ESCC2006 European Supply Chain Convention

Size: px
Start display at page:

Download "ESCC2006 European Supply Chain Convention"

Transcription

1 ESCC2006 European Supply Chain Convention PCB Paper 20 Laser Technology for cutting FPC s and PCB s Mark Hüske, Innovation Manager, LPKF Laser & Electronics AG, Germany

2 Laser Technology for cutting FPCs and PCBs Dr.-Ing. Marc Hueske, Tel.: +49 (0) , LPKF Laser & Electronics AG, Osteriede 7, D Garbsen 1 Introduction There are many issues to be considered in the manufacturing of state-of-the-art electronic products. Today's electronic devices, whether based on flexible (FPC) or rigid (PCB) printed circuit boards, require higher density and tighter tolerances due to the ever increasing demand of miniaturization and function integration. Depaneling of modern circuits requires that sensitive components are not damaged, close tolerances are maintained and contamination caused by conventional mechanical techniques is avoided. Flex and rigid-flex printed circuit boards are increasingly used offering the ability to resolve three dimensional structural issues and high density electrical interconnection. Flexible materials are extremely difficult to handle in manufacturing. Mechanical stress placed on flexible or rigid substrate materials by mechanical routing or punching equipment is disadvantageous with regard to accuracy, burr formation and reliability. LPKF Laser & Electronics AG has developed and qualified laser technology based on two different laser processes, UV and CO 2 laser cutting, meeting today's challenges in the singulation of printed circuit boards. UV laser cutting is predominantly used for flex and flexrigid singulation, CO 2 -laser cutting for depaneling rigid PCBs. Non-contact processing with a laser means no mechanical stress on the flex or rigid board or its components, no burr or debris and no extra costs for tooling. Smallest tool size of a focussed laser beam is equivalent to highest precision allowing for component placement closer to the edges of a board and increasing the net usable area on a panel. 2 Market Requirements 2.1 Flex Circuits The key of FPC manufacturing and hence success is the control of production techniques. Quite simple techniques in theory, including the separation i. e. cutting of single circuits within a panel, may prove very difficult in operating. Integrating new and innovative manufacturing techniques and automation can contribute to increase quality and yield and to keep pace with product requirements and the technological evolution. Aside from this time to market becomes one of the most important issues for FPC manufacturers. Being able to quickly react to any layout changes in prototyping and pilot production runs by applying stateof-the-art-technology can be a further key to success. Based on this laser technology nowadays is more and more used for cutting FPCs. Especially in prototyping and pre-series production expensive tooling and extensive timeconsuming manufacturing can be eliminated at the same time guaranteeing excellent quality and yield. 2.2 PCB depaneling In PCB depaneling in the first place the mechanical stress placed on the board by conventional mechanical cutting methods is the driving force behind the increasing efforts to develop and adapt laser technology. At the same time requirements on accuracy and process speed are increasing. The high positioning accuracy of a laser system allows for

3 component placement closer to the edge of a board. The laser beam being a small and precise tool is able to cut intricate shapes and also increases the net usable area on the panels. Further restrictions of conventional cutting methods that forward the integration of laser cutting are limitations with regard to layout freedom, an increased amount of process dusts as well as high adapter costs. 3 Laser Cutting The processing speed of laser cutting and the resulting quality depend on both, the characteristics of the material being processed and the nature of the laser emission (wavelength, fluence, peak power, pulse width, and pulse rate). It is important to know the absorption characteristic of the material to be cut. Most insulators are absorbing radiation in the UV and far IR region (compare Fig. 1). Q-Switch frequency-tripled diode -pumped Nd:YAG lasers (UV-DPSS) emitting a wavelength of 355 nm are the right choice in the UV region, producing short optical laser pulses in the range of a few ten nanosecond pulse lengths with a peak power in the range of a few kilowatts. 100 Absorption [%] 80 3xNd:YAG Nd:YAG CO 2 60 Metalls (Au, Ag, ) Insulator 40 Transition metals (Cu, ) [µm] Figure 1: Absorption of metals and insulators Within the far IR region the laser radiation of CO 2 lasers with wavelengths of e. g. 10,6 µm is strongly absorbed. However, IR lasers remove material by intense local heating and thus CO 2 cutting is likely to leave carbonization and residue on the substrate. UV lasers on the other hand have a small average power which limits the throughput and the maximum material thickness that can be cut. In any case an improved cutting quality can be achieved by reducing the thermal influence on the material to minimize the heat affected zone and charring or carbonization respectively. Polyimide is used for flex circuits due to its high thermal and chemical stability. Polyimide does not have a melting point. The material sublimates during laser processing. Based on its relatively low evaporation temperature of 750 C a relatively low laser power is needed to achieve high cutting speeds. In case a UV laser is used the absorbed laser energy in the material is confined to a small and defined volume resulting in a high temperature gradient. This produces a defined material removal and excellent cutting quality with a minimum of carbonization. Cutting rigid PCB material is more challenging. Rigid PCB substrates consist of glass fibre bundles embedded in resin. The melting temperature of glass is extremely high, well above 1000 C. Thus the power of a laser beam needed to melt and evaporate the glass fibres needs to be high. The resin on the other hand is easily evaporated. Its melting temperature is low. The critical aspect in cutting FR4 is the different thermal characteristic of glass and resin. The existing high temperature associated with melting and evaporating the glass fibres in turn has a strong thermal influence on the resin.

4 4 FPC Coverlay and Body cutting Laser cutting is used in the following two process steps within the prototyping and pre-series production of FPCs: coverlay cutting for prototyping and pre-series 1 body cutting for prototyping, pre-series 2, and low volume series. Figure 2: Polyimide coverlay cut using laser technology Coverlay is one of the major differences between flexible printed circuits and rigid circuit boards. Coverlay is the mechanical protector for the fragile conductors on flex circuits and dictates solder coating areas (apertures) for component assembly 3. Usually, the same films are used as base material of coverlay and substrates. The major problem in manufacturing the coverlay films for FPCs is dimensional distortion during the lamination process, which makes automation difficult and increases costs. Apertures into the coverlay films are usually introduced prior to lamination. Coverlay films comprise polyimide with a thickness of either 12,5 µm or 25 µm coated on one side with adhesive attached to release paper. Body cutting designates the singulation of flexible circuits from their panel. Usually this comprises the cutting of arbitrary shapes into a combination of polyimide layers with adhesives (single or double side, double access, multi-layer). Around connectors copper layers and stiffeners (e. g. FR4 or Polyimide) have to be cut in addition. 5 The LPKF MicroLine Series Figure 3: MicroLine 350D (left) as well as 350 Ci (middle) and its scanner based cutting head LPKF has designed the MicroLine Series for the singulation of flex, flex-rigid and rigid printed circuits. To achieve high cutting speed, accuracy and quality the systems are based on a scanner based beam deflection in a smaller area as well as a fast and dynamic x-y-table moving the sheets and panels into the working area of the scanner. The scanner comprises two galvanometer mounted mirrors used in a vector-scanning configuration to direct the 1 until mass production tools are ready 2 until mass production tools are ready 3 Covercoats or solder masks shall not be discussed here

5 focused laser beam across the material surface in a cut pattern created by CAD/CAM software. As such being nearly inertia-free extremely high acceleration and high moving speeds are possible. Accurate x-y-theta alignment of the laser focal spot is achieved through a CCD-camera based vision registration systems. An automatic calibration by means of a special sensor removes the effects of thermally induced drift of the scanner and eliminates laser power variations. A honeycomb vacuum table holds material of arbitrary shape, variable thickness materials, no fixtures are needed. LPKF uses a dust and particle extraction and filtering to prevent any contamination of the workpiece or the environment. LPKF CircuitMaster software supplied with the laser systems of the LPKF MicroLine Series provides easy to understand, flexible and intuitive system control. The software controls all process parameters so new materials and processing techniques can be accommodated. The systems are also available in a sealed housing (standard for the 350 Ci) designed to be integrated into an existing production line. The LPKF MicroLine 350D is designed to cut standard format coverlay films, flex and flexrigid circuit. It is equipped with a state-of-the-art diode-pumped UV laser source. The LPKF MicroLine 350 Ci is designed for cutting rigid PCB substrates and boards. It is equipped with a high average power CO 2 laser source with very good beam characteristics to achieve a small cutting kerf. Vision registration, highest position accuracy of the x-y-table coupled with a small focal spot size allow both systems to achieve an accuracy as high as +/- 20 µm. The systems' control software supports the user by supplying pre-defined parameter sets, which are based on the substantiated process knowledge of LPKF's application engineers. 6 Cutting Results and Examples 6.1 FPC effect. Cutting Speed [mm/s] Thickness [µm] Figure 4: Effect. cutting speed in Polyimide sheets as a function of material thickness To evaluate the performance of the laser system a good benchmark test is to cut straight lines into polyimide sheets of different material thickness. During testing the cutting quality was taken into account, i. e. the aim was to maximize speed and cutting quality (equivalent to minimizing carbonization) at the same time. Thus the shown figures do not represent the maximum achievable cutting speed but realistic figures with regard to what is accepted by customers in terms of cutting quality. The cutting speed in flex and flex-rigid circuits will be lower since such circuits comprise numerous polyimide sheets bonded with adhesives and even stiffeners (e. g. FR4) and copper layers have to be cut around connectors. As can be seen from Fig. 4 the maximum effective 4 cutting speed possible for high-quality cuts in 25 µm material is as high as ca. 350 mm/s. Even for thick materials the achievable cutting speed is high with 42 mm/s. Aside from optimizing parameters like pulse repetition rate, average power, pulse overlap and so on the cutting strategy applied (single-pass or multi-pass) is a vital parameter to a achieve a good quality cut. The special challenge is to find an optimum parameter set. 4 the effect. cutting speed is calculated by dividing the preset speed over the number of passes

6 In the following various application examples will be shown covering coverlay as well as flex and flex-rigid circuits. All results show an excellent cutting precision, no burr and no to minimal carbonization. a) Coverlay 12,5µm PI + 25µm adhesive b) Transition area between flex and rigid part Figure 5: Application examples of UV Polyimide cutting c) Connector of an FPC 6.2 PCBs eff. Cutting Speed [mm/s] ,5 1 1,5 2 achieve a good quality cut. Material Thickness [mm] Figure 6: Effect. cutting speed in FR4 as a function of material thickness Again the performance of CO 2 laser depaneling has been demonstrated cutting FR4 substrates of different thickness. Quality with regard to carbonization was taken into account, i. e. the curve does not represent the maximal achievable cutting speed. As can be seen in Fig. 6 the maximum cutting speed for 1 mm thick FR4 is as high as 87 mm/s. The optimization of cutting parameters is vital to achieve a good quality and performance at the same time. Since CO 2 cutting is based on a strong local heating of the material the cutting strategy applied (single-pass or multi-pass) is even more important to a Finally extensive testing to qualify CO 2 laser cutting by means of a specific test board has been performed comprising electrical strength at high voltage, solderability, shorts, alteration of electrical characteristics of the circuit, temperature influence on components placed near the cutting kerf, ageing in damp heat, mechanical stress measurement, wetting behaviour etc. All these test were successfully passed. The following pictures show some application examples. Based on the nature of CO 2 laser cutting little carbonization is always existent, but without effects on subsequent process steps. As can be seen from Fig. 7 b) and c) the cutting edge can be placed directly adjacent to copper tracks or near SMD components. The cutting edge angle that can be achieved is smaller than 10.

7 a) body cut in 1 mm FR4 b) cutting edge, cut adjacent to copper track on top layer Figure 7: Application examples of CO 2 FR4 cutting c) cutting edge close to SMD component 7 Summary Laser cutting, whether CO 2 or UV laser based, offers the same advantages as any other vector-based technology. Furthermore, being a non-contact tool, the laser completely eliminates mechanical stress on the material. Burr formation or micro-cracking in solder resist are avoided. Due to the small beam diameter only a small volume of material is removed. In combination with the nature of the laser ablation process, i. e. the evaporation of the material, deposits on the circuits are significantly reduced. The ability to cut complex shapes by applying a stress-free process in combination with an extremely small tool diameter allows for more circuits on a single panel increasing the net usable area, offering an unmatched flexibility. The achievable accuracy of laser cutting rigid-flex boards is significantly better than that of any other conventional technology. At the same time laser cutting offers economic advantages. Tooling costs and associated lead times are inexistent. Laser based production can start on the same day directly based on the customer's data, no waiting for tooling (cutting die or routing adapter) is necessary. Especially the FPC manufacturer is able to instantly react to layout alterations. Since the market requirements with regard precision, burr formation and lead times in prototyping and pre-series production are getting tighter conventional technologies are no longer the optimal choice. Here laser cutting is the right answer, providing stress-free cutting, short changeover times, no shape limitations, reduction of tooling costs and higher precision. PCB depaneling strongly benefits from stress-free cutting and superior cutting performance compared to conventional cutting techniques.

Highly Versatile Laser System for the Production of Printed Circuit Boards

Highly Versatile Laser System for the Production of Printed Circuit Boards When batch sizes go down and delivery schedules are tight, flexibility becomes more important than throughput Highly Versatile Laser System for the Production of Printed Circuit Boards By Bernd Lange and

More information

Material Effects of Laser Energy When Processing Circuit Board Substrates during Depaneling

Material Effects of Laser Energy When Processing Circuit Board Substrates during Depaneling Material Effects of Laser Energy When Processing Circuit Board Substrates during Depaneling Ahne Oosterhof Eastwood Consulting Hillsboro, OR ABSTRACT Using modern laser systems for the depanelization of

More information

The Swiss Army Knife for the Lab Micro Material Processing with the LPKF ProtoLaser U4

The Swiss Army Knife for the Lab Micro Material Processing with the LPKF ProtoLaser U4 The Swiss Army Knife for the Lab Micro Material Processing with the LPKF ProtoLaser U4 Micro Machining in the Lab LPKF ProtoLasers have been in use in leading electronics laboratories around the world

More information

Application Bulletin 240

Application Bulletin 240 Application Bulletin 240 Design Consideration CUSTOM CAPABILITIES Standard PC board fabrication flexibility allows for various component orientations, mounting features, and interconnect schemes. The starting

More information

Diverse Lasers Support Key Microelectronic Packaging Tasks

Diverse Lasers Support Key Microelectronic Packaging Tasks Diverse Lasers Support Key Microelectronic Packaging Tasks Written by D Muller, R Patzel, G Oulundsen, H Halou, E Rea 23 July 2018 To support more sophisticated and compact tablets, phones, watches and

More information

Practical Applications of Laser Technology for Semiconductor Electronics

Practical Applications of Laser Technology for Semiconductor Electronics Practical Applications of Laser Technology for Semiconductor Electronics MOPA Single Pass Nanosecond Laser Applications for Semiconductor / Solar / MEMS & General Manufacturing Mark Brodsky US Application

More information

Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser

Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser Lasers in Manufacturing Conference 215 Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser Juozas Dudutis*, Paulius Gečys, Gediminas Račiukaitis Center for Physical Sciences and Technology,

More information

ADVANCES IN USING A POLYMERIC TAPE FOR LASER-INDUCED DEPOSITION AND ABLATION

ADVANCES IN USING A POLYMERIC TAPE FOR LASER-INDUCED DEPOSITION AND ABLATION ADVANCES IN USING A POLYMERIC TAPE FOR LASER-INDUCED DEPOSITION AND ABLATION Arne Koops, tesa AG, Hamburg, Germany Sven Reiter, tesa AG, Hamburg, Germany 1. Abstract Laser systems for industrial materials

More information

Micromachining of Glass by Laser Induced Deep Etching (LIDE) LPKF Vitrion 5000

Micromachining of Glass by Laser Induced Deep Etching (LIDE) LPKF Vitrion 5000 Micromachining of Glass by Laser Induced Deep Etching (LIDE) LPKF Vitrion 5000 In microsystems technology, glass is very suitable as a substrate material for a variety of applications. The basis for the

More information

LASER TECHNOLOGY. Key parameters. Groundbreaking in the laser processing of cutting tools. A member of the UNITED GRINDING Group

LASER TECHNOLOGY. Key parameters. Groundbreaking in the laser processing of cutting tools. A member of the UNITED GRINDING Group Creating Tool Performance A member of the UNITED GRINDING Group Groundbreaking in the laser processing of cutting tools Key parameters The machining of modern materials using laser technology knows no

More information

Application Note 5026

Application Note 5026 Surface Laminar Circuit (SLC) Ball Grid Array (BGA) Eutectic Surface Mount Assembly Application Note 5026 Introduction This document outlines the design and assembly guidelines for surface laminar circuitry

More information

Advanced High-Density Interconnection Technology

Advanced High-Density Interconnection Technology Advanced High-Density Interconnection Technology Osamu Nakao 1 This report introduces Fujikura s all-polyimide IVH (interstitial Via Hole)-multi-layer circuit boards and device-embedding technology. Employing

More information

Recent years have introduced products which continue on a trend toward smaller,

Recent years have introduced products which continue on a trend toward smaller, Alexander Holiat MSE 542 I Flexible Electronics Term Paper May 11,2006 I I Laser Drilling for Electrical Interconnections in Flexible Electronics Recent years have introduced products which continue on

More information

THICK-FILM LASER TRIMMING PRINCIPLES, TECHNIQUES

THICK-FILM LASER TRIMMING PRINCIPLES, TECHNIQUES Electrocomponent Science and Technology, 1981, Vol. 9, pp. 9-14 0305,3091/81/0901-0009 $06.50/0 (C) 1981 Gordon and Breach Science Publishers, Inc. Printed in Great Britain THICK-FILM LASER TRIMMING PRINCIPLES,

More information

Precise hardening with high power diode lasers using beam shaping mirror optics

Precise hardening with high power diode lasers using beam shaping mirror optics Precise hardening with high power diode lasers using beam shaping mirror optics Steffen Bonss, Marko Seifert, Berndt Brenner, Eckhard Beyer Fraunhofer IWS, Winterbergstrasse 28, D-01277 Dresden, Germany

More information

Beam deflection technologies for ultra short pulse lasers June 5th, 2018

Beam deflection technologies for ultra short pulse lasers June 5th, 2018 Beam deflection technologies for ultra short pulse lasers June 5th, 2018 Agenda SCANLAB GmbH XL Scan excellishift precsys 2 SCANLAB at a Glance Worldwide leading OEM manufacturer of scan solutions for

More information

FLASHSOLDERING UPDATE EXTENDING FINE MAGNET WIRE JOINING APPLICATIONS

FLASHSOLDERING UPDATE EXTENDING FINE MAGNET WIRE JOINING APPLICATIONS FLASHSOLDERING UPDATE EXTENDING FINE MAGNET WIRE JOINING APPLICATIONS David W. Steinmeier microjoining Solutions & Mike Becker Teka Interconnection Systems Abstract: FlashSoldering was first developed

More information

hurryscan, hurryscan II

hurryscan, hurryscan II hurryscan, hurryscan II more Information at: universal and compatible These compact scan heads from SCANLAB provide optimal solutions for nearly all challenges found in industrial laser materials processing.

More information

Near-field optical photomask repair with a femtosecond laser

Near-field optical photomask repair with a femtosecond laser Journal of Microscopy, Vol. 194, Pt 2/3, May/June 1999, pp. 537 541. Received 6 December 1998; accepted 9 February 1999 Near-field optical photomask repair with a femtosecond laser K. LIEBERMAN, Y. SHANI,

More information

Microelectronics Packaging AS FEATURES GET SMALLER, THE ROLE FOR LASERS GETS LARGER

Microelectronics Packaging AS FEATURES GET SMALLER, THE ROLE FOR LASERS GETS LARGER MEMS ARTICLE Microelectronics Packaging AS FEATURES GET SMALLER, THE ROLE FOR LASERS GETS LARGER DIRK MÜLLER, MICROELECTRONICS AND SOLAR MARKET SEGMENT MANAGER, RALPH DELMDAHL, PRODUCT MARKETING MANAGER,

More information

Laser Marking 2011 and Beyond. What is a Laser How does a Laser Work What Products are being Marked Why Laser marking is so Popular

Laser Marking 2011 and Beyond. What is a Laser How does a Laser Work What Products are being Marked Why Laser marking is so Popular Laser Marking 2011 and Beyond What is a Laser How does a Laser Work What Products are being Marked Why Laser marking is so Popular 3 Key Laser components 1. A laser source,- generates the laser beam. 2.

More information

Laser Experts in Semiconductor Manufacturing

Laser Experts in Semiconductor Manufacturing Laser Experts in Semiconductor Manufacturing Backed by more than three decades of experience in laser material processing, ROFIN is one of the best established companies in this field. The company has

More information

Advances in Laser Micro-machining for Wafer Probing and Trimming

Advances in Laser Micro-machining for Wafer Probing and Trimming Advances in Laser Micro-machining for Wafer Probing and Trimming M.R.H. Knowles, A.I.Bell, G. Rutterford & A. Webb Oxford Lasers June 10, 2002 Oxford Lasers June 2002 1 Introduction to Laser Micro-machining

More information

Nmark AGV-HPO. High Accuracy, Open Frame, Thermally Stable Galvo Scanner. Highest accuracy scanner available attains singledigit,

Nmark AGV-HPO. High Accuracy, Open Frame, Thermally Stable Galvo Scanner. Highest accuracy scanner available attains singledigit, Nmark AGV-HPO Galvanometer Nmark AGV-HPO High Accuracy, Open Frame, Thermally Stable Galvo Scanner Highest accuracy scanner available attains singledigit, micron-level accuracy over the field of view Optical

More information

Advances in CO 2 -Laser Drilling of Glass Substrates

Advances in CO 2 -Laser Drilling of Glass Substrates Available online at www.sciencedirect.com Physics Procedia 39 (2012 ) 548 555 LANE 2012 Advances in CO 2 -Laser Drilling of Glass Substrates Lars Brusberg,a, Marco Queisser b, Clemens Gentsch b, Henning

More information

True Three-Dimensional Interconnections

True Three-Dimensional Interconnections True Three-Dimensional Interconnections Satoshi Yamamoto, 1 Hiroyuki Wakioka, 1 Osamu Nukaga, 1 Takanao Suzuki, 2 and Tatsuo Suemasu 1 As one of the next-generation through-hole interconnection (THI) technologies,

More information

Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing

Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing M.H. Hong *, **, Q. Xie *, K.S. Tiaw * *, ** and T.C. Chong * Data Storage Institute, DSI Building 5, Engineering

More information

intelliweld smart welding

intelliweld smart welding intellield more Information at: smart welding Designed for robot-assisted welding applications, this 3D-scan system is capable of swiftly positioning the laser beam along 3D contours. hile a robot guides

More information

Selective Soldering for Interconnection Technology Used in Enterprise Communication Apparatuses

Selective Soldering for Interconnection Technology Used in Enterprise Communication Apparatuses Selective Soldering for Interconnection Technology Used in Enterprise Communication Apparatuses Mark Woolley, Wesley Brown, and Dr. Jae Choi Avaya Inc. 1300 W 120 th Avenue Westminster, CO 80234 Abstract:

More information

Solder Dross & Metal Recovery. High Performance Solder Products. High Precision Laser Cut Parts. Advanced Stencil & Laser Technology

Solder Dross & Metal Recovery. High Performance Solder Products. High Precision Laser Cut Parts. Advanced Stencil & Laser Technology High Performance Solder Products Advanced Stencil & Laser Technology High Precision Laser Cut Parts Solder Dross & Metal Recovery Leaders in lead free technology SN100C North America Licensee of Nihon

More information

Hermetic Packaging Solutions using Borosilicate Glass Thin Films. Lithoglas Hermetic Packaging Solutions using Borosilicate Glass Thin Films

Hermetic Packaging Solutions using Borosilicate Glass Thin Films. Lithoglas Hermetic Packaging Solutions using Borosilicate Glass Thin Films Hermetic Packaging Solutions using Borosilicate Glass Thin Films 1 Company Profile Company founded in 2006 ISO 9001:2008 qualified since 2011 Headquarters and Production in Dresden, Germany Production

More information

Nmark AGV-HP. High Accuracy, Thermally Stable Galvo Scanner

Nmark AGV-HP. High Accuracy, Thermally Stable Galvo Scanner Nmark AGV-HP High Accuracy, Thermally Stable Galvo Scanner Highest accuracy scanner available attains single-digit, micron-level accuracy over the field of view Optical feedback technology significantly

More information

New Lasers Improve Glass Cutting Methods

New Lasers Improve Glass Cutting Methods New Lasers Improve Glass Cutting Methods Over the past decade, glass has become an increasingly sophisticated structural and functional component in uses as varied as flat panel displays (FPDs), automobiles

More information

Precision Cold Ablation Material Processing using High-Power Picosecond Lasers

Precision Cold Ablation Material Processing using High-Power Picosecond Lasers Annual meeting Burgdorf Precision Cold Ablation Material Processing using High-Power Picosecond Lasers Dr. Kurt Weingarten kw@time-bandwidth.com 26 November 2009 Background of Time-Bandwidth Products First

More information

Advanced Packaging - Pulsed-laser Heating for Flip Chip Assembly

Advanced Packaging - Pulsed-laser Heating for Flip Chip Assembly Page 1 of 5 Pulsed-laser Heating for Flip Chip Assembly A stress-free alternative By Thorsten Teutsch, Ph.D., Pac Tech USA, Elke Zakel, Ph.D., and Ghassem Azdasht, Pac Tech GmbH As flip chip applications

More information

AVIA DPSS Lasers: Advanced Design for Increased Process Throughput

AVIA DPSS Lasers: Advanced Design for Increased Process Throughput White Paper AVIA DPSS Lasers: Advanced Design for Increased Process Throughput The Q-switched, diode-pumped, solid-state (DPSS) laser has become a widely employed tool in a broad range of industrial micromachining

More information

Bringing Answers to the Surface

Bringing Answers to the Surface 3D Bringing Answers to the Surface 1 Expanding the Boundaries of Laser Microscopy Measurements and images you can count on. Every time. LEXT OLS4100 Widely used in quality control, research, and development

More information

Kit for building your own THz Time-Domain Spectrometer

Kit for building your own THz Time-Domain Spectrometer Kit for building your own THz Time-Domain Spectrometer 16/06/2016 1 Table of contents 0. Parts for the THz Kit... 3 1. Delay line... 4 2. Pulse generator and lock-in detector... 5 3. THz antennas... 6

More information

BGA (Ball Grid Array)

BGA (Ball Grid Array) BGA (Ball Grid Array) National Semiconductor Application Note 1126 November 2002 Table of Contents Introduction... 2 Package Overview... 3 PBGA (PLASTIC BGA) CONSTRUCTION... 3 TE-PBGA (THERMALLY ENHANCED

More information

INVESTIGATION OF IMPROVED LABEL CUTTING BY CO 2 LASERS WITH WAVELENGTH OPTIMIZATION Paper #2004

INVESTIGATION OF IMPROVED LABEL CUTTING BY CO 2 LASERS WITH WAVELENGTH OPTIMIZATION Paper #2004 INVESTIGATION OF IMPROVED LABEL CUTTING BY CO 2 LASERS WITH WAVELENGTH OPTIMIZATION Paper #2004 Justin Conroy 1, 1 Applications Lab, Synrad Inc. Mukilteo, WA, 98275, USA Abstract The digital printing revolution

More information

CD-SEM for 65-nm Process Node

CD-SEM for 65-nm Process Node CD-SEM for 65-nm Process Node 140 CD-SEM for 65-nm Process Node Hiroki Kawada Hidetoshi Morokuma Sho Takami Mari Nozoe OVERVIEW: Inspection equipment for 90-nm and subsequent process nodes is required

More information

Nmark AGV-HP. High Accuracy, Thermally Stable Galvo Scanner

Nmark AGV-HP. High Accuracy, Thermally Stable Galvo Scanner Nmark AGV-HP Galvanometer Nmark AGV-HP High Accuracy, Thermally Stable Galvo Scanner Highest accuracy scanner available attains single-digit, micron-level accuracy over the field of view Optical feedback

More information

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 69 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array Roland Jäger and Christian Jung We have designed and fabricated

More information

Microsystem Technology for Eddy Current Testing Johannes PAUL, Roland HOLZFÖRSTER

Microsystem Technology for Eddy Current Testing Johannes PAUL, Roland HOLZFÖRSTER 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16638 Microsystem Technology for Eddy Current

More information

200mm and 300mm Test Patterned Wafers for Bonding Process Applications SKW ASSOCIATES, INC.

200mm and 300mm Test Patterned Wafers for Bonding Process Applications SKW ASSOCIATES, INC. C M P C h a r a c t e r I z a t I o n S o l u t I o n s 200mm and 300mm Test Patterned Wafers for Bonding Process Applications SKW ASSOCIATES, INC. 2920 Scott Blvd., Santa Clara, CA 95054 Tel: 408-919-0094,

More information

Evaluation of high power laser diodes for space applications: effects of the gaseous environment

Evaluation of high power laser diodes for space applications: effects of the gaseous environment Evaluation of high power laser diodes for space applications: effects of the gaseous environment Jorge Piris, E. M. Murphy, B. Sarti European Space Agency, Optoelectronics section, ESTEC. M. Levi, G. Klumel,

More information

MicroSpot FOCUSING OBJECTIVES

MicroSpot FOCUSING OBJECTIVES OFR P R E C I S I O N O P T I C A L P R O D U C T S MicroSpot FOCUSING OBJECTIVES APPLICATIONS Micromachining Microlithography Laser scribing Photoablation MAJOR FEATURES For UV excimer & high-power YAG

More information

Miniaturized Laser Speckle Reducer OEM Series

Miniaturized Laser Speckle Reducer OEM Series Miniaturized Laser Speckle Reducer OEM Series Speckle noise from a laser-based system is reduced by dynamically diffusing the laser beam. A diffuser is bonded to a thin elastic membrane, which includes

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

High Efficient Heat Dissipation on Printed Circuit Boards. Markus Wille, R&D Manager, Schoeller Electronics Systems GmbH

High Efficient Heat Dissipation on Printed Circuit Boards. Markus Wille, R&D Manager, Schoeller Electronics Systems GmbH High Efficient Heat Dissipation on Printed Circuit Boards Markus Wille, R&D Manager, Schoeller Electronics Systems GmbH m.wille@se-pcb.de Introduction 2 Heat Flux: Q x y Q z The substrate (insulation)

More information

Application Note AN-1011

Application Note AN-1011 AN-1011 Board Mounting Application Note for 0.800mm Pitch Devices For part numbers IRF6100, IRF6100PBF, IR130CSP, IR130CSPPBF, IR140CSP, IR140CSPPBF, IR1H40CSP, IR1H40CSPPBF By Hazel Schofield and Philip

More information

Professional In-House PCB Prototyping LPKF ProtoMat Circuit Board Plotters

Professional In-House PCB Prototyping LPKF ProtoMat Circuit Board Plotters Professional In-House PCB Prototyping LPKF ProtoMat Circuit Board Plotters Design it. Build it. Today. From design to finished PCB prototype in a few hours - it s possible with LPKF systems. Versatile

More information

Innovative pcb solutions used in medical and other devices Made in Switzerland

Innovative pcb solutions used in medical and other devices Made in Switzerland Innovative pcb solutions used in medical and other devices Made in Switzerland Chocolate Watches Money.PCB`s innovative pcb`s... Customer = innovation driver Need to add more parts and I/O make smaller/thinner

More information

Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse

Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse Cover Page Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse laser Authors: Futoshi MATSUI*(1,2), Masaaki ASHIHARA(1), Mitsuyasu MATSUO (1), Sakae KAWATO(2),

More information

Application of EOlite Flexible Pulse Technology. Matt Rekow Yun Zhou Nicolas Falletto

Application of EOlite Flexible Pulse Technology. Matt Rekow Yun Zhou Nicolas Falletto Application of EOlite Flexible Pulse Technology Matt Rekow Yun Zhou Nicolas Falletto 1 Topics Company Background What is a Flexible Pulse Laser? Why Tailored or Flexible Pulse? Application of Flexible

More information

Quantum-Well Semiconductor Saturable Absorber Mirror

Quantum-Well Semiconductor Saturable Absorber Mirror Chapter 3 Quantum-Well Semiconductor Saturable Absorber Mirror The shallow modulation depth of quantum-dot saturable absorber is unfavorable to increasing pulse energy and peak power of Q-switched laser.

More information

intelliscan smart scanning

intelliscan smart scanning smart scanning SCANLAB's scan heads stand out with variant diversity and high dynamics. They're among the 2D scan systems that enable deflecting and positioning of laser beams in the working plane. The

More information

HOTBAR REFLOW SOLDERING

HOTBAR REFLOW SOLDERING HOTBAR REFLOW SOLDERING Content 1. Hotbar Reflow Soldering Introduction 2. Application Types 3. Process Descriptions > Flex to PCB > Wire to PCB 4. Design Guidelines 5. Equipment 6. Troubleshooting Guide

More information

Organic Optical Waveguide Fabrication in a Manufacturing Environment

Organic Optical Waveguide Fabrication in a Manufacturing Environment Organic Optical Waveguide Fabrication in a Manufacturing Environment Benson Chan, How Lin, Chase Carver, Jianzhuang Huang, Jessie Berry Endicott Interconnect Technologies 1093 Clark Street, Endicott NY

More information

KNIFE-EDGE RIGHT-ANGLE PRISM MIRRORS

KNIFE-EDGE RIGHT-ANGLE PRISM MIRRORS KNIFE-EDGE RIGHT-ANGLE PRISM MIRRORS Precision Cut Prisms Feature Bevel-Free 90 Angle Dielectric, Silver, Gold, and Aluminum Coatings Available 25 mm x 25 mm Faces Application Idea MRAK25-M01 Mounted on

More information

Processes for Flexible Electronic Systems

Processes for Flexible Electronic Systems Processes for Flexible Electronic Systems Michael Feil Fraunhofer Institut feil@izm-m.fraunhofer.de Outline Introduction Single sheet versus reel-to-reel (R2R) Substrate materials R2R printing processes

More information

Sectional Design Standard for Flexible/Rigid-Flexible Printed Boards

Sectional Design Standard for Flexible/Rigid-Flexible Printed Boards Sectional Design Standard for Flexible/Rigid-Flexible Printed Boards Developed by the Flexible Circuits Design Subcommittee (D-) of the Flexible Circuits Committee (D-0) of IPC Supersedes: IPC-2223C -

More information

OB-FPC: FLEXIBLE PRINTED CIRCUITS FOR THE ALICE TRACKER

OB-FPC: FLEXIBLE PRINTED CIRCUITS FOR THE ALICE TRACKER OB-FPC: FLEXIBLE PRINTED CIRCUITS FOR THE ALICE TRACKER Main Requirements. The OB FPC must meet demanding requirements: Material: Low material budget Electrical: impedance of differential lines @ 100W,

More information

Optimizing throughput with Machine Vision Lighting. Whitepaper

Optimizing throughput with Machine Vision Lighting. Whitepaper Optimizing throughput with Machine Vision Lighting Whitepaper Optimizing throughput with Machine Vision Lighting Within machine vision systems, inappropriate or poor quality lighting can often result in

More information

Nmark AGV-HP(O) High Accuracy, Thermally Stable Galvo Scanner

Nmark AGV-HP(O) High Accuracy, Thermally Stable Galvo Scanner Nmark AGV-HP(O) Galvanometer Nmark AGV-HP(O) High Accuracy, Thermally Stable Galvo Scanner Highest accuracy scanner available attains single-digit, micron-level accuracy over the field of view Optical

More information

Nmark AGV-HP(O) High Accuracy, Thermally Stable Galvo Scanner

Nmark AGV-HP(O) High Accuracy, Thermally Stable Galvo Scanner Nmark AGV-HP(O) High Accuracy, Thermally Stable Galvo Scanner Highest accuracy scanner available attains single-digit, micron-level accuracy over the field of view Optical feedback technology significantly

More information

!"#$"%&' ()#*+,-+.&/0(

!#$%&' ()#*+,-+.&/0( !"#$"%&' ()#*+,-+.&/0( Multi Chip Modules (MCM) or Multi chip packaging Industry s first MCM from IBM. Generally MCMs are horizontal or two-dimensional modules. Defined as a single unit containing two

More information

Polymer Optical Waveguide Fabrication Using Laser Ablation

Polymer Optical Waveguide Fabrication Using Laser Ablation Polymer Optical Waveguide Fabrication Using Laser Ablation Shefiu Zakariyah Loughborough University Shefiu S. Zakariyah, Paul P. Conway, David A. Hutt, #David R. Selviah, #Kai Wang #Hadi Baghsiahi *Jeremy

More information

Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore Tel: Fax:

Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore Tel: Fax: Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore 658079 Tel: +65 63167112 Fax: +65 63167113 High-power Nd:YAG Self-floating Laser Cutting Head We supply the laser

More information

Bandpass Edge Dichroic Notch & More

Bandpass Edge Dichroic Notch & More Edmund Optics BROCHURE Filters COPYRIGHT 217 EDMUND OPTICS, INC. ALL RIGHTS RESERVED 1/17 Bandpass Edge Dichroic Notch & More Contact us for a Stock or Custom Quote Today! USA: +1-856-547-3488 EUROPE:

More information

Midaz Micro-Slab DPSS Lasers:

Midaz Micro-Slab DPSS Lasers: Midaz Micro-Slab DPSS Lasers: Higher power & pulse rate for higher speed micromachining Professor Mike Damzen Midaz Laser Ltd 4 June 2008 AILU Meeting Industrial opportunities in laser micro and nano processing

More information

Thermo Scientific icap 7000 Plus Series ICP-OES: Innovative ICP-OES optical design

Thermo Scientific icap 7000 Plus Series ICP-OES: Innovative ICP-OES optical design TECHNICAL NOTE 43333 Thermo Scientific icap 7000 Plus Series ICP-OES: Innovative ICP-OES optical design Keywords Optical design, Polychromator, Spectrometer Key Benefits The Thermo Scientific icap 7000

More information

Laser marking considerations for cosmetics, personal and home care producers. Achieve higher uptime, reduce maintenance, and improve mark legibility

Laser marking considerations for cosmetics, personal and home care producers. Achieve higher uptime, reduce maintenance, and improve mark legibility White paper Laser marking considerations for cosmetics, personal and home care producers Achieve higher uptime, reduce maintenance, and improve mark legibility Laser marking technology a great option for

More information

Initial release of document

Initial release of document This specification covers the requirements for application of SMT Poke In Connectors for use on printed circuit (pc) board based LED strip lighting typically used for sign lighting. The connector accommodates

More information

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging LMT F14 Cut in Three Dimensions The Rowiak Laser Microtome: 3-D Cutting and Imaging The Next Generation of Microtomes LMT F14 - Non-contact laser microtomy The Rowiak laser microtome LMT F14 is a multi-purpose

More information

A Laser-Based Thin-Film Growth Monitor

A Laser-Based Thin-Film Growth Monitor TECHNOLOGY by Charles Taylor, Darryl Barlett, Eric Chason, and Jerry Floro A Laser-Based Thin-Film Growth Monitor The Multi-beam Optical Sensor (MOS) was developed jointly by k-space Associates (Ann Arbor,

More information

Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps

Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps Technical Communication JLMN-Journal of Laser Micro/Nanoengineering Vol. 10, No. 2, 2015 Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps C. Fornaroli 1,

More information

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation Low Thermal Resistance Flip-Chip Bonding of 85nm -D VCSEL Arrays Capable of 1 Gbit/s/ch Operation Hendrik Roscher In 3, our well established technology of flip-chip mounted -D 85 nm backside-emitting VCSEL

More information

POWER DETECTORS. How they work POWER DETECTORS. Overview

POWER DETECTORS. How they work POWER DETECTORS. Overview G E N T E C - E O POWER DETECTORS Well established in this field for over 30 years Gentec Electro-Optics has been a leader in the field of laser power and energy measurement. The average power density

More information

Laser MicroJet Frequently Asked Questions

Laser MicroJet Frequently Asked Questions Laser MicroJet Frequently Asked Questions Who is Synova? Synova is the inventor and patent owner of a new laser cutting technology (the Laser-Microjet) and provides its systems for a broad range of micromachining

More information

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic Outline Short history of MAPS development at IPHC Results from TowerJazz CIS test sensor Ultra-thin

More information

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Application Note AN004: Fiber Coupling Improvement Introduction AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Industrial lasers used for cutting, welding, drilling,

More information

LPKF TechGuide In-House PCB Prototyping

LPKF TechGuide In-House PCB Prototyping LPKF TechGuide In-House PCB Prototyping Do you have any Questions about your Order? Do you Require Technical Support? You can find all sales and service contact information below. Our experienced employees

More information

HipoCIGS: enamelled steel as substrate for thin film solar cells

HipoCIGS: enamelled steel as substrate for thin film solar cells HipoCIGS: enamelled steel as substrate for thin film solar cells Lecturer D. Jacobs*, Author S. Efimenko, Co-author C. Schlegel *:PRINCE Belgium bvba, Pathoekeweg 116, 8000 Brugge, Belgium, djacobs@princecorp.com

More information

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

Micro-sensors - what happens when you make classical devices small: MEMS devices and integrated bolometric IR detectors Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors Dean P. Neikirk 1 MURI bio-ir sensors kick-off 6/16/98 Where are the targets

More information

Stencil Technology. Agenda: Laser Technology Stencil Materials Processes Post Process

Stencil Technology. Agenda: Laser Technology Stencil Materials Processes Post Process Stencil Technology Agenda: Laser Technology Stencil Materials Processes Post Process Laser s YAG LASER Conventional Laser Pulses Laser beam diameter is 2.3mil Ridges in the inside walls of the apertures

More information

High Power UV Laser Machining of Silicon Wafers

High Power UV Laser Machining of Silicon Wafers High Power UV Laser Machining of Silicon Wafers Tom CORBOLINE, Edward C. REA, Jr., and Corey DUNSKY COHERENT, INC. 51 Patrick Henry Dr., Santa Clara, CA 955, USA E-mail: tom.corboline@coherentinc.com As

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

BLIND MICROVIA TECHNOLOGY BY LASER

BLIND MICROVIA TECHNOLOGY BY LASER BLIND MICROVIA TECHNOLOGY BY LASER Larry W. Burgess LaserVia Drilling Centers, L.L.C. Wilsonville, Oregon, USA ABSTRACT The most costly process in the fabrication of today's multilayer printed circuit

More information

Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques

Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques Sheng Liu and I. Charles Ume* School of Mechanical Engineering Georgia Institute of Technology Atlanta, Georgia 3332 (44) 894-7411(P)

More information

plasmonic nanoblock pair

plasmonic nanoblock pair Nanostructured potential of optical trapping using a plasmonic nanoblock pair Yoshito Tanaka, Shogo Kaneda and Keiji Sasaki* Research Institute for Electronic Science, Hokkaido University, Sapporo 1-2,

More information

Die Prep Considerations for IC Device Applications CORWIL Technology 1635 McCarthy Blvd Milpitas, CA 95035

Die Prep Considerations for IC Device Applications CORWIL Technology 1635 McCarthy Blvd Milpitas, CA 95035 Die Prep Considerations for IC Device Applications CORWIL Technology 1635 McCarthy Blvd Milpitas, CA 95035 Jonny Corrao Die Prep While quality, functional parts are the end goal for all semiconductor companies,

More information

Damage-free failure/defect analysis in electronics and semiconductor industries using micro-atr FTIR imaging

Damage-free failure/defect analysis in electronics and semiconductor industries using micro-atr FTIR imaging Damage-free failure/defect analysis in electronics and semiconductor industries using micro-atr FTIR imaging Application note Electronics and Semiconductor Authors Dr. Mustafa Kansiz and Dr. Kevin Grant

More information

Laser Speckle Reducer LSR-3000 Series

Laser Speckle Reducer LSR-3000 Series Laser Speckle Reducer LSR-3000 Series Speckle noise from a laser-based system is reduced by dynamically diffusing the laser beam. A diffuser is bonded to a thin elastic membrane, which includes four independent

More information

arxiv: v1 [astro-ph.im] 22 Jul 2014

arxiv: v1 [astro-ph.im] 22 Jul 2014 Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) Z. Ahmed J.A. Grayson K.L. Thompson C-L. Kuo G. Brooks T. Pothoven Large-area Reflective Infrared Filters for Millimeter/sub-mm

More information

6 Things You Need to Know About Laser Wire Stripping

6 Things You Need to Know About Laser Wire Stripping Search... GO 6 Things You Need to Know About Laser Wire Stripping (#) (#) (#) (#) (#) 14 (#) (#) Posted in Lasers (/lasers) by Qmed Staff (/users/qmed staff) on August 10, 2015 Medical device wires are

More information

APPLICATION NOTE 6381 ORGANIC LAND GRID ARRAY (OLGA) AND ITS APPLICATIONS

APPLICATION NOTE 6381 ORGANIC LAND GRID ARRAY (OLGA) AND ITS APPLICATIONS Keywords: OLGA, SMT, PCB design APPLICATION NOTE 6381 ORGANIC LAND GRID ARRAY (OLGA) AND ITS APPLICATIONS Abstract: This application note discusses Maxim Integrated s OLGA and provides the PCB design and

More information

SOLDER PASTE STENCIL MANUFACTURING METHODS AND THEIR IMPACT ON PRECISION AND ACCURACY

SOLDER PASTE STENCIL MANUFACTURING METHODS AND THEIR IMPACT ON PRECISION AND ACCURACY SOLDER PASTE STENCIL MANUFACTURING METHODS AND THEIR IMPACT ON PRECISION AND ACCURACY Ahne Oosterhof Oosterhof Consulting Hillsboro, OR, USA ahne@oosterhof.com Stephan Schmidt LPKF Laser & Electronics

More information

Introduction of New Products

Introduction of New Products Field Emission Electron Microscope JEM-3100F For evaluation of materials in the fields of nanoscience and nanomaterials science, TEM is required to provide resolution and analytical capabilities that can

More information

Focus on Fine Solutions

Focus on Fine Solutions WE THINK LASER ROFIN - The open minded consultant - 2 - ROFIN - We know your applications Macro Cutting Welding Surface modification Micro Fine welding Fine cutting Micro structuring Micro drilling Perforation

More information