Coherent Detection Gradient Descent Adaptive Control Chip

Size: px
Start display at page:

Download "Coherent Detection Gradient Descent Adaptive Control Chip"

Transcription

1 MEP Research Program Test Report Coherent Detection Gradient Descent Adaptive Control Chip Requested Fabrication Technology: IBM SiGe 5AM Design No: Fabrication ID: T57WAD Design Name: GDPLC Technology Code: IBM_5AM Size: 9mm 2 Abstract The design and operation of a multi-dithering adaptive controller fabricated by MOSIS using the IBM SiGe 5AM technology is reported. The controller implements gradient descent of an external control objective by using multi-channel harmonic excitation and coherent detection, suitable for use in free-space laser communications. Testing of the building blocks was performed by building a PCB and developing accompanying software to control the inputs of the chip. Tests on the oscillators reveal wide operating range covering almost 7 decades of dithering frequencies with amplitude-controlled sinusoidal oscillation from 100Hz to 1GHz. Experiments interfacing the chip to a resistor-diode circuit implementing a 3-D metric confirm minimization of the metric by the chip at variable adaptation rate. Ph.D. Student: Dimitrios Loizos (dloizos@jhu.edu) Advisors: Prof. Paul Sotiriadis (pps@jhu.edu) Co-Advisor: Prof. Gert Cauwenberghs (gert@ucsd.edu) Johns Hopkins University Department of Electrical Engineering 3400 North Charles str., Barton Hall 105 Baltimore, MD, 21218

2 1. Background and Motivation Our basic motivation in implementing the chip was its direct application in optimizing the received power in laser communications, although its use can be expanded in many fields and, is, by no means, limited to the specific application. Free-space laser communication is a very efficient approach for ground wireless links. It allows for high data rates and doesn t suffer by bandwidth congestion as RF-based communications do. Several commercial products are available in the market e.g. [1,2]. Laser communication is also a promising future solution for earth to moon as well as ground-to-satellite, inter-satellite and deep space communication [3]. In many instances of free-space laser communication it is desirable to use more than one laser beams. This has significant advantages in terms of robustness in performance (not all beams are interrupted simultaneously), better safety (since the power is more distributed and therefore is less harmful), easier design and fabrication of stable laser sources and optics. For multi-laser beam transmitters to operate successfully it is critical that all laser beams hit the target point (optics and photo-diode of the receiver) coherently. A controller is therefore required to perform the necessary adjustments for the phase of each laser beam, either at the receiver or the transmitter. The two more prominent and widely used techniques for this purpose are wavefront reconstruction and model-free optimization [4]. Wavefront reconstruction can be achieved only at the receiver end, while model-free optimization at either end. Adaptation at the receiver can compensate only for first-order aberrations; for high-resolution phase compensation, adaptation at the transmitter is required. Taking this into consideration, the chip we designed has been intended for use at the transmitter end. An overall picture of the entire system is given in Fig. 1. The implemented phase-coherency controller is based on gradient descent optimization. The design is almost completely analog, so as to achieve fast adaptation rates. Similar designs have been implemented by our group in [5,6] where, instead of a deterministic, a stochastic gradient descent method was used to adjust micro-mirror arrays in MEMS. Transmitter Modulated High Power Laser Beam Amplifier Phase Shifter Amplifier Phase Shifter Receiver Photo-Diode and Amplifier Amplifier Phase Shifter Received power calculator Phase Controller Figure 1: Structure of the multi-beam free-space Laser communication system using the implemented phase controller circuit. 2. Architecture The implemented phase controller consisted of eight sub-controllers, one for every controlled parameter (in the case of laser beams that would be the phase). The structure of each sub-controller is shown in Fig. 2. The

3 main idea was to superimpose a small dither to signal G that controlled the k-th parameter. The dither was a sinusoidal signal of frequency f k and each sub-controller generated this dither at a different frequency. These small perturbations of the phases were reflected to the calculated metric (in the laser communication application that would be power) and associated with its gradient. By applying synchronous detection on the power signal at each of the sub-controllers, it was possible to retrieve the information of the gradient specific to each of the subcontrollers, namely the partial derivative of the metric with respect to signal G of the k-th controller. Once this information was retrieved, applying the gradient descent algorithm led to optimization of the metric with respect to signals G. More specifically, for each sub-controller, a 3-phase oscillator generated sinusoidal signals of 120 o phase difference at frequency f k. One of these phases, fixed and the same for all channels, was superimposed through a capacitor array to signal G. Purpose of the capacitor array was to control the amplitude of the dither signal that would propagate to the output. The amplitude had to be low enough not to cause major shifts of the phase of the laser beam, but also high enough so as to be detectable by synchronous detection. Perturbations were applied to the outputs of the controllers for all parameters. The metric was calculated, and the information was fed back and provided to each of the sub-controllers. For each of them, the appropriate phase of the oscillator was chosen and multiplied with the metric information. This phase could be different than the one being superimposed to the signal at the output, since there was some phase delay added to the perturbation signal from the moment it was applied at the output of the controller until the information of the calculated metric was received and provided to the controllers. The output of the multiplier, B, was low-pass filtered and only the information of the partial derivative of the metric with respect to G (or H) was retained. This information was quantized (signal D) and applied to a charge pump. The sign selection block provided flexibility to the whole design by allowing adaptation for metrics other than power, where minimization was needed instead of maximization. Purpose of the charge pump was to control the rate at which maximization (or minimization) was performed, i.e. how fast the adaptation would be. The overall architecture had been designed in a way so that most of its parameters are tunable. The frequencies generated by the oscillator could be tuned in a wide range, the cut-off frequency of the low-pass filter could as well change in a wide range, the amplitude of the dithers could be adjusted, the rate at which maximization (minimization) was achieved could increase or decrease, maximization or minimization of a metric could be selected. All these options gave an extreme versatility to the system. Gradient Descent Controller for the k-th beam multiplier U received power phase selection 3-phase f k 3 3 buffer capacitor array buffer to k-th phase shifter H G B C E amplifier LPF quantizer sign selection charge pump Figure 2: The architecture of the sub-controller in the phase controller circuit D CP C 3. Layout and Fabrication Since speed and wide frequency range tunability was an issue, it was decided to design the architecture using heterojunction bipolar transistors. Suitable, for this case, was the IBM SiGe 0.5μm AM BiCMOS process provided through MOSIS. The layout of the chip is illustrated in Fig. 3 and covers an area of 3mm x 3mm. The chips were housed in LCC84M packages, providing on one hand the 84 pins needed for complete control of the

4 system, and on the other hand fairly low pin parasitics. Figure 3: Layout of the chip 4. Testing Setup For testing purposes, we designed a PCB to both control the inputs and biases of the chip, and provide an interface between the chip and the measuring equipment or any other supporting circuitry. The chip had 29 digital and 36 analog (bias) inputs. In order to minimize the amount of supporting circuitry, latched shift registers and daisy-chained latched DACs, all serially connected, were incorporated on-board. This reduced the amount of external signals provided by a PC for controlling the chip, to only 4 digital signals: clock, data, load and clear. These signals were output from a DIO card at speeds up to 100kHz, sufficient enough for the correct operation of the system. A block diagram of the architecture of the board is shown in Fig. 4. Shift registers A Q1 29 CLK Q29 LD CR MOSIS SiGe BiCMOS chip High Speed buffers Ω 8 50Ω SMA connectors ` Phase Controller A DACs V1 CLK LD V36 CR 36 Testing Board Figure 4: Printed Circuit Board Architecture We used high speed buffers at the outputs as an intermediate layer between the chip and the external testing circuitry. The two main reasons for using these buffers were the following. First, the output impedance of the on-

5 chip buffers depended on the frequency at which the system operated, since the bias current of these buffers was directly linked to the bias current setting the dithering frequency. Were there not to be any external buffers, this would lead to a frequency-dependent output impedance and prohibit any measurement. The second reason is that, in order to have a low output impedance from the on-chip buffers, these should be driven with a large amount of current that would heat the chip to an extent where probably a cooler would be needed. The external high speed buffers had a constant input and output impedance with respect to frequency, had a gain of 1 up to 1.75GHz and were powered from different supplies than the chip. The outputs of the high speed buffers were then connected through 50Ω transmission lines to SMA connectors. In Fig. 5 are shown pictures of the top and bottom part of the testing board. Figure 5: Top and bottom part of the testing board To program the shift registers and the DACs, we developed a software utility using Visual C++. The utility provides a graphical interface to the user for programming the board, the ability to load settings as well as store them. A screen shot of the GUI is shown in Fig. 6. Figure 6: GUI for programming the testing board

6 5. Measurements 5.1 Oscillator We had designed the oscillators to be both frequency and amplitude tunable. The two controls were dependent in an almost linear fashion, i.e. doubling the bias current corresponding to the oscillation frequency required almost double the current for the amplitude bias, in order to keep the amplitude constant while frequency changed. In order to characterize the range of frequencies at which the oscillator could operate, the ratio between the current bias for frequency and that for amplitude was set at 5:1, keeping the amplitude constant for almost all frequencies and close to 20mV pp. The relation between bias current and oscillation frequency is shown in Fig. 7. As can be seen, there is a linear control of frequency with the bias current for a very wide range of almost 7 decades (orders of magnitude). V 20MHz V 12MHz V ref Figure 7: Frequency versus bias current Figure 8: Adaptation for a function with a global minimum 5.2 Adaptation We also did measurements to characterize the operation of the entire system. For initial characterization, instead of power maximization in a laser communication setup, we implemented a simple function with a global f V V, V max V, V, minimum using diodes and resistors. The exact function was ( 1, 2 ref ) = ( 1 2 V ref ) min( V1, V2, V ref ) 2V F where V 1 and V 2 were the outputs from two channels, V ref was a reference voltage and V F was the forward voltage of the diodes used. Function f has a global minimum at the point where V 1 =V 2 =V ref. Therefore, the desired response of the system would be for voltages V 1 and V 2 to follow closely voltage V ref. The output of the function was connected at the input of the system. For the purposes of the experiment we set the oscillation frequencies of the two channels used to 12MHz and 20MHz. V ref was a square wave provided from a function generator. The response of the system is shown in Fig. 8. As can be seen, signals V 1 and V 2 followed the square wave. When the reference voltage V ref increased, several ms were needed for signals V 1 and V 2 to reach the desired value. When V ref decreased, the adaptation occurred much faster. This was due to asymmetric gains of the charge pump for the increase and decrease rate. Adjusting appropriately these gains, it was possible to make the adaptation faster or slower, symmetric or asymmetric.

7 References [1] [2] [3] Schuster, J, Hakakha, H, and Korevaar, E, Optomechanical design of STRV-2 lasercom transceiver using novel azimuth/slant gimbal, SPIE, Vol. 2699, January 1996, pp [4] M.A. Vorontsov, Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion, J. Opt. Soc. Am. A, February 2002, Vol. 19, No. 2, pp [5] T. Weyrauch, M.A. Vorontsov, T.G. Bifano, J.A. Hammer, M. Cohen, and G. Cauwenberghs, Micro-Scale Adaptive Optics: Wavefront Control with Micro-Mirror Array and VLSI Stochastic Gradient Descent Controller, Applied Optics, vol. 40 (24), pp , [6] G. Carhart, M. Vorontsov, M. Cohen G. Cauwenberghs, and R.T. Edwards, Adaptive Wavefront Correction Using a VLSI Implementation of the Parallel Perturbation Gradient Descent Algorithm, in High-Resolution Wavefront Control: Methods, Devices, and Applications, Proc. SPIE, vol. 3760, 1999.

High-Speed, Model-Free Adaptive Control Using Parallel Synchronous Detection

High-Speed, Model-Free Adaptive Control Using Parallel Synchronous Detection High-Speed, Model-Free Adaptive Control Using Parallel Synchronous Detection Dimitrios N. Loizos Electrical and Computer Engineering The Johns Hopkins University Baltimore, MD 21218 dloizos@jhu.edu Paul

More information

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Indian Journal of Engineering & Materials Sciences Vol. 17, February 2010, pp. 34-38 Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Bhanu

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

A 0.18µm SiGe BiCMOS Receiver and Transmitter Chipset for SONET OC-768 Transmission Systems

A 0.18µm SiGe BiCMOS Receiver and Transmitter Chipset for SONET OC-768 Transmission Systems A 0.18µm SiGe BiCMOS Receiver and Transmitter Chipset for SONET OC-768 Transmission Systems M. Meghelli 1, A. Rylyakov 1, S. J. Zier 2, M. Sorna 2, D. Friedman 1 1 IBM T. J. Watson Research Center 2 IBM

More information

A Bandgap Voltage Reference Circuit Design In 0.18um Cmos Process

A Bandgap Voltage Reference Circuit Design In 0.18um Cmos Process A Bandgap Voltage Reference Circuit Design In 0.18um Cmos Process It consists of a threshold voltage extractor circuit and a proportional to The behavior of the circuit is analytically described, a design

More information

Downloaded from edlib.asdf.res.in

Downloaded from edlib.asdf.res.in ASDF India Proceedings of the Intl. Conf. on Innovative trends in Electronics Communication and Applications 2014 242 Design and Implementation of Ultrasonic Transducers Using HV Class-F Power Amplifier

More information

INTEGRATED CIRCUITS. AN145 NE5517/A transconductance amplifier applications Dec

INTEGRATED CIRCUITS. AN145 NE5517/A transconductance amplifier applications Dec INTEGRATED CIRCUITS NE5517/A transconductance amplifier applications 1988 Dec Application note DESCRIPTION The Philips Semiconductors NE5517 is a truly versatile dual operational transconductance amplifier.

More information

A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC

A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC M. Åberg 2, A. Rantala 2, V. Hakkarainen 1, M. Aho 1, J. Riikonen 1, D. Gomes Martin 2, K. Halonen 1 1 Electronic Circuit Design Laboratory Helsinki University

More information

A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS

A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, M. Bogdan, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura, G. Varner University of Hawai I

More information

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS A 4 Channel Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura, G. Varner University of Hawai I Large Area Picosecond

More information

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS Introduction WPAN (Wireless Personal Area Network) transceivers are being designed to operate in the 60 GHz frequency band and will mainly

More information

A 7ns, 6mA, Single-Supply Comparator Fabricated on Linear s 6GHz Complementary Bipolar Process

A 7ns, 6mA, Single-Supply Comparator Fabricated on Linear s 6GHz Complementary Bipolar Process A 7ns, 6mA, Single-Supply Comparator Fabricated on Linear s 6GHz Complementary Bipolar Process Introduction The is an ultrafast (7ns), low power (6mA), single-supply comparator designed to operate on either

More information

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 20, Number 4, 2017, 301 312 A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset

More information

SOLIMAN A. MAHMOUD Department of Electrical Engineering, Faculty of Engineering, Cairo University, Fayoum, Egypt

SOLIMAN A. MAHMOUD Department of Electrical Engineering, Faculty of Engineering, Cairo University, Fayoum, Egypt Journal of Circuits, Systems, and Computers Vol. 14, No. 4 (2005) 667 684 c World Scientific Publishing Company DIGITALLY CONTROLLED CMOS BALANCED OUTPUT TRANSCONDUCTOR AND APPLICATION TO VARIABLE GAIN

More information

A DSP IMPLEMENTED DIGITAL FM MULTIPLEXING SYSTEM

A DSP IMPLEMENTED DIGITAL FM MULTIPLEXING SYSTEM A DSP IMPLEMENTED DIGITAL FM MULTIPLEXING SYSTEM Item Type text; Proceedings Authors Rosenthal, Glenn K. Publisher International Foundation for Telemetering Journal International Telemetering Conference

More information

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter

More information

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS Introduction As wireless system designs have moved from carrier frequencies at approximately 9 MHz to wider bandwidth applications like Personal Communication System (PCS) phones at 1.8 GHz and wireless

More information

Design for MOSIS Educational Program (Research) Testing Report for Project Number 89742

Design for MOSIS Educational Program (Research) Testing Report for Project Number 89742 Design for MOSIS Educational Program (Research) Testing Report for Project Number 89742 Prepared By: Kossi Sessou (Graduate Student) and Nathan Neihart (Assistant Professor) Bin Huang (Graduate Student)

More information

VLSI Chip Design Project TSEK06

VLSI Chip Design Project TSEK06 VLSI Chip Design Project TSEK06 Project Description and Requirement Specification Version 1.1 Project: 100 MHz, 10 dbm direct VCO modulating FM transmitter Project number: 4 Project Group: Name Project

More information

on-chip Design for LAr Front-end Readout

on-chip Design for LAr Front-end Readout Silicon-on on-sapphire (SOS) Technology and the Link-on on-chip Design for LAr Front-end Readout Ping Gui, Jingbo Ye, Ryszard Stroynowski Department of Electrical Engineering Physics Department Southern

More information

A Self-Contained Large-Scale FPAA Development Platform

A Self-Contained Large-Scale FPAA Development Platform A SelfContained LargeScale FPAA Development Platform Christopher M. Twigg, Paul E. Hasler, Faik Baskaya School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, Georgia 303320250

More information

RFIC2017. Fully-Scalable 2D THz Radiating Array: A 42-Element Source in 130-nm SiGe with 80-μW Total Radiated Power at 1.01THz

RFIC2017. Fully-Scalable 2D THz Radiating Array: A 42-Element Source in 130-nm SiGe with 80-μW Total Radiated Power at 1.01THz Student Paper Finalist Fully-Scalable 2D THz Radiating Array: A 42-Element Source in 130-nm SiGe with 80-μW Total Radiated Power at 1.01THz Zhi Hu and Ruonan Han MIT, Cambridge, MA, USA 1 Outline Motivation

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL

More information

1 MHz to 8 GHz, 70 db Logarithmic Detector/Controller AD8318-EP

1 MHz to 8 GHz, 70 db Logarithmic Detector/Controller AD8318-EP Enhanced Product FEATURES Wide bandwidth: MHz to 8 GHz High accuracy: ±. db over db range (f

More information

PAiA 4780 Twelve Stage Analog Sequencer Design Analysis Originally published 1974

PAiA 4780 Twelve Stage Analog Sequencer Design Analysis Originally published 1974 PAiA 4780 Twelve Stage Analog Sequencer Design Analysis Originally published 1974 DESIGN ANALYSIS: CLOCK As is shown in the block diagram of the sequencer (fig. 1) and the schematic (fig. 2), the clock

More information

Preliminary Product Overview

Preliminary Product Overview Preliminary Product Overview Features DC to > 3 GHz Frequency Range 25 Watt (CW), 200W (Pulsed) Max Power Handling Low On-State Insertion Loss, typical 0.3 db @ 3 GHz Low On-State Resistance < 0.75 Ω 25dB

More information

RF3375 GENERAL PURPOSE AMPLIFIER

RF3375 GENERAL PURPOSE AMPLIFIER Basestation Applications Broadband, Low-Noise Gain Blocks IF or RF Buffer Amplifiers Driver Stage for Power Amplifiers Final PA for Low-Power Applications High Reliability Applications RF3375General Purpose

More information

Modular Controller. Key Features. Model P hotonics. Comprehensive laser diode protection features. Advanced 16-bit control technology

Modular Controller. Key Features. Model P hotonics. Comprehensive laser diode protection features. Advanced 16-bit control technology 16 P hotonics LASER DIODE TESTING FIBER OPTIC TEST Key Features Comprehensive laser diode protection features Advanced 16-bit control technology Complete laser diode characterization (L,V,I) using 8500

More information

Receiver Architecture

Receiver Architecture Receiver Architecture Receiver basics Channel selection why not at RF? BPF first or LNA first? Direct digitization of RF signal Receiver architectures Sub-sampling receiver noise problem Heterodyne receiver

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 10.8 10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering

More information

ALTHOUGH zero-if and low-if architectures have been

ALTHOUGH zero-if and low-if architectures have been IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, JUNE 2005 1249 A 110-MHz 84-dB CMOS Programmable Gain Amplifier With Integrated RSSI Function Chun-Pang Wu and Hen-Wai Tsao Abstract This paper describes

More information

ericssonz LBI-38640E MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 DESCRIPTION

ericssonz LBI-38640E MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 DESCRIPTION MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 TABLE OF CONTENTS Page DESCRIPTION........................................... Front Cover GENERAL SPECIFICATIONS...................................

More information

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS 1. Objective: The objective of this experiment is to explore the basic applications of the bipolar junction transistor

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 Lecture 5: Termination, TX Driver, & Multiplexer Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop

Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop Analysis of Phase Noise Profile of a 1.1 GHz Phase-locked Loop J. Handique, Member, IAENG and T. Bezboruah, Member, IAENG 1 Abstract We analyzed the phase noise of a 1.1 GHz phaselocked loop system for

More information

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER ADVANCED LINEAR DEVICES, INC. ALD276A/ALD276B ALD276 DUAL ULTRA MICROPOWER RAILTORAIL CMOS OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The ALD276 is a dual monolithic CMOS micropower high slewrate operational

More information

ISSCC 2004 / SESSION 15 / WIRELESS CONSUMER ICs / 15.7

ISSCC 2004 / SESSION 15 / WIRELESS CONSUMER ICs / 15.7 ISSCC 2004 / SESSION 15 / WIRELESS CONSUMER ICs / 15.7 15.7 A 4µA-Quiescent-Current Dual-Mode Buck Converter IC for Cellular Phone Applications Jinwen Xiao, Angel Peterchev, Jianhui Zhang, Seth Sanders

More information

Performance of the Prototype NLC RF Phase and Timing Distribution System *

Performance of the Prototype NLC RF Phase and Timing Distribution System * SLAC PUB 8458 June 2000 Performance of the Prototype NLC RF Phase and Timing Distribution System * Josef Frisch, David G. Brown, Eugene Cisneros Stanford Linear Accelerator Center, Stanford University,

More information

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet. Features. Description. Applications. Surface Mount Package. Simplified Schematic

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet. Features. Description. Applications. Surface Mount Package. Simplified Schematic MGA-853.1 GHz 3 V, 17 dbm Amplifier Data Sheet Description Avago s MGA-853 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent power and low noise figure for applications from.1 to

More information

VI1 VI2 VQ1 VQ2 II1 II2 IQ1 IQ2. Maxim Integrated Products 1

VI1 VI2 VQ1 VQ2 II1 II2 IQ1 IQ2. Maxim Integrated Products 1 1-22; Rev ; 1/3 High-Gain Vector Multipliers General Description The MAX4/MAX4/MAX4 low-cost, fully integrated vector multipliers alter the magnitude and phase of an RF signal. Each device is optimized

More information

Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving

Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving Bassam Khamaisi and Eran Socher Department of Physical Electronics Faculty of Engineering Tel-Aviv University Outline Background

More information

PLL Synchronizer User s Manual / Version 1.0.6

PLL Synchronizer User s Manual / Version 1.0.6 PLL Synchronizer User s Manual / Version 1.0.6 AccTec B.V. Den Dolech 2 5612 AZ Eindhoven The Netherlands phone +31 (0) 40-2474321 / 4048 e-mail AccTecBV@tue.nl Contents 1 Introduction... 3 2 Technical

More information

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator 19-1296; Rev 2; 1/1 EVALUATION KIT MANUAL FOLLOWS DATA SHEET Low-Voltage IF Transceiver with General Description The is a highly integrated IF transceiver for digital wireless applications. It operates

More information

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components.

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components. 3 rd International Bhurban Conference on Applied Sciences and Technology, Bhurban, Pakistan. June 07-12, 2004 Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive

More information

HIGH FREQUENCY WAVEFORM GENERATOR. Author: Carlos Rodríguez Hernández

HIGH FREQUENCY WAVEFORM GENERATOR. Author: Carlos Rodríguez Hernández HIGH FREQUENCY WAVEFORM GENERATOR Author: Carlos Rodríguez Hernández ABSTRAD This Project comes from the necessity of getting a wave generator with a bandwidth over 10 Mhz and an harmonic distortion under

More information

Pb-free lead plating; RoHS compliant

Pb-free lead plating; RoHS compliant Programmable Single-/Dual-/Triple- Tone Gong Pb-free lead plating; RoHS compliant SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone,

More information

A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology Shahriar Shahramian Sorin P. Voinigescu Anthony Chan Carusone

A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology Shahriar Shahramian Sorin P. Voinigescu Anthony Chan Carusone A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology Shahriar Shahramian Sorin P. Voinigescu Anthony Chan Carusone Department of Electrical & Computer Eng. University of Toronto Canada Introduction

More information

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet 77 GHz VCO for Car Radar Systems Preliminary Data Sheet Operating Frequency: 76-77 GHz Tuning Range > 1 GHz Output matched to 50 Ω Application in Car Radar Systems ESD: Electrostatic discharge sensitive

More information

A widely tunable continuous-time LPF for a direct conversion DBS tuner

A widely tunable continuous-time LPF for a direct conversion DBS tuner Vol.30, No.2 Journal of Semiconductors February 2009 A widely tunable continuous-time LPF for a direct conversion DBS tuner Chen Bei( 陈备 ) 1,, Chen Fangxiong( 陈方雄 ) 1, Ma Heping( 马何平 ) 1, Shi Yin( 石寅 )

More information

Application Note 5011

Application Note 5011 MGA-62563 High Performance GaAs MMIC Amplifier Application Note 511 Application Information The MGA-62563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

Varactor-Tuned Oscillators. Technical Data. VTO-8000 Series

Varactor-Tuned Oscillators. Technical Data. VTO-8000 Series Varactor-Tuned Oscillators Technical Data VTO-8000 Series Features 600 MHz to 10.5 GHz Coverage Fast Tuning +7 to +13 dbm Output Power ± 1.5 db Output Flatness Hermetic Thin-film Construction Description

More information

Chlorophyll a/b-chlorophyll a sensor for the Biophysical Oceanographic Sensor Array

Chlorophyll a/b-chlorophyll a sensor for the Biophysical Oceanographic Sensor Array Intern Project Report Chlorophyll a/b-chlorophyll a sensor for the Biophysical Oceanographic Sensor Array Mary Ma Mentor: Zbigniew Kolber August 21 st, 2003 Introduction Photosynthetic organisms found

More information

LOGARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING

LOGARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING ARITHMIC PROCESSING APPLIED TO NETWORK POWER MONITORING Eric J Newman Sr. Applications Engineer in the Advanced Linear Products Division, Analog Devices, Inc., email: eric.newman@analog.com Optical power

More information

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators 6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Network Theory Broadband Circuit Design Fall 014 Lecture 13: Frequency Synthesizer Examples Sam Palermo Analog & Mixed-Signal Center Texas A&M University Agenda Frequency Synthesizer Examples Design

More information

THE SELF-BIAS PLL IN STANDARD CMOS

THE SELF-BIAS PLL IN STANDARD CMOS THE SELF-BIAS PLL IN STANDAD CMOS Miljan Nikolić, Milan Savić, Predrag Petković Laboratory for Electronic Design Automation, Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14.,

More information

ECEN 720 High-Speed Links: Circuits and Systems. Lab3 Transmitter Circuits. Objective. Introduction. Transmitter Automatic Termination Adjustment

ECEN 720 High-Speed Links: Circuits and Systems. Lab3 Transmitter Circuits. Objective. Introduction. Transmitter Automatic Termination Adjustment 1 ECEN 720 High-Speed Links: Circuits and Systems Lab3 Transmitter Circuits Objective To learn fundamentals of transmitter and receiver circuits. Introduction Transmitters are used to pass data stream

More information

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet MGA-853.1 GHz 3 V, 17 dbm Amplifier Data Sheet Description Avago s MGA-853 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent power and low noise figure for applications from.1 to

More information

+3V/+5V, Low-Power, 8-Bit Octal DACs with Rail-to-Rail Output Buffers

+3V/+5V, Low-Power, 8-Bit Octal DACs with Rail-to-Rail Output Buffers 19-1844; Rev 1; 4/1 EVALUATION KIT AVAILABLE +3V/+5V, Low-Power, 8-Bit Octal DACs General Description The are +3V/+5V single-supply, digital serial-input, voltage-output, 8-bit octal digital-toanalog converters

More information

A Low-Noise Frequency Synthesizer for Infrastructure Applications

A Low-Noise Frequency Synthesizer for Infrastructure Applications A Low-Noise Frequency Synthesizer for Infrastructure Applications Shayan Farahvash, William Roberts, Jake Easter, Rachel Wei, Dave Stegmeir, Li Jin RFMD, USA Outline Motivation Design Challenges VCO Capacitor

More information

CD V Low Power Subscriber DTMF Receiver. Description. Features. Ordering Information. Pinouts CD22204 (PDIP) TOP VIEW. Functional Diagram

CD V Low Power Subscriber DTMF Receiver. Description. Features. Ordering Information. Pinouts CD22204 (PDIP) TOP VIEW. Functional Diagram Semiconductor January Features No Front End Band Splitting Filters Required Single Low Tolerance V Supply Three-State Outputs for Microprocessor Based Systems Detects all Standard DTMF Digits Uses Inexpensive.4MHz

More information

EECS240 Spring Advanced Analog Integrated Circuits Lecture 1: Introduction. Elad Alon Dept. of EECS

EECS240 Spring Advanced Analog Integrated Circuits Lecture 1: Introduction. Elad Alon Dept. of EECS EECS240 Spring 2009 Advanced Analog Integrated Circuits Lecture 1: Introduction Elad Alon Dept. of EECS Course Focus Focus is on analog design Typically: Specs circuit topology layout Will learn spec-driven

More information

Application Note 5012

Application Note 5012 MGA-61563 High Performance GaAs MMIC Amplifier Application Note 5012 Application Information The MGA-61563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

INC. MICROWAVE. A Spectrum Control Business

INC. MICROWAVE. A Spectrum Control Business DRO Selection Guide DIELECTRIC RESONATOR OSCILLATORS Model Number Frequency Free Running, Mechanically Tuned Mechanical Tuning BW (MHz) +10 MDR2100 2.5-6.0 +10 6.0-21.0 +20 Free Running, Mechanically Tuned,

More information

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 98 Chapter-5 ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 99 CHAPTER-5 Chapter 5: ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION S.No Name of the Sub-Title Page

More information

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunication FINAL EXAMINATION. Session 1, ELEC3106 Electronics

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunication FINAL EXAMINATION. Session 1, ELEC3106 Electronics THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunication FINAL EXAMINATION Session 1, 2014 ELEC3106 Electronics TIME ALLOWED: 3 hours TOTAL MARKS: 100 TOTAL NUMBER OF QUESTIONS:

More information

A DESIGN EXPERIMENT FOR MEASUREMENT OF THE SPECTRAL CONTENT OF SUBSTRATE NOISE IN MIXED-SIGNAL INTEGRATED CIRCUITS

A DESIGN EXPERIMENT FOR MEASUREMENT OF THE SPECTRAL CONTENT OF SUBSTRATE NOISE IN MIXED-SIGNAL INTEGRATED CIRCUITS A DESIGN EXPERIMENT FOR MEASUREMENT OF THE SPECTRAL CONTENT OF SUBSTRATE NOISE IN MIXED-SIGNAL INTEGRATED CIRCUITS Marc van Heijningen, John Compiet, Piet Wambacq, Stéphane Donnay and Ivo Bolsens IMEC

More information

Linear Integrated Circuits

Linear Integrated Circuits Linear Integrated Circuits Single Slope ADC Comparator checks input voltage with integrated reference voltage, V REF At the same time the number of clock cycles is being counted. When the integrator output

More information

BALANCED MIXERS DESIGNED FOR RF

BALANCED MIXERS DESIGNED FOR RF BALANCED MIXERS DESIGNED FOR RF Janeta Stefcheva Sevova, George Vasilev Angelov, Marin Hristov Hristov ECAD Laboratory, Technical University of Sofia, 8 Kliment Ohsridski Str., 1797 Sofia, Bulgaria, Phone:

More information

(Refer Slide Time: 00:03:22)

(Refer Slide Time: 00:03:22) Analog ICs Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 27 Phase Locked Loop (Continued) Digital to Analog Converters So we were discussing

More information

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max Dual-band LNA Design for Wireless LAN Applications White Paper By: Zulfa Hasan-Abrar, Yut H. Chow Introduction Highly integrated, cost-effective RF circuitry is becoming more and more essential to the

More information

EXAM Amplifiers and Instrumentation (EE1C31)

EXAM Amplifiers and Instrumentation (EE1C31) DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science EXAM Amplifiers and Instrumentation (EE1C31) April 18, 2017, 9.00-12.00 hr This exam consists of four

More information

California Eastern Laboratories

California Eastern Laboratories California Eastern Laboratories AN143 Design of Power Amplifier Using the UPG2118K APPLICATION NOTE I. Introduction Renesas' UPG2118K is a 3-stage 1.5W GaAs MMIC power amplifier that is usable from approximately

More information

HA4600. Features. 480MHz, SOT-23, Video Buffer with Output Disable. Applications. Pinouts. Ordering Information. Truth Table

HA4600. Features. 480MHz, SOT-23, Video Buffer with Output Disable. Applications. Pinouts. Ordering Information. Truth Table TM Data Sheet June 2000 File Number 3990.6 480MHz, SOT-23, Video Buffer with Output Disable The is a very wide bandwidth, unity gain buffer ideal for professional video switching, HDTV, computer monitor

More information

Lecture 1, Introduction and Background

Lecture 1, Introduction and Background EE 338L CMOS Analog Integrated Circuit Design Lecture 1, Introduction and Background With the advances of VLSI (very large scale integration) technology, digital signal processing is proliferating and

More information

1 MHz to 10 GHz, 45 db Log Detector/Controller AD8319

1 MHz to 10 GHz, 45 db Log Detector/Controller AD8319 FEATURES Wide bandwidth: 1 MHz to 10 GHz High accuracy: ±1.0 db over temperature 45 db dynamic range up to 8 GHz Stability over temperature: ±0.5 db Low noise measurement/controller output VOUT Pulse response

More information

Effect of Aging on Power Integrity of Digital Integrated Circuits

Effect of Aging on Power Integrity of Digital Integrated Circuits Effect of Aging on Power Integrity of Digital Integrated Circuits A. Boyer, S. Ben Dhia Alexandre.boyer@laas.fr Sonia.bendhia@laas.fr 1 May 14 th, 2013 Introduction and context Long time operation Harsh

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.2

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.2 13.2 An MLSE Receiver for Electronic-Dispersion Compensation of OC-192 Fiber Links Hyeon-min Bae 1, Jonathan Ashbrook 1, Jinki Park 1, Naresh Shanbhag 2, Andrew Singer 2, Sanjiv Chopra 1 1 Intersymbol

More information

L10: Analog Building Blocks (OpAmps,, A/D, D/A)

L10: Analog Building Blocks (OpAmps,, A/D, D/A) L10: Analog Building Blocks (OpAmps,, A/D, D/A) Acknowledgement: Materials in this lecture are courtesy of the following sources and are used with permission. Dave Wentzloff 1 Introduction to Operational

More information

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1 19-1673; Rev 0a; 4/02 EVALUATION KIT MANUAL AVAILABLE 45MHz to 650MHz, Integrated IF General Description The are compact, high-performance intermediate-frequency (IF) voltage-controlled oscillators (VCOs)

More information

Course Project Topic: RF Down-Conversion Chain Due Dates: Mar. 24, Apr. 7 (Interim reports), Apr. 28 (Final report)

Course Project Topic: RF Down-Conversion Chain Due Dates: Mar. 24, Apr. 7 (Interim reports), Apr. 28 (Final report) Course Project Topic: RF Down-Conversion Chain Due Dates: Mar. 24, Apr. 7 (Interim reports), Apr. 28 (Final report) 1 Objective The objective of this project is to familiarize the student with the trade-offs

More information

Multiband multistandard direct-conversion TV tuner

Multiband multistandard direct-conversion TV tuner SPECIFICATION 1 FEATURES TSMC 0.18 um SiGe BiCMOS technology Direct conversion receiver A few number of external components 0.18 um SiGe BiCMOS technology Integrated 75 Ω input matched LNAs Integrated

More information

A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation

A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation WA 17.6: A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation Gu-Yeon Wei, Jaeha Kim, Dean Liu, Stefanos Sidiropoulos 1, Mark Horowitz 1 Computer Systems Laboratory, Stanford

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

PART TOP VIEW V EE 1 V CC 1 CONTROL LOGIC

PART TOP VIEW V EE 1 V CC 1 CONTROL LOGIC 19-1331; Rev 1; 6/98 EVALUATION KIT AVAILABLE Upstream CATV Driver Amplifier General Description The MAX3532 is a programmable power amplifier for use in upstream cable applications. The device outputs

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

Data Sheet. MGA GHz 3 V, 14 dbm Amplifier. Description. Features. Applications. Simplified Schematic

Data Sheet. MGA GHz 3 V, 14 dbm Amplifier. Description. Features. Applications. Simplified Schematic MGA-8153.1 GHz 3 V, 1 dbm Amplifier Data Sheet Description Avago s MGA-8153 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent power and low noise figure for applications from.1 to

More information

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs.

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs. Frequency Synthesizers for RF Transceivers Domine Leenaerts Philips Research Labs. Purpose Overview of synthesizer architectures for RF transceivers Discuss the most challenging RF building blocks Technology

More information

AN increasing number of video and communication applications

AN increasing number of video and communication applications 1470 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 9, SEPTEMBER 1997 A Low-Power, High-Speed, Current-Feedback Op-Amp with a Novel Class AB High Current Output Stage Jim Bales Abstract A complementary

More information

A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20

A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20 A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20 Joseph Adut,Chaitanya Krishna Chava, José Silva-Martínez March 27, 2002 Texas A&M University Analog

More information

ECE 6770 FINAL PROJECT

ECE 6770 FINAL PROJECT ECE 6770 FINAL PROJECT POINT TO POINT COMMUNICATION SYSTEM Submitted By: Omkar Iyer (Omkar_iyer82@yahoo.com) Vamsi K. Mudarapu (m_vamsi_krishna@yahoo.com) MOTIVATION Often in the real world we have situations

More information

L9: Analog Building Blocks (OpAmps, A/D, D/A)

L9: Analog Building Blocks (OpAmps, A/D, D/A) L9: Analog Building Blocks (OpAmps, A/D, D/A) Courtesy of Dave Wentzloff. Used with permission. 1 Introduction to Operational Amplifiers v id in DC Model a v id LM741 Pinout out 10 to 15V Typically very

More information

SYNCHRONOUS detection is fundamental to many communications

SYNCHRONOUS detection is fundamental to many communications 1 A SiGe Bi 8-Channel Multi-Dithering, Sub-Microsecond Adaptive Controller Dimitrios N. Loizos, Member, IEEE, Paul P. Sotiriadis, Member, IEEE, and Gert Cauwenberghs, Senior Member, IEEE Abstract A SiGe

More information

L9: Analog Building Blocks (OpAmps,, A/D, D/A)

L9: Analog Building Blocks (OpAmps,, A/D, D/A) L9: Analog Building Blocks (OpAmps,, A/D, D/A) Acknowledgement: Dave Wentzloff Introduction to Operational Amplifiers DC Model Typically very high input resistance ~ 300KΩ v id in a v id out High DC gain

More information

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter MIC2193 4kHz SO-8 Synchronous Buck Control IC General Description s MIC2193 is a high efficiency, PWM synchronous buck control IC housed in the SO-8 package. Its 2.9V to 14V input voltage range allows

More information

6.101 Introductory Analog Electronics Laboratory

6.101 Introductory Analog Electronics Laboratory 6.101 Introductory Analog Electronics Laboratory Spring 2015, Instructor Gim Hom Project Proposal Transmitting, Receiving, and Interpreting ECG Waveforms Daniel Moon (dhmoon@mit.edu) Thipok (Ben) Rak-amnouykit

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

Adaptive optics two-photon fluorescence microscopy

Adaptive optics two-photon fluorescence microscopy Adaptive optics two-photon fluorescence microscopy Yaopeng Zhou 1, Thomas Bifano 1 and Charles Lin 2 1. Manufacturing Engineering Department, Boston University 15 Saint Mary's Street, Brookline MA, 02446

More information