fraunhofer.de Outline Introduction Single sheet versus reel-to-reel (R2R) Substrate materials R2R printing processes

More information

Chapter 11 Testing, Assembly, and Packaging

Chapter 11 Testing, Assembly, and Packaging Chapter 11 Testing, Assembly, and Packaging Professor Paul K. Chu Testing The finished wafer is put on a holder and aligned for testing under a microscope Each chip on the wafer is inspected by a multiple-point

More information

Sectional Design Standard for Flexible/Rigid-Flexible Printed Boards

Sectional Design Standard for Flexible/Rigid-Flexible Printed Boards Sectional Design Standard for Flexible/Rigid-Flexible Printed Boards Developed by the Flexible Circuits Design Subcommittee (D-) of the Flexible Circuits Committee (D-0) of IPC Supersedes: IPC-2223C -

More information

Sectional Design Standard for High Density Interconnect (HDI) Printed Boards

Sectional Design Standard for High Density Interconnect (HDI) Printed Boards IPC-2226 ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES Sectional Design Standard for High Density Interconnect (HDI) Printed Boards Developed by the HDI Design Subcommittee (D-41) of the HDI Committee

More information

Manufacture and Performance of a Z-interconnect HDI Circuit Card Abstract Introduction

Manufacture and Performance of a Z-interconnect HDI Circuit Card Abstract Introduction Manufacture and Performance of a Z-interconnect HDI Circuit Card Michael Rowlands, Rabindra Das, John Lauffer, Voya Markovich EI (Endicott Interconnect Technologies) 1093 Clark Street, Endicott, NY 13760

More information

EMBEDDED ACTIVE DEVICE PACKAGING TECHNOLOGY FOR REAL DDR2 MEMORY CHIPS

EMBEDDED ACTIVE DEVICE PACKAGING TECHNOLOGY FOR REAL DDR2 MEMORY CHIPS EMBEDDED ACTIVE DEVICE PACKAGING TECHNOLOGY FOR REAL DDR2 MEMORY CHIPS Yin-Po Hung, Tao-Chih Chang, Ching-Kuan Lee, Yuan-Chang Lee, Jing-Yao Chang, Chao-Kai Hsu, Shu-Man Li, Jui-Hsiung Huang, Fang-Jun

More information

Laminate Based Fan-Out Embedded Die Technologies: The Other Option

Laminate Based Fan-Out Embedded Die Technologies: The Other Option Laminate Based Fan-Out Embedded Die Technologies: The Other Option Theodore (Ted) G. Tessier, Tanja Karila*, Tuomas Waris*, Mark Dhaenens and David Clark FlipChip International, LLC 3701 E University Drive

More information

!"#$"%&' ()#*+,-+.&/0(

!#$%&' ()#*+,-+.&/0( !"#$"%&' ()#*+,-+.&/0( Multi Chip Modules (MCM) or Multi chip packaging Industry s first MCM from IBM. Generally MCMs are horizontal or two-dimensional modules. Defined as a single unit containing two

More information

Thin Film Resistor Integration into Flex-Boards

Thin Film Resistor Integration into Flex-Boards Thin Film Resistor Integration into Flex-Boards 7 rd International Workshop Flexible Electronic Systems November 29, 2006, Munich by Dr. Hans Burkard Hightec H MC AG, Lenzburg, Switzerland 1 Content HiCoFlex:

More information

3D TSV Micro Cu Column Chip-to-Substrate/Chip Assmbly/Packaging Technology

3D TSV Micro Cu Column Chip-to-Substrate/Chip Assmbly/Packaging Technology 3D TSV Micro Cu Column Chip-to-Substrate/Chip Assmbly/Packaging Technology by Seung Wook Yoon, *K. T. Kang, W. K. Choi, * H. T. Lee, Andy C. B. Yong and Pandi C. Marimuthu STATS ChipPAC LTD, 5 Yishun Street

More information

Application Bulletin 240

Application Bulletin 240 Application Bulletin 240 Design Consideration CUSTOM CAPABILITIES Standard PC board fabrication flexibility allows for various component orientations, mounting features, and interconnect schemes. The starting

More information

EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING

EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING Henry H. Utsunomiya Interconnection Technologies, Inc. Suwa City, Nagano Prefecture, Japan henryutsunomiya@mac.com ABSTRACT This presentation will outline

More information

CHAPTER 11: Testing, Assembly, and Packaging

CHAPTER 11: Testing, Assembly, and Packaging Chapter 11 1 CHAPTER 11: Testing, Assembly, and Packaging The previous chapters focus on the fabrication of devices in silicon or the frontend technology. Hundreds of chips can be built on a single wafer,

More information

Min Tao, Ph. D, Ashok Prabhu, Akash Agrawal, Ilyas Mohammed, Ph. D, Bel Haba, Ph. D Oct , IWLPC

Min Tao, Ph. D, Ashok Prabhu, Akash Agrawal, Ilyas Mohammed, Ph. D, Bel Haba, Ph. D Oct , IWLPC PACKAGE-ON-PACKAGE INTERCONNECT FOR FAN-OUT WAFER LEVEL PACKAGES Min Tao, Ph. D, Ashok Prabhu, Akash Agrawal, Ilyas Mohammed, Ph. D, Bel Haba, Ph. D Oct 18-20 2016, IWLPC 1 Outline Laminate to Fan-Out

More information

BGA (Ball Grid Array)

BGA (Ball Grid Array) BGA (Ball Grid Array) National Semiconductor Application Note 1126 November 2002 Table of Contents Introduction... 2 Package Overview... 3 PBGA (PLASTIC BGA) CONSTRUCTION... 3 TE-PBGA (THERMALLY ENHANCED

More information

Advanced Embedded Packaging for Power Devices

Advanced Embedded Packaging for Power Devices 2017 IEEE 67th Electronic Components and Technology Conference Advanced Embedded Packaging for Power Devices Naoki Hayashi, Miki Nakashima, Hiroshi Demachi, Shingo Nakamura, Tomoshige Chikai, Yukari Imaizumi,

More information

WIRE LAYING METHODS AS AN ALTERNATIVE TO MULTILAYER PCB Sf

WIRE LAYING METHODS AS AN ALTERNATIVE TO MULTILAYER PCB Sf Electrocomponent Science and Technology, 1984, Vol. 11, pp. 117-122 (C) 1984 Gordon and Breach Science Publishers, Inc 0305-3091/84/1102-0117 $18.50/0 Printed in Great Britain WIRE LAYING METHODS AS AN

More information

True Three-Dimensional Interconnections

True Three-Dimensional Interconnections True Three-Dimensional Interconnections Satoshi Yamamoto, 1 Hiroyuki Wakioka, 1 Osamu Nukaga, 1 Takanao Suzuki, 2 and Tatsuo Suemasu 1 As one of the next-generation through-hole interconnection (THI) technologies,

More information

Application Note AN-1011

Application Note AN-1011 AN-1011 Board Mounting Application Note for 0.800mm Pitch Devices For part numbers IRF6100, IRF6100PBF, IR130CSP, IR130CSPPBF, IR140CSP, IR140CSPPBF, IR1H40CSP, IR1H40CSPPBF By Hazel Schofield and Philip

More information

Silicon Interposers enable high performance capacitors

Silicon Interposers enable high performance capacitors Interposers between ICs and package substrates that contain thin film capacitors have been used previously in order to improve circuit performance. However, with the interconnect inductance due to wire

More information

Through Glass Via (TGV) Technology for RF Applications

Through Glass Via (TGV) Technology for RF Applications Through Glass Via (TGV) Technology for RF Applications C. H. Yun 1, S. Kuramochi 2, and A. B. Shorey 3 1 Qualcomm Technologies, Inc. 5775 Morehouse Dr., San Diego, California 92121, USA Ph: +1-858-651-5449,

More information

Two major features of this text

Two major features of this text Two major features of this text Since explanatory materials are systematically made based on subject examination questions, preparation

More information

Innovations Push Package-on-Package Into New Markets. Flynn Carson. STATS ChipPAC Inc Kato Rd Fremont, CA 94538

Innovations Push Package-on-Package Into New Markets. Flynn Carson. STATS ChipPAC Inc Kato Rd Fremont, CA 94538 Innovations Push Package-on-Package Into New Markets by Flynn Carson STATS ChipPAC Inc. 47400 Kato Rd Fremont, CA 94538 Copyright 2010. Reprinted from Semiconductor International, April 2010. By choosing

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

A large-area wireless power transmission sheet using printed organic. transistors and plastic MEMS switches

A large-area wireless power transmission sheet using printed organic. transistors and plastic MEMS switches Supplementary Information A large-area wireless power transmission sheet using printed organic transistors and plastic MEMS switches Tsuyoshi Sekitani 1, Makoto Takamiya 2, Yoshiaki Noguchi 1, Shintaro

More information

Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications

Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications Brett Sawyer, Bruce C. Chou, Saumya Gandhi, Jack Mateosky, Venky Sundaram, and Rao Tummala 3D

More information

Michael R. Creeden CEO/CID+ San Diego PCB, Inc. & EPTAC (858)

Michael R. Creeden CEO/CID+ San Diego PCB, Inc. & EPTAC (858) Michael R. Creeden CEO/CID+ San Diego PCB, Inc. & EPTAC mike.creeden@sdpcb.com (858)271-5722 1. Why we collaborate? 2. When do we collaborate? 3. Who do we collaborate with? 4. What do we collaborate?

More information

ESCC2006 European Supply Chain Convention

ESCC2006 European Supply Chain Convention ESCC2006 European Supply Chain Convention PCB Paper 20 Laser Technology for cutting FPC s and PCB s Mark Hüske, Innovation Manager, LPKF Laser & Electronics AG, Germany Laser Technology for cutting FPCs

More information

Hermetic Packaging Solutions using Borosilicate Glass Thin Films. Lithoglas Hermetic Packaging Solutions using Borosilicate Glass Thin Films

Hermetic Packaging Solutions using Borosilicate Glass Thin Films. Lithoglas Hermetic Packaging Solutions using Borosilicate Glass Thin Films Hermetic Packaging Solutions using Borosilicate Glass Thin Films 1 Company Profile Company founded in 2006 ISO 9001:2008 qualified since 2011 Headquarters and Production in Dresden, Germany Production

More information

Tape Automated Bonding

Tape Automated Bonding Tape Automated Bonding Introduction TAB evolved from the minimod project begun at General Electric in 1965, and the term Tape Automated Bonding was coined by Gerard Dehaine of Honeywell Bull in 1971. The

More information

Application Note 5026

Application Note 5026 Surface Laminar Circuit (SLC) Ball Grid Array (BGA) Eutectic Surface Mount Assembly Application Note 5026 Introduction This document outlines the design and assembly guidelines for surface laminar circuitry

More information

Flexline - A Flexible Manufacturing Method for Wafer Level Packages (Extended Abstract)

Flexline - A Flexible Manufacturing Method for Wafer Level Packages (Extended Abstract) Flexline - A Flexible Manufacturing Method for Wafer Level Packages (Extended Abstract) by Tom Strothmann, *Damien Pricolo, **Seung Wook Yoon, **Yaojian Lin STATS ChipPAC Inc.1711 W Greentree Drive Tempe,

More information

B. Flip-Chip Technology

B. Flip-Chip Technology B. Flip-Chip Technology B1. Level 1. Introduction to Flip-Chip techniques B1.1 Why flip-chip? In the development of packaging of electronics the aim is to lower cost, increase the packaging density, improve

More information

PCB technologies and manufacturing General Presentation

PCB technologies and manufacturing General Presentation PCB technologies and manufacturing General Presentation 1 Date : December 2014 3 plants for a global offer dedicated to the European market and export Special technologies, Harsh environment PCB for space

More information

WLP User's Guide. CMOS IC Application Note. Rev.1.0_03. ABLIC Inc., 2014

WLP User's Guide. CMOS IC Application Note. Rev.1.0_03. ABLIC Inc., 2014 CMOS IC Application Note WLP User's Guide ABLIC Inc., 2014 This document is a reference manual that describes the handling of the mounting of super-small WLP (Wafer Level Package) for users in the semiconductor

More information

An Introduction to Electronics Systems Packaging. Prof. G. V. Mahesh. Department of Electronic Systems Engineering

An Introduction to Electronics Systems Packaging. Prof. G. V. Mahesh. Department of Electronic Systems Engineering An Introduction to Electronics Systems Packaging Prof. G. V. Mahesh Department of Electronic Systems Engineering India Institute of Science, Bangalore Module No. # 02 Lecture No. # 08 Wafer Packaging Packaging

More information

OB-FPC: FLEXIBLE PRINTED CIRCUITS FOR THE ALICE TRACKER

OB-FPC: FLEXIBLE PRINTED CIRCUITS FOR THE ALICE TRACKER OB-FPC: FLEXIBLE PRINTED CIRCUITS FOR THE ALICE TRACKER Main Requirements. The OB FPC must meet demanding requirements: Material: Low material budget Electrical: impedance of differential lines @ 100W,

More information

FBTI Flexible Bumped Tape Interposer

FBTI Flexible Bumped Tape Interposer FBTI Flexible Bumped Tape Interposer Development of FBTI (Flexible Bumped Tape Interposer) * * * * *2 Kazuhito Hikasa Toshiaki Amano Toshiya Hikami Kenichi Sugahara Naoyuki Toyoda CSPChip Size Package

More information

Approach for Probe Card PCB

Approach for Probe Card PCB San Diego, CA High Density and High Speed Approach for Probe Card PCB Takashi Sugiyama Hitachi Chemical Co. Ltd. Overview Technical trend for wafer level testing Requirement for high density and high speed

More information

High Efficient Heat Dissipation on Printed Circuit Boards. Markus Wille, R&D Manager, Schoeller Electronics Systems GmbH

High Efficient Heat Dissipation on Printed Circuit Boards. Markus Wille, R&D Manager, Schoeller Electronics Systems GmbH High Efficient Heat Dissipation on Printed Circuit Boards Markus Wille, R&D Manager, Schoeller Electronics Systems GmbH m.wille@se-pcb.de Introduction 2 Heat Flux: Q x y Q z The substrate (insulation)

More information

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers Wafer-scale integration of silicon-on-insulator RF amplifiers The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Downsizing Technology for General-Purpose Inverters

Downsizing Technology for General-Purpose Inverters Downsizing Technology for General-Purpose Inverters Takao Ichihara Kenji Okamoto Osamu Shiokawa 1. Introduction General-purpose inverters are products suited for function advancement, energy savings and

More information

Substrates Lost in Translation

Substrates Lost in Translation 2004 IEEE PRESENTATION Components, Packaging & Manufacturing Technology (CPMT) Society, Santa Clara Valley Chapter www.cpmt.org/scv/ Substrates Lost in Translation R. Huemoeller Vice President, Substrate

More information

Flip Chips. FA10-200x200 FA10-400x400 FA10-600x x 200 mils 400 x 400 mils

Flip Chips. FA10-200x200 FA10-400x400 FA10-600x x 200 mils 400 x 400 mils Flip Chip FlipChip International Flip Chip describes the method of electrically connecting the die to the package carrier. The package carrier, either substrate or leadframe, then provides the connection

More information

A Low-cost Through Via Interconnection for ISM WLP

A Low-cost Through Via Interconnection for ISM WLP A Low-cost Through Via Interconnection for ISM WLP Jingli Yuan, Won-Kyu Jeung, Chang-Hyun Lim, Seung-Wook Park, Young-Do Kweon, Sung Yi To cite this version: Jingli Yuan, Won-Kyu Jeung, Chang-Hyun Lim,

More information

The Design Challenge to Integrate High Performance Organic Packaging into High End ASIC Strategic Space Based Applications.

The Design Challenge to Integrate High Performance Organic Packaging into High End ASIC Strategic Space Based Applications. The Design Challenge to Integrate High Performance Organic Packaging into High End ASIC Strategic Space Based Applications May 8, 2007 Abstract: The challenge to integrate high-end, build-up organic packaging

More information

Bob Willis Process Guides

Bob Willis Process Guides What is a Printed Circuit Board Pad? What is a printed circuit board pad, it may sound like a dumb question but do you stop to think what it really does and how its size is defined and why? A printed circuit

More information

M series. Product information. Koki no-clean LEAD FREE solder paste. Contents. Lead free SOLUTIONS you can TRUST.

M series. Product information. Koki no-clean LEAD FREE solder paste.   Contents. Lead free SOLUTIONS you can TRUST. www.ko-ki.co.jp Ver. 42017e.2 Prepared on Oct. 26, 2007 Koki no-clean LEAD FREE solder paste Anti-Pillow Defect Product information This Product Information contains product performance assessed strictly

More information

Interposer MATED HEIGHT

Interposer MATED HEIGHT Product Specification: FEATURES High Performance PCBeam Connector Technology Product options at 1.27mm, 1.0mm, and 0.8mm pitch Maximized pin count per form factor 3 form factor sizes available Standard

More information

2.5D Platform (Examples of products produced to date are shown here to demonstrate Amkor's production capabilities)

2.5D Platform (Examples of products produced to date are shown here to demonstrate Amkor's production capabilities) Wafer Finishing & Flip Chip Stacking interconnects have emerged to serve a wide range of 2.5D- & 3D- packaging applications and architectures that demand very high performance and functionality at the

More information

Innovative pcb solutions used in medical and other devices Made in Switzerland

Innovative pcb solutions used in medical and other devices Made in Switzerland Innovative pcb solutions used in medical and other devices Made in Switzerland Chocolate Watches Money.PCB`s innovative pcb`s... Customer = innovation driver Need to add more parts and I/O make smaller/thinner

More information

Power Integration in Circuit Board

Power Integration in Circuit Board Power Integration in Circuit Board APEC 2015 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Fabriksgasse13 A-8700 Leoben Tel +43 (0) 3842 200-0 E-Mail info@ats.net www.ats.net PICB APEC

More information

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 69 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array Roland Jäger and Christian Jung We have designed and fabricated

More information

AN5046 Application note

AN5046 Application note Application note Printed circuit board assembly recommendations for STMicroelectronics PowerFLAT packages Introduction The PowerFLAT package (5x6) was created to allow a larger die to fit in a standard

More information

High efficient heat dissipation on printed circuit boards

High efficient heat dissipation on printed circuit boards High efficient heat dissipation on printed circuit boards Figure 1: Heat flux in a PCB Markus Wille Schoeller Electronics Systems GmbH www.schoeller-electronics.com Abstract This paper describes various

More information

Technology Trends and Future History of Semiconductor Packaging Substrate Material

Technology Trends and Future History of Semiconductor Packaging Substrate Material Review 6 Technology Trends and Future History of Semiconductor Packaging Substrate Material Yoshihiro Nakamura Advanced Performance Materials Operational Headquarters Advanced Core Materials Business Sector

More information

PCB Fabrication Processes Brief Introduction

PCB Fabrication Processes Brief Introduction PCB Fabrication Processes Brief Introduction AGS-Electronics, Ph: +1-505-550-6501 or +1-505-565-5102, Fx: +1-505-814-5778, Em: sales@ags-electronics.com, Web: http://www.ags-electronics.com Contents PCB

More information

23. Packaging of Electronic Equipments (2)

23. Packaging of Electronic Equipments (2) 23. Packaging of Electronic Equipments (2) 23.1 Packaging and Interconnection Techniques Introduction Electronic packaging, which for many years was only an afterthought in the design and manufacture of

More information

Chapter 2. Literature Review

Chapter 2. Literature Review Chapter 2 Literature Review 2.1 Development of Electronic Packaging Electronic Packaging is to assemble an integrated circuit device with specific function and to connect with other electronic devices.

More information

SESUB - Its Leadership In Embedded Die Packaging Technology

SESUB - Its Leadership In Embedded Die Packaging Technology SESUB - Its Leadership In Embedded Die Packaging Technology Sip Conference China 2018 TDK Corporation ECBC, PAF, SESUB BU Kofu, Japan October 17, 2018 Contents SESUB Introduction SESUB Process SESUB Quality

More information

TSV MEOL (Mid-End-Of-Line) and its Assembly/Packaging Technology for 3D/2.5D Solutions

TSV MEOL (Mid-End-Of-Line) and its Assembly/Packaging Technology for 3D/2.5D Solutions TSV MEOL (Mid-End-Of-Line) and its Assembly/Packaging Technology for 3D/2.5D Solutions Seung Wook YOON, D.J. Na, *K. T. Kang, W. K. Choi, C.B. Yong, *Y.C. Kim and Pandi C. Marimuthu STATS ChipPAC Ltd.

More information

David B. Miller Vice President & General Manager September 28, 2005

David B. Miller Vice President & General Manager September 28, 2005 Electronic Technologies Business Overview David B. Miller Vice President & General Manager September 28, 2005 Forward Looking Statement During the course of this meeting we may make forward-looking statements.

More information

Benzocyclobutene Polymer dielectric from Dow Chemical used for wafer-level redistribution.

Benzocyclobutene Polymer dielectric from Dow Chemical used for wafer-level redistribution. Glossary of Advanced Packaging: ACA Bare Die BCB BGA BLT BT C4 CBGA CCC CCGA CDIP or CerDIP CLCC COB COF CPGA Anisotropic Conductive Adhesive Adhesive with conducting filler particles where the electrical

More information

BLIND MICROVIA TECHNOLOGY BY LASER

BLIND MICROVIA TECHNOLOGY BY LASER BLIND MICROVIA TECHNOLOGY BY LASER Larry W. Burgess LaserVia Drilling Centers, L.L.C. Wilsonville, Oregon, USA ABSTRACT The most costly process in the fabrication of today's multilayer printed circuit

More information

PANEL LEVEL PACKAGING A MANUFACTURING SOLUTION FOR COST-EFFECTIVE SYSTEMS

PANEL LEVEL PACKAGING A MANUFACTURING SOLUTION FOR COST-EFFECTIVE SYSTEMS PANEL LEVEL PACKAGING A MANUFACTURING SOLUTION FOR COST-EFFECTIVE SYSTEMS R. Aschenbrenner, K.-F. Becker, T. Braun, and A. Ostmann Fraunhofer Institute for Reliability and Microintegration Berlin, Germany

More information

Product Specification - LPM Connector Family

Product Specification - LPM Connector Family LPM Product Specification - LPM OVERVIEW Developed for mobile devices and other space-constrained applications, the Neoconix LPM line of connectors feature exceptional X-Y-Z density with a simple, highly

More information

Technology Overview. Blind Micro-vias. Embedded Resistors. Chip-on-flex. Multi-Tier Boards. RF Product. Multi-chip Modules. Embedded Capacitance

Technology Overview. Blind Micro-vias. Embedded Resistors. Chip-on-flex. Multi-Tier Boards. RF Product. Multi-chip Modules. Embedded Capacitance Blind Micro-vias Embedded Resistors Multi-Tier Boards Chip-on-flex RF Product Multi-chip Modules Embedded Capacitance Technology Overview Fine-line Technology Agenda Corporate Overview Company Profile

More information

High Density Interconnect on Flexible Substrate

High Density Interconnect on Flexible Substrate High Density Interconnect on Flexible Substrate Dr. C Q Cui Compass Technology Co., Ltd Shatin, HK June 9, 2004 SCV CPMT Society Chapter Meeting Compass Technology Co Ltd Founded: June, 1997 Will be listed

More information

FLEXIBLE AND STRETCHABLE CIRCUIT TECHNOLOGIES FOR SPACE APPLICATIONS

FLEXIBLE AND STRETCHABLE CIRCUIT TECHNOLOGIES FOR SPACE APPLICATIONS FLEXIBLE AND STRETCHABLE CIRCUIT TECHNOLOGIES FOR SPACE APPLICATIONS EMPPS WORKSHOP, NOORDWIJK, THE NETHERLANDS 20-22 MAY 2014 Maarten Cauwe, Frederick Bossuyt, Johan De Baets, Jan Vanfleteren Centre for

More information

Development of gating foils to inhibit ion feedback using FPC production techniques

Development of gating foils to inhibit ion feedback using FPC production techniques Development of gating foils to inhibit ion feedback using FPC production techniques Daisuke Arai (Fujikura Ltd.) Katsumasa Ikematsu (Saga Uni.), Akira Sugiyama (Saga Uni.) Masahiro Iwamura, Akira Koto,

More information

Encapsulated Wafer Level Chip Scale Package (ewlcsp ) for Cost Effective and Robust Solutions in FlexLine

Encapsulated Wafer Level Chip Scale Package (ewlcsp ) for Cost Effective and Robust Solutions in FlexLine Encapsulated Wafer Level Chip Scale Package (ewlcsp ) for Cost Effective and Robust Solutions in FlexLine by Yaojian Lin, Kang Chen, Kian Meng Heng, Linda Chua and *Seung Wook Yoon STATS ChipPAC Ltd. 5

More information

First Demonstration of Panel Glass Fan-out (GFO) Packages for High I/O Density and High Frequency Multi-Chip Integration

First Demonstration of Panel Glass Fan-out (GFO) Packages for High I/O Density and High Frequency Multi-Chip Integration First Demonstration of Panel Glass Fan-out (GFO) Packages for High I/O Density and High Frequency Multi-Chip Integration Tailong Shi, Chintan Buch,Vanessa Smet, Yoichiro Sato, Lutz Parthier, Frank Wei

More information

Improving Density in Microwave Multilayer Printed Circuit Boards for Space Applications

Improving Density in Microwave Multilayer Printed Circuit Boards for Space Applications Improving Density in Microwave Multilayer Printed Circuit Boards for Space Applications David NÉVO (1) Olivier VENDIER (1), Jean-Louis CAZAUX (1), Jean-Luc LORTAL (2) (1) Thales Alenia Space 26 avenue

More information

Advances in X-Ray Technology for Semicon Applications Keith Bryant and Thorsten Rother

Advances in X-Ray Technology for Semicon Applications Keith Bryant and Thorsten Rother Advances in X-Ray Technology for Semicon Applications Keith Bryant and Thorsten Rother X-Ray Champions, Telspec, Yxlon International Agenda The x-ray tube, the heart of the system Advances in digital detectors

More information

& Anti-pillow. Product information. Koki no-clean LEAD FREE solder paste. Contents. Lead free SOLUTIONS you can TRUST.

& Anti-pillow. Product information. Koki no-clean LEAD FREE solder paste.   Contents. Lead free SOLUTIONS you can TRUST. www.ko-ki.co.jp #46019E Revised on JUN 15, 2009 Koki no-clean LEAD FREE solder paste Super Low-Void & Anti-pillow Product information Pillow defect This Product Information contains product performance

More information

For FPC. FPC connectors (0.2mm pitch) Back lock

For FPC. FPC connectors (0.2mm pitch) Back lock 0.9 For FPC FPC connectors (0.2mm pitch) Back lock Y2B Series AYF21 New FEATURES 1. Slim and low profile design (Pitch: 0.2 mm) 0.2 mm pitch back lock design and the slim body with a 3.15 mm depth (with

More information

Advances in stacked-die packaging

Advances in stacked-die packaging pg.10-15-carson-art 16/6/03 4:12 pm Page 1 The stacking of die within IC packages, primarily Chip Scale Packages (CSP) Ball Grid Arrays (BGAs) has evolved rapidly over the last few years. The now standard

More information

Compression Molding. Solutions for 3D TSV and other advanced packages as well as cost savings for standard package applications

Compression Molding. Solutions for 3D TSV and other advanced packages as well as cost savings for standard package applications Compression Molding Solutions for 3D TSV and other advanced packages as well as cost savings for standard package applications 1. Company Introduction 2. Package Development Trend 3. Compression FFT Molding

More information

Flip-Chip Integration of 2-D 850 nm Backside Emitting Vertical Cavity Laser Diode Arrays

Flip-Chip Integration of 2-D 850 nm Backside Emitting Vertical Cavity Laser Diode Arrays Flip-Chip Integration of 2-D 850 nm Backside Emitting Vertical Cavity Laser Diode Arrays Hendrik Roscher Two-dimensional (2-D) arrays of 850 nm substrate side emitting oxide-confined verticalcavity lasers

More information

License to Speed: Extreme Bandwidth Packaging

License to Speed: Extreme Bandwidth Packaging License to Speed: Extreme Bandwidth Packaging Sean S. Cahill VP, Technology BridgeWave Communications Santa Clara, California, USA BridgeWave Communications Specializing in 60-90 GHz Providing a wireless

More information

FPGA World Conference Stockholm 08 September John Steinar Johnsen -Josse- Senior Technical Advisor

FPGA World Conference Stockholm 08 September John Steinar Johnsen -Josse- Senior Technical Advisor FPGA World Conference Stockholm 08 September 2015 John Steinar Johnsen -Josse- Senior Technical Advisor Agenda FPGA World Conference Stockholm 08 September 2015 - IPC 4101C Materials - Routing out from

More information

High-yield Fabrication Methods for MEMS Tilt Mirror Array for Optical Switches

High-yield Fabrication Methods for MEMS Tilt Mirror Array for Optical Switches : MEMS Device Technologies High-yield Fabrication Methods for MEMS Tilt Mirror Array for Optical Switches Joji Yamaguchi, Tomomi Sakata, Nobuhiro Shimoyama, Hiromu Ishii, Fusao Shimokawa, and Tsuyoshi

More information

14.8 Designing Boards For BGAs

14.8 Designing Boards For BGAs exposure. Maintaining proper control of moisture uptake in components is critical to the prevention of "popcorning" of the package body or encapsulation material. BGA components, before shipping, are baked

More information

Fraunhofer IZM - ASSID

Fraunhofer IZM - ASSID FRAUNHOFER-INSTITUT FÜR Zuverlässigkeit und Mikrointegration IZM Fraunhofer IZM - ASSID All Silicon System Integration Dresden Heterogeneous 3D Wafer Level System Integration 3D system integration is one

More information

Generic Multilayer Specifications for Rigid PCB s

Generic Multilayer Specifications for Rigid PCB s Generic Multilayer Specifications for Rigid PCB s 1.1 GENERAL 1.1.1 This specification has been developed for the fabrication of rigid SMT and Mixed Technology Multilayer Printed Circuit Boards (PCB's)

More information

7. Liquid Crystal and Liquid Crystal Polymer based Antennas

7. Liquid Crystal and Liquid Crystal Polymer based Antennas Chapter 7 7. Liquid Crystal and Liquid Crystal Polymer based Antennas 7.1 Introduction: Depending on the temperature, liquid crystal (LC) phase exists in between crystalline solid and an isotropic liquid.

More information

For FPC. FPC connectors (0.3mm pitch) Back lock

For FPC. FPC connectors (0.3mm pitch) Back lock 0.9 For FPC FPC connectors (0.3mm pitch) Back lock AYF33 Y3B/Y3BW Series New Y3B Y3BW is added. FEATURES 1. Slim and low profile design (Pitch: 0.3 mm) Back lock type and the slim body with a 3.15 mm depth

More information

User s Guide to. Centre for Materials for Electronics Technology Panchawati, Off Pashan Road, Pune September Version 2.

User s Guide to. Centre for Materials for Electronics Technology Panchawati, Off Pashan Road, Pune September Version 2. User s Guide to Centre for Materials for Electronics Technology Panchawati, Off Pashan Road, Pune 411008 September 2013 Version 2.1 Contents 1 Designing of LTCC Structures and Design Rules... 01 1.1 Guidelines

More information

Enabling concepts: Packaging Technologies

Enabling concepts: Packaging Technologies Enabling concepts: Packaging Technologies Ana Collado / Liam Murphy ESA / TEC-EDC 01/10/2018 ESA UNCLASSIFIED - For Official Use Enabling concepts: Packaging Technologies Drivers for the future: Higher

More information

TECHNICAL INFORMATION

TECHNICAL INFORMATION TECHNICAL INFORMATION Super Low Void Solder Paste SE/SS/SSA48-M956-2 [ Contents ] 1. FEATURES...2 2. SPECIFICATIONS...2 3. VISCOSITY VARIATION IN CONTINUAL PRINTING...3 4. PRINTABILITY..............4 5.

More information

HOTBAR REFLOW SOLDERING

HOTBAR REFLOW SOLDERING HOTBAR REFLOW SOLDERING Content 1. Hotbar Reflow Soldering Introduction 2. Application Types 3. Process Descriptions > Flex to PCB > Wire to PCB 4. Design Guidelines 5. Equipment 6. Troubleshooting Guide

More information

High Frequency Single & Multi-chip Modules based on LCP Substrates

High Frequency Single & Multi-chip Modules based on LCP Substrates High Frequency Single & Multi-chip Modules based on Substrates Overview Labtech Microwave has produced modules for MMIC s (microwave monolithic integrated circuits) based on (liquid crystal polymer) substrates

More information

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Progress In Electromagnetics Research Letters, Vol. 74, 117 123, 2018 A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Jun Zhou 1, 2, *, Jiapeng Yang 1, Donglei Zhao 1, and Dongsheng

More information

FYS4260/FYS9260: Microsystems and Electronics Packaging and Interconnect Printed Circuit Boards

FYS4260/FYS9260: Microsystems and Electronics Packaging and Interconnect Printed Circuit Boards FYS4260/FYS9260: Microsystems and Electronics Packaging and Interconnect Printed Circuit Boards Interior detail from an Apple iphone 5 printed circuit board Learning objectives Understand how printed wiring/circuit

More information

FPC CONNECTORS Y3FT (0.3 mm pitch) with FPC tabs

FPC CONNECTORS Y3FT (0.3 mm pitch) with FPC tabs AYF31 FPC CONNECTORS FOR FPC CONNECTION FPC CONNECTORS Y3FT (0.3 mm pitch) with FPC tabs (Former Name: YF31) FEATURES 1. Low-profile, space-saving design (pitch: 0.3mm) The 0.9mm height, 3.0mm depth contributes

More information

Advanced Wafer Level Packaging of RF-MEMS with RDL Inductor

Advanced Wafer Level Packaging of RF-MEMS with RDL Inductor Advanced Wafer Level Packaging of RF-MEMS with RDL Inductor Paul Castillou, Roberto Gaddi, Rob van Kampen, Yaojian Lin*, Babak Jamshidi** and Seung Wook Yoon*** Cavendish Kinetics, 2960 North First Street,

More information

Technology development for a flexible, low-cost backplane for lighting applications

Technology development for a flexible, low-cost backplane for lighting applications IMAPS-Benelux Spring Event 2014 Technology development for a flexible, low-cost backplane for lighting applications M. Cauwe 1, A. Sridhar 2, T. Sterken 1 1 imec - Cmst, Technologiepark, Zwijnaarde, Belgium

More information

Product Specification - LPS Connector Series

Product Specification - LPS Connector Series LPS Product Specification - LPS OVERVIEW The LPS products are solderable versions of those in the Neoconix LPM product series. Also developed for mobile devices and other space-constrained applications,

More information

Ceramic Monoblock Surface Mount Considerations

Ceramic Monoblock Surface Mount Considerations Introduction Technical Brief AN1016 Ceramic Monoblock Surface Mount Considerations CTS ceramic block filters, like many others in the industry, use a fired-on thick film silver (Ag) metallization. The

More information