Large Analog Bandwidth Recorder and Digitizer with Ordered Readout (Perf, Results)

Size: px
Start display at page:

Download "Large Analog Bandwidth Recorder and Digitizer with Ordered Readout (Perf, Results)"

Transcription

1 Large Analog Bandwidth Recorder and Digitizer with Ordered Readout (Perf, Results) Gary S. Varner University of Hawai i U Chicago Precision Timing Mtg Dec.07

2 Topics Background to WFS Development Antarctic Impulsive Transient Antenna (ANITA) LABRADOR ASIC 6GSa/s ~11ps Improved Performance Super Flavor Factory PID Buffered LABRADOR (BLAB) Technique Limits Streak Camera/Precision Timing Next Gen ASIC

3 Ice RF clarity: 1.2 km(!) attenuation length The ANITA Concept Typical balloon field of regard ~4km deep ice! Effective telescope aperture: ~250 km ev ~10 km 3 sr ev (Area of Antarctica ~ area of Moon)

4 ~7m Antarctic Impulsive Transient Antenna (ANITA) A demanding Application ~320ps Measured RF Transient (impulsive) Events ( MHz) GSa/s Completely solar powered (tight demands on power, few hundred W total) Sounds almost like a joke

5 Major Hurdles these ν are elusive No commercial waveform recorder solution (power/resolution) 3σ thermal noise fluctuations occur at MHz rates (need ~2.3σ) Without being able to record or trigger efficiently, there is no experiment

6 STRAW2 Chip 16 Channels of 256 deep SCA buckets Optimized for RF input Microstrip 50Ω Target input Bandwidth: >700MHz Record length: ns DACs Self-Triggered Recorder Analog Waveform (STRAW) 8192 analog storage cells 32x256 SCA bank Trigger ADC Self-Triggering: -LL and HL (adj.) for each channel -Multiplicity trigger for LL hits On-chip ADC: 12-bit, >2MSPS Sampling Rate: 1-3GSa/s (adj.) Sampling Rates >~4GSa/s possible w/ 0.25μm process External option: MUXed Analog out Die:~2.5mm 2 scalers

7 STRAW1 STRAW2 Trig Comb. Sampling LABRADOR2 STRAW3 GLUE LABRADOR Intelligent Design? SHORT2 SATURN LABRADOR3

8 9 x 260 samples = 2340 storage cells LABRADOR(3) architecture 4 RF inputs timing control 5 RF inputs SCA bank: 4 rows x 260 columns 12 Wilkinson ADC Convert all 2340 samples in parallel, transfer out on common 12-bit data bus SCA bank: 5 rows x 260 columns tail samples

9 Large Analog Bandwidth Recorder and Digitizer with Ordered Readout [LABRADOR] Straight Shot RF inputs Switched Capacitor Array (SCA) Massively parallel ADC array Similar to other WFS ASICs analog bandwidth 8+1 chan. * samples Common STOP acquisition 3.2 x 2.9 mm Conversion in 31μs (all 2340 samples) Data transfer takes 80μs Ready for next event in <150μs Random access:

10 XOR Look-ahead logic (sample on rising/falling edge) Sampling rates up to 4 GSa/s with voltage overdrive LABRADOR Sampling Speed 2.6GSa/s

11 SURF #5 Pedestal and Pedestal Stability AC coupled input ΔT = 17C (δt ~ 24hours) ~0.052mV/C

12 Wilkinson ADC No missing codes Linearity as good as can make ramp Can bracket range of interest Run count during ramp LABRADOR Digitization 12-bit ADC Excellent linearity Basically as good as can make current source/comparator Comparator ~ V; 133MHz GCC max (~31us)

13 Sampling Rate Temperature Dependence Qualitative agreement obtained in SPICE

14 LABRADOR (SURF board) Noise 1.3mV 10 real bits (1.3V/1.3mV noise) (2.5V VDD, rails smaller) Ch.9 Vped noise

15 Bandwidth Limitations (LAB1 example) f 3dB = 1/2πZC LAB3 move R term to front For 1.2GHz, C <~ 2pF (NB input protection diode ~10pF) Minimize C, (C drain not negligible x260)

16 Transient Impulse FFT Difference Bandwidth Evaluation f 3dB ~> 1.2GHz Frequency [GHz]

17 Response for RF Signals 2.6 GSa/s, peak fit boardlevel noise interference)

18 Cross-talk Amplitude 4 RF inputs timing control 5 RF inputs SCA bank: 4 rows x 260 columns SCA bank: 5 rows x 260 columns Qualitative agreement obtained in SPICE

19 Cross-talk Phase 4 RF inputs timing control 5 RF inputs SCA bank: 4 rows x 260 columns SCA bank: 5 rows x 260 columns Qualitative agreement obtained in SPICE

20 Timing Calibration Constants T 0!= T 1!= ½ T Separate wrap time constants Need to determine Phase 0, 1 interleaving In general every Δt0, Δt1 different

21 Timing Calibrations (1) High-low!= Low-high Wrap-around time difference

22 600MHz Clock Timing Calibrations (2) 384.6ps nom. Bin-by-bin

23 MC study of Calibration Technique Estimated Limit

24 Jiwoo Nam UC Irvine

25 Ground pulser Calibration with Realistic Signals Bore hole pulser Ice 80m thick and messy Dipole

26 Validation data: borehole pulser RF Impulses from borehole antenna at Williams field Detected at payload out to km, consistent with expected sensitivity Allows trigger & pointing calibration

27 SURFv3 Board Flies in space all components heat sunk Programming/ Monitor Header J4 to TURF LAB3 (SURF = Sampling Unit for RF) (TURF = Trigger Unit for RF) J1 to CPU RF Inputs Trigger Inputs Timing Calibrations!

28 ~47ps due to Time Ref. Passing (33MHz clock) Jiwoo Nam Natl Taiwan U.

29 After full calibration 100 s km downrange

30 If simply scale: 35cm 350nm (10 6 ) 40ps 40as! Why doesn t this work? BW 1GHz 1PHz N γ ~ Infty. Anyway, only talking about factor 40 Photonics in its infancy direct O-O

31 oscilloscope on a chip High Speed sampling 2 GSa/s, 1GHz ABW Tektronics Scope 2.56 GSa/s LAB Sampling speed Bits/ENOBs Power/Chan. LABRADOR GSa/s 12/9-10 <= 0.05W Commercial 2 GSa/s 8/ W Cost/Ch. $10 (vol) > 1k$

32 Deeper sampling Desired for Extensive radio array for UHE neutrino PID Upgrade precision timing ev νμ ~2 km

33 Buffered LABRADOR (BLAB1) ASIC Single channel 64k samples deep, same SCA technique as LAB, no ripple pointer Multi-MSa/s to Multi- GSa/s 12-64us to form Global trigger 3mm x 2.8mm, TSMC 0.25um Arranged as 128 x 512 samples Simultaneous Write/Read

34 Buffered LABRADOR (BLAB1) ASIC 10 real bits of dynamic range, single-shot Measured Noise 1.45mV 1.6V dynamic range

35 BLAB1 Sampling Speed Can store 13us at 5GSa/s (before wrapping around) 200ps/sample Single sample: 200/SQRT(12) ~ 58ps But, have Complete Waveform Information

36 BLAB1 Analog Bandwidth -3dB ~300MHz A few fixes (lower power, higher BW) Multi-channel: BLAB2 (16), TARGET (16 w/ gain), LARC (32) and PrX

37 voltage (mv) Typical single p.e. signal [Burle] Overshoot/ringing Using RF Amplifier System (~43dB gain) time (ns)

38 Temperature Dependence Sample 6GSa/s aperature (172ps = 5.8GSa/s) 0.2%/degree C (can correct) Matches SPICE simulation Even better, can delay lock

39 400MHz sine wave Calibration (1) Linear variation across chip Due to IR drop in feed voltage (can be improved) Storage Cell Number 6GSa/s Extracted Period [ns]

40 400MHz sine wave Calibration (2) 6GSa/s After basic linearity and bin-by-bin correction ~11ps intrinsic (~8ps possible) 15ps Linearity only Extracted Period [ns]

41 ~30ns pulse pair 6GSa/s 30ns Bench Test timing ~27ps for two edges ~20ps for each edge

42 Temperature Dependence Sample 6GSa/s aperature (172ps = 5.8GSa/s) 0.2%/degree C (can correct) Matches SPICE simulation

43 Courtesy: J. Buckley (Wash U. St. Louis) BLAB2 Initial Target: New f-dirc Readout System Gen. 0 Prototype (LAB3) Target Submission: Feb. 11, 2008

44 Interleaved Operation Single shot uncalibrated room for improvement push BW higher LARC ASIC: 64 5 GSa/s = 384GSa/s Streak camera type applications ps timing If jitter due to random noise, more samples better

45 Courtesy: J. Va vra (SLAC) Limitations 1: Analog Bandwidth Difficult to couple in Large BW (C is deadly) At what point stop getting useful information? f 3dB = 1/2πZC

46 voltage (mv) Limitations 2: Interpolation Error Tied to Bandwidth Issue Is 10 samples/ns along leading edge enough? Need 100:1 interpolation for 1ps And aperature jitter at < 1ps time (ns)

47 T0 [ns] Limitations 3: Systematic Errors Experience with running Belle TOF System for ~ a decade Any jitter/shift/jump in reference time is fatal? (differential measurements) Experiment ps jump! T0 [ns] T0 [ns] Experiment 19 Run number Run-by-run T 0 Run number

48 Limitations 4: Leakage Current Need small C for Input Coupling Can Improve? (readout faster)

49 Limitations 5: ktc Noise Need small C for Input Coupling

50 Summary Exciting Stuff! 30ps (PET) seems quite feasible without TDC (fast discriminator) Timing Systematics! 1ps resolution, need to pull out all of the stops

51 Back-up slides

52 600MHz sine and 2.6GSa/s well matched Difference from Exact zero-crossing time [ns] 10ps difference typ. (ideal) Sine amplitude Sine amplitude Zero crossing comparison Time [ps] Zero crossing comparison Time [ps] 600MHz sine LAB3 600MHz sine LAB3

53 600MHz sine and 2.6GSa/s well matched Positive ½ cycle ~11ps difference typ. (ideal) Difference from Exact Period time [ns]

54 Using Ideal Extraction Use both ½ cycles ~5ps difference typ. (ideal bins) Extracted Bin Width [ns]

55 Running Average converges very quickly Use both ½ cycles ~5ps difference typ. (ideal bins) Bin Sample Number Estimated Bin Width [ns]

56 Running Average converges very quickly Due to input function, Convergence not 1/sqrt(n) Error on Bin Width [%] Bin Sample Number

57 However, when input +/- 10% bin scatter Fast convergence, but with offsets Error in Bin Width [ns] Number of Samples in Bin

58 Impact on estimation (+/- 10% true difference) Difference from Actual Bin Width [ns] About <bin> ~19ps Difference from true Width, referenced to mean [ns]

59 Data: Bin-by-bin Calibration Constants ~34 ps RMS Bin width in Calibration File [ps]

60 General trend larger intrinsic spread [+/- 10% flat] Determined bin width including error [ns]

61 Consider Slightly larger input spread [+/- 15% flat] 36ps [MC] vs. 34ps [data] Data Determined bin width including error [ns]

62 However, the errors are non-negligible Sqrt(36^2-28^2) ~ 24.8 ps Difference from True Bin Width [ns]

63 Cross-check: BLAB1 ASIC Brute Force occupancy method 100k Events 6.0 GSa/s

64 Cross-check: BLAB1 ASIC Brute Force occupancy method 100k Events 6.0 GSa/s Same TSMC Process as LAB3 General slope Across ASIC (expected) SCA Sample number (512 per row)

65 6GSa/s 125MHz sine wave Pre-calibration

66 ANITA Payload

67 ROBUST TRACR DOM-MB Metal Plate Sealing the DRM Antennas DRM electronics Surface Test Metal can /w electronics

Ice Radio Sampler (IRS) & Buffered LABRADOR #3 (BLAB3) Preliminary Specification Review. Gary S. Varner Internal ID Lab Review, 10 AUG 09

Ice Radio Sampler (IRS) & Buffered LABRADOR #3 (BLAB3) Preliminary Specification Review. Gary S. Varner Internal ID Lab Review, 10 AUG 09 Ice Radio Sampler (IRS) & Buffered LABRADOR #3 (BLAB3) Preliminary Specification Review Gary S. Varner Internal ID Lab Review, 10 AUG 09 Goals for both ASICs Confirm Design Specifications Table Listing

More information

ANITA ROSS Trigger/Digitizer/DAQ. Gary S. Varner University of Hawai, i, Manoa ANITA Collaboration JPL March 2004

ANITA ROSS Trigger/Digitizer/DAQ. Gary S. Varner University of Hawai, i, Manoa ANITA Collaboration JPL March 2004 ANITA ROSS Trigger/Digitizer/DAQ Gary S. Varner University of Hawai, i, Manoa ANITA Collaboration Meeting @ JPL March 2004 Overview System overview Reiterate, with ROSS simplifications ROSS trigger descope

More information

Station Overview, ARA Trigger & Digitizer

Station Overview, ARA Trigger & Digitizer Station Overview, ARA Trigger & Digitizer Station geometry Triggering Overview Trigger Simulation Geometrical constraints Trigger rates Digitization & Data rates Gary S. Varner ARA Workshop in Honolulu,

More information

SalSA Readout: GEISER & Digitizers. Gary S. Varner Univ. of Hawaii February 2005

SalSA Readout: GEISER & Digitizers. Gary S. Varner Univ. of Hawaii February 2005 SalSA Readout: GEISER & Digitizers Gary S. Varner Univ. of Hawaii February 2005 Outline Transient Recording Have explored 3 techniques through prototype measurement stage For more than a year have been

More information

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS

A 4 Channel Waveform Sampling ASIC in 130 nm CMOS A 4 Channel Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura, G. Varner University of Hawai I Large Area Picosecond

More information

Buffered LABRADOR (BLAB3) Design Review. Gary S. Varner 4 NOV 09

Buffered LABRADOR (BLAB3) Design Review. Gary S. Varner 4 NOV 09 Buffered LABRADOR (BLAB3) Design Review Gary S. Varner 4 NOV 09 Baseline confirmation Goals for today Ice Radio Sampler (IRS) as sampling/storage array basis High rate/long latency architecture Review

More information

A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS

A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS A 4-Channel Fast Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, M. Bogdan, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura, G. Varner University of Hawai I

More information

PoS(PD07)026. Compact, Low-power and Precision Timing Photodetector Readout. Gary S. Varner. Larry L. Ruckman. Jochen Schwiening, Jaroslav Va vra

PoS(PD07)026. Compact, Low-power and Precision Timing Photodetector Readout. Gary S. Varner. Larry L. Ruckman. Jochen Schwiening, Jaroslav Va vra Compact, Low-power and Precision Timing Photodetector Readout Dept. of Physics and Astronomy, University of Hawaii E-mail: varner@phys.hawaii.edu Larry L. Ruckman Dept. of Physics and Astronomy, University

More information

ASICs for Particle and Astroparticle Physics. Gary S. Varner University of Hawai i SLAC Instrumentation Seminar 7/11/07

ASICs for Particle and Astroparticle Physics. Gary S. Varner University of Hawai i SLAC Instrumentation Seminar 7/11/07 ASICs for Particle and Astroparticle Physics Gary S. Varner University of Hawai i SLAC Instrumentation Seminar 7/11/07 Topics RF Detection of UHE Neutrinos Antarctic Impulsive Transient Antenna IceRay

More information

A Fast Waveform-Digitizing ASICbased DAQ for a Position & Time Sensing Large-Area Photo-Detector System

A Fast Waveform-Digitizing ASICbased DAQ for a Position & Time Sensing Large-Area Photo-Detector System A Fast Waveform-Digitizing ASICbased DAQ for a Position & Time Sensing Large-Area Photo-Detector System Eric Oberla on behalf of the LAPPD collaboration PHOTODET 2012 12-June-2012 Outline LAPPD overview:

More information

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology 2009 IEEE Nuclear Science Symposium, Orlando, Florida, October 28 th 2009 Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch

More information

arxiv: v2 [physics.ins-det] 5 May 2008

arxiv: v2 [physics.ins-det] 5 May 2008 arxiv:0802.2278v2 [physics.ins-det] 5 May 2008 The first version Buffered Large Analog Bandwidth (BLAB1) ASIC for high luminosity collider and extensive radio neutrino detectors Abstract L. Ruckman a,

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information

Analogue to Digital Conversion

Analogue to Digital Conversion Analogue to Digital Conversion Turns electrical input (voltage/current) into numeric value Parameters and requirements Resolution the granularity of the digital values Integral NonLinearity proportionality

More information

ANITA SMEX Digitizer/DAQ. Gary S. Varner University of Hawai, i, Manoa ANITA Collaboration JPL March 2004

ANITA SMEX Digitizer/DAQ. Gary S. Varner University of Hawai, i, Manoa ANITA Collaboration JPL March 2004 ANITA SMEX Digitizer/DAQ Gary S. Varner University of Hawai, i, Manoa ANITA Collaboration Meeting @ JPL March 2004 Overview System overview SMEX Trigger items covered by Andre ROSS descope in Part II Summary

More information

Transmission-Line Readout with Good Time and Space Resolution for Large-Area MCP-PMTs

Transmission-Line Readout with Good Time and Space Resolution for Large-Area MCP-PMTs Transmission-Line Readout with Good Time and Space Resolution for Large-Area MCP-PMTs Fukun Tang (UChicago) C. Ertley, H. Frisch, J-F. Genat, Tyler Natoli (UChicago) J. Anderson, K. Byrum, G. Drake, E.

More information

Analogue to Digital Conversion

Analogue to Digital Conversion Analogue to Digital Conversion Turns electrical input (voltage/current) into numeric value Parameters and requirements Resolution the granularity of the digital values Integral NonLinearity proportionality

More information

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC Jean-Francois Genat Thanh Hung Pham on behalf of W. Da Silva 1, J. David 1, M. Dhellot 1, D. Fougeron 2, R. Hermel 2, J-F. Huppert

More information

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS 10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu*, Andy Burstein**, Mehrdad Heshami*** Agilent Technologies, Palo Alto, CA *Agilent Technologies, Colorado Springs,

More information

CATIROC a multichannel front-end ASIC to read out the SPMT system of the JUNO experiment

CATIROC a multichannel front-end ASIC to read out the SPMT system of the JUNO experiment CATIROC a multichannel front-end ASIC to read out the SPMT system of the JUNO experiment Dr. Selma Conforti (OMEGA/IN2P3/CNRS) OMEGA microelectronics group Ecole Polytechnique & CNRS IN2P3 http://omega.in2p3.fr

More information

Development of a sampling ASIC for fast detector signals

Development of a sampling ASIC for fast detector signals Development of a sampling ASIC for fast detector signals Hervé Grabas Work done in collaboration with Henry Frisch, Jean-François Genat, Eric Oberla, Gary Varner, Eric Delagnes, Dominique Breton. Signal

More information

J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene. C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven

J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene. C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven Chronopixe status J. E. Brau, N. B. Sinev, D. M. Strom University of Oregon, Eugene C. Baltay, H. Neal, D. Rabinowitz Yale University, New Haven EE work is contracted to Sarnoff Corporation 1 Outline of

More information

M8190A 12 GSa/s Arbitrary Waveform Generator

M8190A 12 GSa/s Arbitrary Waveform Generator M8190A 12 GSa/s Arbitrary Waveform Generator March 1 st Question and Answer session 1. How much are the instruments? The starting price is $78,000 containing o 1 channel option with $55,000 o 14 bit option

More information

A correlation-based timing calibration and diagnostic technique for fast digitizing ASICs

A correlation-based timing calibration and diagnostic technique for fast digitizing ASICs . Physics Procedia (212) 1 8 Physics Procedia www.elsevier.com/locate/procedia TIPP 211 - Technology and Instrumentation in Particle Physics 211 A correlation-based timing calibration and diagnostic technique

More information

SalSA Readout: An update on architectures. Gary S. Varner Univ. of Hawaii May 2005

SalSA Readout: An update on architectures. Gary S. Varner Univ. of Hawaii May 2005 SalSA Readout: An update on architectures Gary S. Varner Univ. of Hawaii May 2005 Update since Feb. Mtg @ SLAC Considering 4 schemes: In hole (D RITOS based): GEISER type 100bT type, trigger packets sent

More information

Picosecond time measurement using ultra fast analog memories.

Picosecond time measurement using ultra fast analog memories. Picosecond time measurement using ultra fast analog memories. Dominique Breton a, Eric Delagnes b, Jihane Maalmi a acnrs/in2p3/lal-orsay, bcea/dsm/irfu breton@lal.in2p3.fr Abstract The currently existing

More information

Belle Monolithic Thin Pixel Upgrade -- Update

Belle Monolithic Thin Pixel Upgrade -- Update Belle Monolithic Thin Pixel Upgrade -- Update Gary S. Varner On Behalf of the Pixel Gang (Marlon, Fang, ) Local Belle Meeting March 2004 Univ. of Hawaii Today s delta Have shown basic scheme before Testing

More information

Final Results from the APV25 Production Wafer Testing

Final Results from the APV25 Production Wafer Testing Final Results from the APV Production Wafer Testing M.Raymond a, R.Bainbridge a, M.French b, G.Hall a, P. Barrillon a a Blackett Laboratory, Imperial College, London, UK b Rutherford Appleton Laboratory,

More information

CERTIFICATE OF CALIBRATION

CERTIFICATE OF CALIBRATION CERTIFICATE OF CALIBRATION Issued by: Pico Technology Ltd. Certificate Number: 9999 of: James House, Colmworth Business Park, St. Neots, Cambridgeshire, Signature: PE19 8YP UNITED KINGDOM Tel: +44 (0)

More information

Electronic Readout System for Belle II Imaging Time of Propagation Detector

Electronic Readout System for Belle II Imaging Time of Propagation Detector Electronic Readout System for Belle II Imaging Time of Propagation Detector Dmitri Kotchetkov University of Hawaii at Manoa for Belle II itop Detector Group March 3, 2017 Barrel Particle Identification

More information

PID summary. J. Va vra, SLAC. - Barrel PID - Forward PID

PID summary. J. Va vra, SLAC. - Barrel PID - Forward PID PID summary J. Va vra, SLAC - Barrel PID - Forward PID Barrel PID FDIRC progress (SLAC, Maryland, Hawaii, Orsay, Padova) New FDIRC optics ordered. FDIRC mechanical design for the CRT test is in progress.

More information

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment K. Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II TOP group 5th International Workshop on New

More information

E. Delagnes 1 H. Grabas 1 D. Breton 2 J Maalmi 2

E. Delagnes 1 H. Grabas 1 D. Breton 2 J Maalmi 2 REACHING A FEW PS PRECISION WITH THE 16-CHANNEL DIGITIZER AND TIMESTAMPER SAMPIC ASIC E. Delagnes 1 H. Grabas 1 D. Breton 2 J Maalmi 2 1 CEA/IRFU Saclay 2 CNRS/IN2P3/LAL Orsay This work has been funded

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE MICHAEL PETERS. B.S., Kansas State University, 2009 A REPORT

A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE MICHAEL PETERS. B.S., Kansas State University, 2009 A REPORT A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE by MICHAEL PETERS B.S., Kansas State University, 2009 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department

More information

PicoSource PG900 Series

PicoSource PG900 Series USB differential pulse generators Three PicoSource models Integrated 60 ps pulse outputs: PG911 Tunnel diode 40 ps pulse heads: PG912 Both output types: PG914 Integrated pulse outputs Differential with

More information

SAM (Swift Analogue Memory): a new GHz sampling ASIC for the HESS-II Front-End Electronics.

SAM (Swift Analogue Memory): a new GHz sampling ASIC for the HESS-II Front-End Electronics. SAM (Swift Analogue Memory): a new GHz sampling ASIC for the HESS-II Front-End Electronics. E. Delagnes 1, Y. Degerli 1, P. Goret 1, P. Nayman 2, F. Toussenel 2, P. Vincent 2 1 DAPNIA, CEA/Saclay 2 IN2P3/LPNHE

More information

SPT Bit, 250 MSPS A/D Converter with Demuxed Outputs

SPT Bit, 250 MSPS A/D Converter with Demuxed Outputs 8-Bit, 250 MSPS A/D Converter with Demuxed Outputs Features TTL/CMOS/PECL input logic compatible High conversion rate: 250 MSPS Single +5V power supply Very low power dissipation: 425mW 350 MHz full power

More information

Four-Channel Sample-and-Hold Amplifier AD684

Four-Channel Sample-and-Hold Amplifier AD684 a FEATURES Four Matched Sample-and-Hold Amplifiers Independent Inputs, Outputs and Control Pins 500 ns Hold Mode Settling 1 s Maximum Acquisition Time to 0.01% Low Droop Rate: 0.01 V/ s Internal Hold Capacitors

More information

AWG-GS bit 2.5GS/s Arbitrary Waveform Generator

AWG-GS bit 2.5GS/s Arbitrary Waveform Generator KEY FEATURES 2.5 GS/s Real Time Sample Rate 14-bit resolution 2 Channels Long Memory: 64 MS/Channel Direct DAC Out - DC Coupled: 1.6 Vpp Differential / 0.8 Vpp > 1GHz Bandwidth RF Amp Out AC coupled -10

More information

MODEL AND MODEL PULSE/PATTERN GENERATORS

MODEL AND MODEL PULSE/PATTERN GENERATORS AS TEE MODEL 12010 AND MODEL 12020 PULSE/PATTERN GENERATORS Features: 1.6GHz or 800MHz Models Full Pulse and Pattern Generator Capabilities Programmable Patterns o User Defined o 16Mbit per channel o PRBS

More information

SAMPULSE50GHz and SAMPULSE70GHzANT PULSER/SAMPLER DEMO BOARD

SAMPULSE50GHz and SAMPULSE70GHzANT PULSER/SAMPLER DEMO BOARD SAMPULSE50GHz and SAMPULSE70GHzANT PULSER/SAMPLER DEMO BOARD REV B. PRELIMINARY USER MANUAL 2/25/15 Figure 1. Connections to SAMPULSE50GHz (left) or SAMPULSE70GHzANT (right). INTRODUCTION: The SAMPULSE50GHz

More information

Analog Peak Detector and Derandomizer

Analog Peak Detector and Derandomizer Analog Peak Detector and Derandomizer G. De Geronimo, A. Kandasamy, P. O Connor Brookhaven National Laboratory IEEE Nuclear Sciences Symposium, San Diego November 7, 2001 Multichannel Readout Alternatives

More information

Another way to implement a folding ADC

Another way to implement a folding ADC Another way to implement a folding ADC J. Van Valburg and R. van de Plassche, An 8-b 650 MHz Folding ADC, IEEE JSSC, vol 27, #12, pp. 1662-6, Dec 1992 Coupled Differential Pair J. Van Valburg and R. van

More information

Q.P. Code : [ TURN OVER]

Q.P. Code : [ TURN OVER] Q.P. Code : 587801 8ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC70 6308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703193679392A86308ADF85B2CAF8DDC703

More information

Dual 500ns ADC User Manual

Dual 500ns ADC User Manual 7072 Dual 500ns ADC User Manual copyright FAST ComTec GmbH Grünwalder Weg 28a, D-82041 Oberhaching Germany Version 2.3, May 11, 2009 Copyright Information Copyright Information Copyright 2001-2009 FAST

More information

ADC Measurements PARISROC Chip. Selma Conforti Di Lorenzo OMEGA/LAL Orsay

ADC Measurements PARISROC Chip. Selma Conforti Di Lorenzo OMEGA/LAL Orsay ADC Measurements PARISROC Chip Selma Conforti Di Lorenzo OMEGA/LAL Orsay PARISROC ADC Measurements Ecole Microélectronique_11/16 octobre 2009 conforti@lal.in2p3.fr 2 TEST BOARD TEST BENCH ASIC FPGA USB

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

Front-End and Readout Electronics for Silicon Trackers at the ILC

Front-End and Readout Electronics for Silicon Trackers at the ILC 2005 International Linear Collider Workshop - Stanford, U.S.A. Front-End and Readout Electronics for Silicon Trackers at the ILC M. Dhellot, J-F. Genat, H. Lebbolo, T-H. Pham, and A. Savoy Navarro LPNHE

More information

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection

APPLICATION NOTE 3942 Optimize the Buffer Amplifier/ADC Connection Maxim > Design Support > Technical Documents > Application Notes > Communications Circuits > APP 3942 Maxim > Design Support > Technical Documents > Application Notes > High-Speed Interconnect > APP 3942

More information

Calibration technique for calibrating high speed equivalent time sampling scope using a characterized high speed photo diode

Calibration technique for calibrating high speed equivalent time sampling scope using a characterized high speed photo diode Calibration technique for calibrating high speed equivalent time sampling scope using a characterized high speed photo diode Motivation PNA-X Non-linear network analyzer application Measurement technique

More information

Model 310H Fast 800V Pulse Generator

Model 310H Fast 800V Pulse Generator KEY FEATURES Temperature Stability +/-5ppm 100 V to 800 V into 50 Ω

More information

A 3 Mpixel ROIC with 10 m Pixel Pitch and 120 Hz Frame Rate Digital Output

A 3 Mpixel ROIC with 10 m Pixel Pitch and 120 Hz Frame Rate Digital Output A 3 Mpixel ROIC with 10 m Pixel Pitch and 120 Hz Frame Rate Digital Output Elad Ilan, Niv Shiloah, Shimon Elkind, Roman Dobromislin, Willie Freiman, Alex Zviagintsev, Itzik Nevo, Oren Cohen, Fanny Khinich,

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

1GHz low voltage LNA, mixer and VCO

1GHz low voltage LNA, mixer and VCO DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from 800-1200MHz. The low-noise preamplifier has a

More information

Data Acquisition System for the Angra Project

Data Acquisition System for the Angra Project Angra Neutrino Project AngraNote 012-2009 (Draft) Data Acquisition System for the Angra Project H. P. Lima Jr, A. F. Barbosa, R. G. Gama Centro Brasileiro de Pesquisas Físicas - CBPF L. F. G. Gonzalez

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

Wideband Sampling by Decimation in Frequency

Wideband Sampling by Decimation in Frequency Wideband Sampling by Decimation in Frequency Martin Snelgrove http://www.kapik.com 192 Spadina Ave. Suite 218 Toronto, Ontario, M5T2C2 Canada Copyright Kapik Integration 2011 WSG: New Architectures for

More information

ANITA-Lite Trigger Object (ALTO Rev. B) User s Manual

ANITA-Lite Trigger Object (ALTO Rev. B) User s Manual ANITA-Lite Trigger Object (ALTO Rev. B) User s Manual Gary S. Varner, David Ridley, James Kennedy and Mary Felix Contact: varner@phys.hawaii.edu Instrumentation Development Laboratory Department of Physics

More information

High resolution photon timing with MCP-PMTs: a comparison of

High resolution photon timing with MCP-PMTs: a comparison of High resolution photon timing with MCP-PMTs: a comparison of commercial constant fraction discriminator (CFD) with ASIC-based waveform digitizers TARGET and WaveCatcher. D. Breton *, E. Delagnes **, J.

More information

781/ /

781/ / 781/329-47 781/461-3113 SPECIFICATIONS DC SPECIFICATIONS J Parameter Min Typ Max Units SAMPLING CHARACTERISTICS Acquisition Time 5 V Step to.1% 25 375 ns 5 V Step to.1% 2 35 ns Small Signal Bandwidth 15

More information

ECEN 720 High-Speed Links: Circuits and Systems

ECEN 720 High-Speed Links: Circuits and Systems 1 ECEN 720 High-Speed Links: Circuits and Systems Lab4 Receiver Circuits Objective To learn fundamentals of receiver circuits. Introduction Receivers are used to recover the data stream transmitted by

More information

Chapter 13: Comparators

Chapter 13: Comparators Chapter 13: Comparators So far, we have used op amps in their normal, linear mode, where they follow the op amp Golden Rules (no input current to either input, no voltage difference between the inputs).

More information

U1604A Handheld Oscilloscopes, 40 MHz

U1604A Handheld Oscilloscopes, 40 MHz Products & Services Technical Support Buy Industries About Agilent Search: All Test & Measurement Go United States Home >... > Oscilloscopes > U1600A Series handheld oscilloscopes (2 models) > U1604A Handheld

More information

Front-End electronics developments for CALICE W-Si calorimeter

Front-End electronics developments for CALICE W-Si calorimeter Front-End electronics developments for CALICE W-Si calorimeter J. Fleury, C. de La Taille, G. Martin-Chassard G. Bohner, J. Lecoq, S. Manen IN2P3/LAL Orsay & LPC Clermont http::/www.lal.in2p3.fr/technique/se/flc

More information

Characterizing High-Speed Oscilloscope Distortion A comparison of Agilent and Tektronix high-speed, real-time oscilloscopes

Characterizing High-Speed Oscilloscope Distortion A comparison of Agilent and Tektronix high-speed, real-time oscilloscopes Characterizing High-Speed Oscilloscope Distortion A comparison of Agilent and Tektronix high-speed, real-time oscilloscopes Application Note 1493 Table of Contents Introduction........................

More information

Getting the most out of your Measurements Workshop. Mike Schnecker

Getting the most out of your Measurements Workshop. Mike Schnecker Getting the most out of your Measurements Workshop Mike Schnecker Agenda Oscilloscope Basics Using a RTE1000 Series Oscilloscope. Probing Basics Passive probe compensation Ground lead effects Vertical

More information

Contents. Why waveform? Waveform digitizer : Domino Ring Sampler CEX Beam test autumn 04. Summary

Contents. Why waveform? Waveform digitizer : Domino Ring Sampler CEX Beam test autumn 04. Summary Contents Why waveform? Waveform digitizer : Domino Ring Sampler CEX Beam test data @PSI autumn 04 Templates and time resolution Pulse Shape Discrimination Pile-up rejection Summary 2 In the MEG experiment

More information

A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20

A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20 A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20 Joseph Adut,Chaitanya Krishna Chava, José Silva-Martínez March 27, 2002 Texas A&M University Analog

More information

Preliminary simulation study of the front-end electronics for the central detector PMTs

Preliminary simulation study of the front-end electronics for the central detector PMTs Angra Neutrino Project AngraNote 1-27 (Draft) Preliminary simulation study of the front-end electronics for the central detector PMTs A. F. Barbosa Centro Brasileiro de Pesquisas Fsicas - CBPF, e-mail:

More information

U1571A Ni-MH Battery Pack for U1600A Handheld Oscilloscopes

U1571A Ni-MH Battery Pack for U1600A Handheld Oscilloscopes United States Home >... > Oscilloscope Accessories > U1600 Series Oscilloscope Accessories > U1571A Ni-MH Battery Pack for U1600A Handheld Oscilloscopes Key Specifications Features Ni-MH Battery Pack,

More information

SiPMs for solar neutrino detector? J. Kaspar, 6/10/14

SiPMs for solar neutrino detector? J. Kaspar, 6/10/14 SiPMs for solar neutrino detector? J. Kaspar, 6/0/4 SiPM is photodiode APD Geiger Mode APD V APD full depletion take a photo-diode reverse-bias it above breakdown voltage (Geiger mode avalanche photo diode)

More information

TAKE THE MYSTERY OUT OF PROBING. 7 Common Oscilloscope Probing Pitfalls to Avoid

TAKE THE MYSTERY OUT OF PROBING. 7 Common Oscilloscope Probing Pitfalls to Avoid TAKE THE MYSTERY OUT OF PROBING 7 Common Oscilloscope Probing Pitfalls to Avoid Introduction Understanding common probing pitfalls and how to avoid them is crucial in making better measurements. In an

More information

PC-OSCILLOSCOPE PCS500. Analog and digital circuit sections. Description of the operation

PC-OSCILLOSCOPE PCS500. Analog and digital circuit sections. Description of the operation PC-OSCILLOSCOPE PCS500 Analog and digital circuit sections Description of the operation Operation of the analog section This description concerns only channel 1 (CH1) input stages. The operation of CH2

More information

Switched Mode Power Supply Measurements

Switched Mode Power Supply Measurements Power Analysis 1 Switched Mode Power Supply Measurements AC Input Power measurements Safe operating area Harmonics and compliance Efficiency Switching Transistor Losses Measurement challenges Transformer

More information

Picking the Optimal Oscilloscope for Serial Data Signal Integrity Validation and Debug

Picking the Optimal Oscilloscope for Serial Data Signal Integrity Validation and Debug Picking the Optimal Oscilloscope for Serial Data Signal Integrity Validation and Debug Application Note 1556 Introduction In the past, it was easy to decide whether to use a real-time oscilloscope or an

More information

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker Robert P. Johnson Pavel Poplevin Hartmut Sadrozinski Ned Spencer Santa Cruz Institute for Particle Physics The GLAST Project

More information

8-Bit A/D Converter AD673 REV. A FUNCTIONAL BLOCK DIAGRAM

8-Bit A/D Converter AD673 REV. A FUNCTIONAL BLOCK DIAGRAM a FEATURES Complete 8-Bit A/D Converter with Reference, Clock and Comparator 30 s Maximum Conversion Time Full 8- or 16-Bit Microprocessor Bus Interface Unipolar and Bipolar Inputs No Missing Codes Over

More information

PicoSource PG900 Series USB differential pulse generators

PicoSource PG900 Series USB differential pulse generators USB differential pulse generators Three PicoSource models Integrated 60 ps pulse outputs: PG911 Tunnel diode 40 ps pulse heads: PG912 Both output types: PG914 Integrated pulse outputs Differential with

More information

Low voltage LNA, mixer and VCO 1GHz

Low voltage LNA, mixer and VCO 1GHz DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from 800-1200MHz. The low-noise preamplifier has a

More information

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011 Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs Josef Frisch Pohang, March 14, 2011 Room Temperature / Superconducting Very different pulse structures RT: single bunch or short bursts

More information

DS 6000 Specifications

DS 6000 Specifications DS 6000 Specifications All the specifications are guaranteed except the parameters marked with Typical and the oscilloscope needs to operate for more than 30 minutes under the specified operation temperature.

More information

ADC Board 4 Channel Notes September 29, DRAFT - May not be correct

ADC Board 4 Channel Notes September 29, DRAFT - May not be correct ADC Board 4 Channel Notes September 29, 2006 - DRAFT - May not be correct Board Features 4 Chan - 130MSPS 16 bit ADCs LTC2208 - Data clocked into 64k Sample FIFOs 1 buffered clock input to CPLD 1 buffered

More information

Fluke 5820A Oscilloscope Calibrator Specifications

Fluke 5820A Oscilloscope Calibrator Specifications Fluke 5820A Oscilloscope Calibrator Specifications Voltage Function Volt Function DC Signal Square Wave Signal 1 Load into 50Ω into 1 MΩ into 50Ω into 1 MΩ Amplitude Range 0V to ±6.6V 0V to ±130V ±1 mv

More information

Traceability for Oscilloscopes and Oscilloscope Calibrators

Traceability for Oscilloscopes and Oscilloscope Calibrators Traceability for Oscilloscopes and Oscilloscope Calibrators in relation to RF Voltage measurements Paul C. A. Roberts Fluke Precision Measurement PCAR Traceability for Scope Cal Mar 2006 1 Introduction

More information

AC : EVALUATING OSCILLOSCOPE SAMPLE RATES VS. SAM- PLING FIDELITY

AC : EVALUATING OSCILLOSCOPE SAMPLE RATES VS. SAM- PLING FIDELITY AC 2011-2914: EVALUATING OSCILLOSCOPE SAMPLE RATES VS. SAM- PLING FIDELITY Johnnie Lynn Hancock, Agilent Technologies About the Author Johnnie Hancock is a Product Manager at Agilent Technologies Digital

More information

Development of TOP counter for Super B factory

Development of TOP counter for Super B factory 2009/5/11-13 Workshop on fast Cherenkov detectors - Photon detection, DIRC design and DAQ Development of TOP counter for Super B factory - Introduction - Design study - Focusing system - Prototype development

More information

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique 1 A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique Masaya Miyahara and Akira Matsuzawa Tokyo Institute of Technology, Japan 2 Outline Motivation Design Concept

More information

Model 305 Synchronous Countdown System

Model 305 Synchronous Countdown System Model 305 Synchronous Countdown System Introduction: The Model 305 pre-settable countdown electronics is a high-speed synchronous divider that generates an electronic trigger pulse, locked in time with

More information

9 Channel, 5 GSPS Switched Capacitor Array DRS4

9 Channel, 5 GSPS Switched Capacitor Array DRS4 9 Channel, 5 GSPS Switched Capacitor Array DRS4 FEATURES Single 2.5 V power supply Sampling speed 7 MSPS to 5 GSPS 8+1 channels with 124 storage cells each Cascading of channels or chips allows deeper

More information

PARISROC, a Photomultiplier Array Integrated Read Out Chip

PARISROC, a Photomultiplier Array Integrated Read Out Chip PARISROC, a Photomultiplier Array Integrated Read Out Chip S. Conforti Di Lorenzo a, J.E. Campagne b, F. Dulucq a, C. de La Taille a, G. Martin-Chassard a, M. El Berni a, W. Wei c a OMEGA/LAL/IN2P3, centre

More information

Use of on-chip sampling sensor to evaluate conducted RF disturbances propagated inside an integrated circuit

Use of on-chip sampling sensor to evaluate conducted RF disturbances propagated inside an integrated circuit Use of on-chip sampling sensor to ealuate conducted RF disturbances propagated inside an integrated circuit M. Deobarro 1, 2 (PhD-2) B. Vrignon 1, S. Ben Dhia 2, A. Boyer 2 1 Freescale Semiconductor 2

More information

PoS(TWEPP-17)025. ASICs and Readout System for a multi Mpixel single photon UV imaging detector capable of space applications

PoS(TWEPP-17)025. ASICs and Readout System for a multi Mpixel single photon UV imaging detector capable of space applications ASICs and Readout System for a multi Mpixel single photon UV imaging detector capable of space applications Andrej Seljak a, Gary S. Varner a, John Vallerga b, Rick Raffanti c, Vihtori Virta a, Camden

More information

Noise Characteristics Of The KPiX ASIC Readout Chip

Noise Characteristics Of The KPiX ASIC Readout Chip Noise Characteristics Of The KPiX ASIC Readout Chip Cabrillo College Stanford Linear Accelerator Center What Is The ILC The International Linear Collider is an e- e+ collider Will operate at 500GeV with

More information

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC Hussein Fakhoury and Hervé Petit C²S Research Group Presentation Outline Introduction Basic concepts

More information

X-ray Detectors: What are the Needs?

X-ray Detectors: What are the Needs? X-ray Detectors: What are the Needs? Sol M. Gruner Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY 14853 smg26@cornell.edu 1 simplified view of the Evolution of Imaging Synchrotron

More information

Lecture 6: Electronics Beyond the Logic Switches Xufeng Kou School of Information Science and Technology ShanghaiTech University

Lecture 6: Electronics Beyond the Logic Switches Xufeng Kou School of Information Science and Technology ShanghaiTech University Lecture 6: Electronics Beyond the Logic Switches Xufeng Kou School of Information Science and Technology ShanghaiTech University EE 224 Solid State Electronics II Lecture 3: Lattice and symmetry 1 Outline

More information

Timing and cross-talk properties of Burle multi-channel MCP PMTs

Timing and cross-talk properties of Burle multi-channel MCP PMTs Timing and cross-talk properties of Burle multi-channel MCP PMTs Peter Križan University of Ljubljana and J. Stefan Institute RICH07, October 15-20, 2007 Contents Motivation for fast single photon detection

More information

A 45-nm SOI-CMOS Dual-PLL Processor Clock System for Multi-Protocol I/O

A 45-nm SOI-CMOS Dual-PLL Processor Clock System for Multi-Protocol I/O A 45-nm SOI-CMOS Dual-PLL Processor Clock System for Multi-Protocol I/O Dennis Fischette, Alvin Loke, Michael Oshima, Bruce Doyle, Roland Bakalski*, Richard DeSantis, Anand Thiruvengadam, Charles Wang,

More information

Lab Experiments. Boost converter (Experiment 2) Control circuit (Experiment 1) Power diode. + V g. C Power MOSFET. Load.

Lab Experiments. Boost converter (Experiment 2) Control circuit (Experiment 1) Power diode. + V g. C Power MOSFET. Load. Lab Experiments L Power diode V g C Power MOSFET Load Boost converter (Experiment 2) V ref PWM chip UC3525A Gate driver TSC427 Control circuit (Experiment 1) Adjust duty cycle D The UC3525 PWM Control

More information