ELECTRICAL TECHNOLOGY EET 103/4

Size: px
Start display at page:

Download "ELECTRICAL TECHNOLOGY EET 103/4"

Transcription

1 ELECTRICAL TECHNOLOGY EET 103/4 Define and analyze the rincile of transformer, its arameters and structure. Describe and analyze Ideal transformer, equivalent circuit, and hasor diagram Calculate and justify efficiency, losses, erformance 1

2 TRANSFORMERS (CHAPTER 22) 2

3 FUNCTION OF A TRANSFORMER The main function of an electrical ower transformer is to transfer electrical energy from one side (rimary) to the other side (secondary). The secondary current and voltage may or may not be at the same level as that of the rimary current and voltage. The energy is transferred by means of magnetic couling. The magnetic flux roduced by the current in rimary winding links the secondary winding. Since the flux varies with time, this flux linkage results in an induced voltage in the secondary winding. If the secondary winding is terminated with a load, the induced voltage will drive a secondary current through the load. 3

4 22.1 Introduction This chater covers: Mutual inductance that exists between coils of the same or different dimensions. Basic to the oeration of a transformer Three of the basic oerations of a transformer. ste u/down imedance matching isolation The dot convention. 4

5 22.2 Mutual Inductance Transformers are constructed of two coils laced so that the charging flux develoed by one will link the other. The coil to which the source is alied is called the rimary coil. The coil to which the load is alied is called the secondary coil. 5

6 22.2 Mutual Inductance 6

7 22.2 Mutual Inductance 7

8 22.2 Mutual Inductance 8

9 22.2 Mutual Inductance Primary transformer formula for voltage using Faraday s Law: Voltage induced across the rimary and selfinductance is directly related to the number of turns in the coil and the rate of change of magnetic flux linking the rimary coil: 9

10 22.2 Mutual Inductance The magnitude of e S, the voltage inducted across the secondary is determined by; where N S is the number of turns in the secondary winding and m is the ortion of the rimary flux P that links the secondary winding 10

11 22.2 Mutual Inductance If all of the flux linking the rimary links the secondary: The coefficient of couling (k) between two coils is determined by; 11

12 22.2 Mutual Inductance Since the maximum level of m is P, the coefficient of couling between two coils can never be greater than 1. Coils with low coefficients of couling are termed loosely couled. 12

13 22.2 Mutual Inductance Mutual inductance between two coils is roortional to the instantaneous change in flux linking one coil due to an instantaneous change in the current through the other coil. In terms of inductance of each coil and the coefficient of couling, the mutual inductance is: 13

14 22.3 The Iron-core Transformer 14

15 22.3 The Iron-core Transformer The iron core will serve to increase the coefficient of couling between the coils by increasing the mutual flux m.. The magnetic flux lines will always take the ath of least reluctance, which in this case is the iron core. When the current I through the rimary circuit of the iron-core transformer is a maximum, the flux m linking both coils is also a maximum. The flux is directly roortional to the current through the winding. 15

16 The Iron-core Transformer t I i sin 2 If; then; t m m sin By Faraday s law; t dt d N dt d N dt d N e m m sin Or; 90 sin cos t N t N e m m

17 22.3 The Iron-core Transformer The effective value of e is; E N m fn m Since the flux linking the secondary flux equals that of the rimary; E s N s m fn s m 17

18 22.3 The Iron-core Transformer Dividing; E E s N N s N N s a Transformation ratio For and ideal transformer; E Vg and Es VL Hence; V V g L N N s 18

19 22.3 The Iron-core Transformer The ratio of the magnitudes of the induced voltages is the same as the ratio of the corresonding turns: The ratio N /N s, usually reresented by the lowercase letter a, is referred to as the transformation ratio. If a < 1, the transformer is a ste-u transformer. If a > 1, the transformer is a ste-down transformer. 19

20 22.3 The Iron-core Transformer Examle22.2 (a) Find the maximum flux m. (b) Find the secondary turns N s. 20

21 22.3 The Iron-core Transformer Examle22.2 Solution (a) E fn m m E 4.44 fn mwb 21

22 22.3 The Iron-core Transformer Examle22.2 Solution (cont d) (b) E E s N N s N s N E E s turns 22

23 22.3 The Iron-core Transformer The rimary and secondary current of a transformer are related by the inverse ratio of the turns: 23

24 22.4 Reflected Imedance and Power The imedance of the rimary circuit of an ideal transformer is related to the imedance load by the transformation ratio If the load is caacitive or inductive, the reflected imedance will also be caacitive or inductive. For an ideal iron-core transformer; 24

25 22.4 Reflected Imedance and Power Examle22.3 (a) Find I and V g. (b) Find Z. 25

26 22.4 Reflected Imedance and Power Examle22.3 Solution (a) I I s N N s I N N s I s ma 26

27 22.4 Reflected Imedance and Power Examle22.3 Solution (cont d) (b) Z a 2 Z L a N N s Z k 128 k 27

28 22.4 Reflected Imedance and Power Examle 22.4 For the residential suly, determine (assuming a totally resistive load) the following : a. The value of R to ensure a balanced load b. the magnitude of I 1 and I 2 c. The line voltage V L d. The turn ratio a=n /N s 28

29 22.4 Reflected Imedance and Power Examle Solution a. P T = (10) (60) W+ 200 W W = 600 W W W = 2800 W P in = P out V I =V s I s =2800 W (urely resistive load) (2400 V) I = 2800 W and I =1.17 A R=V hase /I =2400 V/1.17 A = ohms 29

30 22.4 Reflected Imedance and Power Examle 22.4 Solution (cont d) b. P 1 =600 W = VI 1 = (120V) I 1 And I 1 = 5 A P 2 = 2000 W = VI 2 = (240W) I 2 And I 2 = 8.33 A c. V L 3V 1.73(2400V ) 4152V d. a N N s V V s 2400V 240V 10 30

31 22.6 Equivalent Circuit (Iron- core Transformer) For the non ideal or ractical iron-core transformer, the equivalent circuit aears below. Part of the equivalent circuit includes an ideal transformer. 31

32 22.6 Equivalent Circuit (Iron- core Transformer) 32

33 22.6 Equivalent Circuit (Iron- core Transformer) All elements in the iron-core transformer other than the ideal transformer are the elements of the transformer that contribute to the nonideal characteristics of the device. Resistance R and R s are simly the geometric resistance of the rimary and secondary windings. Leakage flux L and L s is a small amount of flux that links each coil but does not ass through the core. 33

34 22.6 Equivalent Circuit (Iron- core Transformer) The resistance R C reresents the hysteresis and eddy current losses (core losses) within the core due to an ac flux through the core. The inductance L m (magnetizing inductance) is the inductance associated with the magnetization of the core, that is, the establishing of the flux m in the core. The caacitances C P and C S and the lumed caacitances of the rimary and secondary circuits, resectively, and C w reresent the equivalent lumed caacitance between the windings of the transformer. 34

35 22.6 Equivalent Circuit (Iron- core Transformer) For ower transformer; Winding caacitances have negligible effects because of the low oerating frequency. Under normal oerating condition, normally i >> i m. Hence, C, C s, C w, R C and L m may be omitted. The aroximate equivalent circuit becomes as follows; 35

36 22.6 Equivalent Circuit (Iron- core Transformer) Reduced equivalent circuit for the nonideal ironcore transformer. 36

37 22.6 Equivalent Circuit (Iron- core Transformer) Normally, L and L s are reresented by their equivalent reactances; X and X s Ls L X X s 37

38 22.6 Equivalent Circuit (Iron- core Transformer) X X s X s and R s may be reflected into the rimary circuit using the relationshi; R 2 ' a and X ' a X s 2 R s 38

39 22.6 Equivalent Circuit (Iron- core Transformer) The equivalent circuit now becomes; 39

40 22.6 Equivalent Circuit (Iron- core Transformer) Combining the series resistances and reactances, results in the following circuit; R e R R ' X e X X ' 40

41 22.6 Equivalent Circuit (Iron- core Transformer) The load resistance R L may also be reflected into the rimary circuit; R ' a 2 L R L 41

42 22.6 Equivalent Circuit (Iron- By voltage divider rule; core Transformer) av L g R R jx e R i i e V R a 2 i R L is the load resistance reflected into the rimary circuit of the transformer 42

43 22.6 Equivalent Circuit (Ironcore Transformer) Examle 22.7 (a) Determine R e and X e. (b) Determine the magnitude V L and V g. 43

44 Equivalent Circuit (Iron- core Transformer) Examle 22.7 Solution (a) s e R a R R s e X a X X

45 22.6 Equivalent Circuit (Ironcore Transformer) Examle 22.7 Solution (b) av L I a 2 R L 2400 V V a V g I R e V L a 2 R L jx e V g j V 100 j 2452 V

Transformers. Dr. Gamal Sowilam

Transformers. Dr. Gamal Sowilam Transformers Dr. Gamal Sowilam OBJECTIVES Become familiar with the flux linkages that exist between the coils of a transformer and how the voltages across the primary and secondary are established. Understand

More information

Lab 4: The transformer

Lab 4: The transformer ab 4: The transformer EEC 305 July 8 05 Read this lab before your lab eriod and answer the questions marked as relaboratory. You must show your re-laboratory answers to the TA rior to starting the lab.

More information

Transformers 21.1 INTRODUCTION 21.2 MUTUAL INDUCTANCE

Transformers 21.1 INTRODUCTION 21.2 MUTUAL INDUCTANCE 21 Transformers 21.1 INTRODUCTION Chapter 12 discussed the self-inductance of a coil. We shall now examine the mutual inductance that exists between coils of the same or different dimensions. Mutual inductance

More information

Chapter 16: Mutual Inductance

Chapter 16: Mutual Inductance Chapter 16: Mutual Inductance Instructor: Jean-François MILLITHALER http://faculty.uml.edu/jeanfrancois_millithaler/funelec/spring2017 Slide 1 Mutual Inductance When two coils are placed close to each

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS (1) In 1831 Faraday in England and hennery in USA observed that an e.m.f is set u in conductor when it moves across a (a) Electric field (b) Magnetic field (c) Gravitational field

More information

SERIES RL CIRCUITS (1)

SERIES RL CIRCUITS (1) SEIES IUIS () ircuit above is a series network connected to an ac voltage source Need to find the hasor form of the total imedance of this combination he total imedance of this series combination is he

More information

13. Magnetically Coupled Circuits

13. Magnetically Coupled Circuits 13. Magnetically Coupled Circuits The change in the current flowing through an inductor induces (creates) a voltage in the conductor itself (self-inductance) and in any nearby conductors (mutual inductance)

More information

Chapter 12 Three Phase Circuits. Chapter Objectives:

Chapter 12 Three Phase Circuits. Chapter Objectives: Chater 12 Three Phase Circuits Chater Objectives: Be familiar with different three-hase configurations and how to analyze them. Know the difference between balanced and unbalanced circuits Learn about

More information

Chapter 2-1 Transformers

Chapter 2-1 Transformers Principles of Electric Machines and Power Electronics Chapter 2-1 Transformers Third Edition P. C. Sen Transformer application 1: power transmission Ideal Transformer Assumptions: 1. Negligible winding

More information

Table of Contents. Table of Figures. Table of Tables

Table of Contents. Table of Figures. Table of Tables Abstract The aim of this report is to investigate and test a transformer and check if it is good to use by doing the following tests continuity test, insulation test, polarity test, open circuit test,

More information

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits EE Circuits II Chapter 3 Magnetically Coupled Circuits Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers

More information

1 K Hinds 2012 TRANSFORMERS

1 K Hinds 2012 TRANSFORMERS 1 K Hinds 2012 TRANSFORMERS A transformer changes electrical energy of a given voltage into electrical energy at a different voltage level. It consists of two coils which are not electrically connected,

More information

Chapter 11 Thre r e e e P has a e e C i C rc r u c its t

Chapter 11 Thre r e e e P has a e e C i C rc r u c its t Chater 11 Three Phase Circuits Three hase Circuits An AC generator designed to develo a single sinusoidal voltage for each rotation of the shaft (rotor) is referred to as a single-hase AC generator. If

More information

(11) Bipolar Op-Amp. Op-Amp Circuits:

(11) Bipolar Op-Amp. Op-Amp Circuits: (11) O-Am Circuits: Biolar O-Am Learning Outcome Able to: Describe and analyze the dc and ac characteristics of the classic 741 biolar o-am circuit. eference: Neamen, Chater 13 11.0) 741 O-Am 11.1) Circuit

More information

Transformer. 1.2 Applications of Transformer. Why do we need transformer? 1.2 Applications of Transformer. Why do we need transformer?

Transformer. 1.2 Applications of Transformer. Why do we need transformer? 1.2 Applications of Transformer. Why do we need transformer? . ntroduction to Tranformer. DKT 3 CHAPTER Tranformer By Roemizi Abd Rahim Tranformer i a device that change ac electrical ower at one voltage level to ac electric ower at another voltage level through

More information

Review: Lecture 9. Instantaneous and Average Power. Effective or RMS Value. Apparent Power and Power Factor. Complex Power. Conservation of AC Power

Review: Lecture 9. Instantaneous and Average Power. Effective or RMS Value. Apparent Power and Power Factor. Complex Power. Conservation of AC Power Review: Lecture 9 Instantaneous and Average Power p( t) VmI m cos ( v i ) VmI m cos ( t v i ) Maximum Average Power Transfer Z L R L jx Effective or RMS Value I rms I m L R P * TH Apparent Power and Power

More information

Module T1 Electric Power Transmission

Module T1 Electric Power Transmission T1 Electric ower Transmission 134 Module T1 Electric ower Transmission rimary Author: James D. McCalley, Iowa State University Email Address: jdm@.iastate.edu Co-author: None rereuisite Cometencies: 1.

More information

EE2003 Circuit Theory Chapter 13 Magnetically Coupled Circuits

EE2003 Circuit Theory Chapter 13 Magnetically Coupled Circuits EE003 Circuit Theory Chapter 3 Magnetically Coupled Circuits Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Magnetically Coupled Circuit Chapter 3 3. What is

More information

ECE 241L Fundamentals of Electrical Engineering. Experiment 8 A-C Transformer, Magnetization & Hysteresis

ECE 241L Fundamentals of Electrical Engineering. Experiment 8 A-C Transformer, Magnetization & Hysteresis ECE 241L Fundamentals of Electrical Engineering Experiment 8 A-C Transformer, Magnetization & Hysteresis A. Objectives: I. Measure leakage inductance and resistance loss II. Measure magnetization inductance

More information

Chapter 7: Passive Filters

Chapter 7: Passive Filters EETOMAGNETI OMPATIBIITY HANDBOOK 1 hater 7: Passive Filters 7.1 eeat the analytical analysis given in this chater for the low-ass filter for an filter in shunt with the load. The and for this filter are

More information

Department of Electrical and Computer Engineering Lab 6: Transformers

Department of Electrical and Computer Engineering Lab 6: Transformers ESE Electronics Laboratory A Department of Electrical and Computer Engineering 0 Lab 6: Transformers. Objectives ) Measure the frequency response of the transformer. ) Determine the input impedance of

More information

Transformers. ELG3311: Habash,

Transformers. ELG3311: Habash, Transformers A transformer is a device that changes AC electric power at one voltage level to AC electric power at another voltage level through the action of magnetic field. t consists of two or more

More information

ECG 741 Power Distribution Transformers. Y. Baghzouz Spring 2014

ECG 741 Power Distribution Transformers. Y. Baghzouz Spring 2014 ECG 741 Power Distribution Transformers Y. Baghzouz Spring 2014 Preliminary Considerations A transformer is a device that converts one AC voltage to another AC voltage at the same frequency. The windings

More information

Transformers. Objectives

Transformers. Objectives Transformers Objectives Explain mutual inductance Describe how a transformer is constructed and how it works Explain how a step-up transformer works Explain how a step-down transformer works Discuss the

More information

PHYS 1442 Section 004 Lecture #15

PHYS 1442 Section 004 Lecture #15 PHYS 1442 Section 004 Lecture #15 Monday March 17, 2014 Dr. Andrew Brandt Chapter 21 Generator Transformer Inductance 3/17/2014 1 PHYS 1442-004, Dr. Andrew Brandt Announcements HW8 on Ch 21-22 will be

More information

University of Twente

University of Twente University of Twente Faculty of Electrical Engineering, Mathematics & Comuter Science Design of an audio ower amlifier with a notch in the outut imedance Remco Twelkemeijer MSc. Thesis May 008 Suervisors:

More information

The power transformer

The power transformer ELEC0014 - Introduction to power and energy systems The power transformer Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct November 2017 1 / 35 Power transformers are used: to transmit

More information

Electric Circuits II Magnetically Coupled Circuits. Dr. Firas Obeidat

Electric Circuits II Magnetically Coupled Circuits. Dr. Firas Obeidat Electric Circuits II Magnetically Coupled Circuits Dr. Firas Obeidat 1 Table of contents 1 Mutual Inductance 2 Dot Convention 3 Analyze Circuits Involving Mutual Inductance 4 Energy in a Coupled Circuit

More information

TRANSFORMER THEORY. Mutual Induction

TRANSFORMER THEORY. Mutual Induction Transformers Transformers are used extensively for AC power transmissions and for various control and indication circuits. Knowledge of the basic theory of how these components operate is necessary to

More information

Practical Transformer on Load

Practical Transformer on Load Practical Transformer on Load We now consider the deviations from the last two ideality conditions : 1. The resistance of its windings is zero. 2. There is no leakage flux. The effects of these deviations

More information

Walchand Institute of Technology. Basic Electrical and Electronics Engineering. Transformer

Walchand Institute of Technology. Basic Electrical and Electronics Engineering. Transformer Walchand Institute of Technology Basic Electrical and Electronics Engineering Transformer 1. What is transformer? explain working principle of transformer. Electrical power transformer is a static device

More information

There are two basic types of FET s: The junction field effect transistor or JFET the metal oxide FET or MOSFET.

There are two basic types of FET s: The junction field effect transistor or JFET the metal oxide FET or MOSFET. Page 61 Field Effect Transistors The Fieldeffect transistor (FET) We know that the biolar junction transistor or BJT is a current controlled device. The FET or field effect transistor is a voltage controlled

More information

Electrical Theory 2 Lessons for Fall Semester:

Electrical Theory 2 Lessons for Fall Semester: Electrical Theory 2 Lessons for Fall Semester: Lesson 1 Magnetism Lesson 2 Introduction to AC Theory Lesson 3 Lesson 4 Capacitance and Capacitive Reactance Lesson 5 Impedance and AC Circuits Lesson 6 AC

More information

LAB IX. LOW FREQUENCY CHARACTERISTICS OF JFETS

LAB IX. LOW FREQUENCY CHARACTERISTICS OF JFETS LAB X. LOW FREQUENCY CHARACTERSTCS OF JFETS 1. OBJECTVE n this lab, you will study the -V characteristics and small-signal model of Junction Field Effect Transistors (JFET).. OVERVEW n this lab, we will

More information

Demonstration of Sustained and Useful Converter Responses during Balanced and Unbalanced Faults in Microgrids

Demonstration of Sustained and Useful Converter Responses during Balanced and Unbalanced Faults in Microgrids Demonstration of Sustained and Useful Converter Resonses during Balanced and Unbalanced Faults in Microgrids Andrew J. Roscoe 1, Gordon Jackson 1, Ian M. Elders 1, Jamie McCarthy 2 and Graeme M. Burt 1

More information

N I N LI I. I t. (Note how L is independent of the current I.)

N I N LI I. I t. (Note how L is independent of the current I.) UNIT- IV MAGNETICALLY COUPLED CIRCUITS Magnetically Coupled Circuits: Self inductance - Mutual inductance - Dot rule - Coefficient of coupling - Analysis of multi winding coupled circuits - Series, Parallel

More information

PROVIDING ANCILLARY SERVICES IN DISTRIBUTION NETWORKS WITH VANADIUM REDOX FLOW BATTERIES: ALPSTORE PROJECT

PROVIDING ANCILLARY SERVICES IN DISTRIBUTION NETWORKS WITH VANADIUM REDOX FLOW BATTERIES: ALPSTORE PROJECT PROVIDING ANCILLARY SERVICES IN DISTRIBTION NETWORKS WITH VANADIM REDOX FLOW BATTERIES: ALPSTORE PROJECT Leoold HERMAN Boštjan BLAŽIČ Igor PAČ Faculty of Electrical Engineering, Faculty of Electrical Engineering,

More information

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon:

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon: In this lecture Electromagnetism Electromagnetic Effect Electromagnets Electromechanical Devices Transformers Electromagnetic Effect Electricity & magnetism are different aspects of the same basic phenomenon:

More information

PHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017

PHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017 PHYS 1441 Section 001 Lecture #22 Chapter 29:EM Induction & Faraday s Law Transformer Electric Field Due to Changing Magnetic Flux Chapter 30: Inductance Mutual and Self Inductance Energy Stored in Magnetic

More information

EE 462: Laboratory Assignment 5 Biasing N- channel MOSFET Transistor

EE 462: Laboratory Assignment 5 Biasing N- channel MOSFET Transistor EE 46: Laboratory Assignment 5 Biasing N channel MOFET Transistor by r. A.V. adun and r... onohue (/1/07 Udated ring 008 by tehen Maloney eartment of Elecical and Comuter Engineering University of entucky

More information

Module 7. Transformer. Version 2 EE IIT, Kharagpur

Module 7. Transformer. Version 2 EE IIT, Kharagpur Module 7 Transformer Lesson 28 Problem solving on Transformers Contents 28 Problem solving on Transformer (Lesson-28) 4 28.1 Introduction. 4 28.2 Problems on 2 winding single phase transformers. 4 28.3

More information

WELCOME TO THE LECTURE

WELCOME TO THE LECTURE WLCOM TO TH LCTUR ON TRNFORMR Single Phase Transformer Three Phase Transformer Transformer transformer is a stationary electric machine which transfers electrical energy (power) from one voltage level

More information

Transformers. gpmacademics.weebly.com

Transformers. gpmacademics.weebly.com TRANSFORMERS Syllabus: Principles of operation, Constructional Details, Losses and efficiency, Regulation of Transformer, Testing: OC & SC test. TRANSFORMER: It is a static device which transfers electric

More information

EE2022 Electrical Energy Systems

EE2022 Electrical Energy Systems EE0 Electrical Energy Systems Lecture : Transformer and Per Unit Analysis 7-0-0 Panida Jirutitijaroen Department of Electrical and Computer Engineering /9/0 EE0: Transformer and Per Unit Analysis by P.

More information

13 th Asian Physics Olympiad India Experimental Competition Wednesday, 2 nd May 2012

13 th Asian Physics Olympiad India Experimental Competition Wednesday, 2 nd May 2012 13 th Asian Physics Olympiad India Experimental Competition Wednesday, nd May 01 Please first read the following instructions carefully: 1. The time available is ½ hours for each of the two experimental

More information

Electromagnetic Induction

Electromagnetic Induction Chapter 16 Electromagnetic Induction In This Chapter: Electromagnetic Induction Faraday s Law Lenz s Law The Transformer Self-Inductance Inductors in Combination Energy of a Current-Carrying Inductor Electromagnetic

More information

EQUIVALENT CIRCUIT OF A SINGLE-PHASE TRANSFORMER

EQUIVALENT CIRCUIT OF A SINGLE-PHASE TRANSFORMER Electrical Machines Lab Experiment-No. One Date: 15-11-2016 EQUIVALENT CIRCUIT OF A SINGLE-PHASE TRANSFORMER Aim: The determination of electrical equivalent circuit parameters of a single phase power transformer

More information

PHYS 1444 Section 501 Lecture #20

PHYS 1444 Section 501 Lecture #20 PHYS 1444 Section 501 Lecture #0 Monday, Apr. 17, 006 Transformer Generalized Faraday s Law Inductance Mutual Inductance Self Inductance Inductor Energy Stored in the Magnetic Field 1 Announcements Quiz

More information

PHYS 219 Spring semester Lecture 16: ac Voltages, ac currents and Transformers. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 219 Spring semester Lecture 16: ac Voltages, ac currents and Transformers. Ron Reifenberger Birck Nanotechnology Center Purdue University HYS 9 Spring semester 06 Lecture 6: ac oltages, ac currents and Transformers on eifenberger Birck anotechnology Center urdue University Exam When: Wednesday, May 4, 06 7:00-9:00 M Where: HYS Lecture 6

More information

El-Hawary, M.E. The Transformer Electrical Energy Systems. Series Ed. Leo Grigsby Boca Raton: CRC Press LLC, 2000

El-Hawary, M.E. The Transformer Electrical Energy Systems. Series Ed. Leo Grigsby Boca Raton: CRC Press LLC, 2000 El-Hawary, M.E. The Transformer Electrical Energy Systems. Series Ed. Leo Grigsby Boca Raton: CRC Press LLC, 000 97 Chapter 4 THE TRANSFORMER 4. NTRODUCTON The transformer is a valuable apparatus in electrical

More information

EE 340 Power Transformers

EE 340 Power Transformers EE 340 Power Transformers Preliminary considerations A transformer is a device that converts one AC voltage to another AC voltage at the same frequency. It consists of one or more coil(s) of wire wrapped

More information

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Basic Operating Principles of Transformers

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Basic Operating Principles of Transformers Department of Electrical Engineering Lecture Basic Operating Principles of Transformers In this Lecture Basic operating principles of following transformers are introduced Single-phase Transformers Three-phase

More information

Transformer and LCL Filter Design for DPFCs

Transformer and LCL Filter Design for DPFCs Transformer and LCL Filter Design for DPFCs Ivo M. Martins 1, J. Fernando A. Silva, Sónia Ferreira Pinto, and Isménio E. Martins 1 1 INESC-id, Deartment of Electrical Engineering, ISE, University of Algarve,

More information

Full Bridge Single Stage Electronic Ballast for a 250 W High Pressure Sodium Lamp

Full Bridge Single Stage Electronic Ballast for a 250 W High Pressure Sodium Lamp Full Bridge Single Stage Electronic Ballast for a 50 W High Pressure Sodium am Abstract In this aer will be reorted the study and imlementation of a single stage High Power Factor (HPF) electronic ballast

More information

Frequency Response Modeling of Inductive Position Sensor with Finite Element Tools

Frequency Response Modeling of Inductive Position Sensor with Finite Element Tools Frequency Reone Modeling of Inductive Poition Senor with Finite Element Tool A. K. Palit Lemfoerder Electronic GmbH (ZF-Friedrichhafen AG grou), DE-32339 Eelkam, Germany, email: ajoy.alit@zf.com Abtract:

More information

Chapter 13 Magnetically Coupled Circuits. Chapter Objectives:

Chapter 13 Magnetically Coupled Circuits. Chapter Objectives: Chapter 13 Magnetically Coupled Circuits Chapter Objectives: Understand magnetically coupled circuits. Learn the concept of mutual inductance. Be able to determine energy in a coupled circuit. Learn how

More information

5KW LED DRIVER. High Power White LED. LED Driver Requirement. Topology selection: Design Specifications

5KW LED DRIVER. High Power White LED. LED Driver Requirement. Topology selection: Design Specifications 5KW LED DRIVER High Power White LED Enormous energy can be saved by using efficient equiments along with effective control and careful design. The use of energy efficient lighting has been gaining oularity

More information

A New ISPWM Switching Technique for THD Reduction in Custom Power Devices

A New ISPWM Switching Technique for THD Reduction in Custom Power Devices A New ISPWM Switching Technique for THD Reduction in Custom Power Devices S. Esmaeili Jafarabadi, G. B. Gharehetian Deartment of Electrical Engineering, Amirkabir University of Technology, 15914 Tehran,

More information

PART B. t (sec) Figure 1

PART B. t (sec) Figure 1 Code No: R16128 R16 SET 1 I B. Tech II Semester Regular Examinations, April/May 217 ELECTRICAL CIRCUIT ANALYSIS I (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 7 Note: 1. Question

More information

High-efficiency of MHz Inverter Constructed from Frequency Multiplying Circuit

High-efficiency of MHz Inverter Constructed from Frequency Multiplying Circuit High-efficiency of MHz Inverter Constructed from Frequency Multilying Circuit Koji Orikawa, Jun-ichi Itoh Deartment of Electrical Engineering Nagaoka University of Technology Nagaoka, Jaan orikawa@vos.nagaokaut.ac.j

More information

SECTION 4 TRANSFORMERS. Yilu (Ellen) Liu. Associate Professor Electrical Engineering Department Virginia Tech University

SECTION 4 TRANSFORMERS. Yilu (Ellen) Liu. Associate Professor Electrical Engineering Department Virginia Tech University SECTION 4 TRANSFORMERS Yilu (Ellen) Liu Associate Professor Electrical Engineering Department Virginia Tech University Analysis of Transformer Turns Ratio......................... 4.2 Analysis of a Step-Up

More information

Generalized Theory Of Electrical Machines

Generalized Theory Of Electrical Machines Essentials of Rotating Electrical Machines Generalized Theory Of Electrical Machines All electrical machines are variations on a common set of fundamental principles, which apply alike to dc and ac types,

More information

UNIVERSITY OF TECHNOLOGY By: Fadhil A. Hasan ELECTRICAL MACHINES

UNIVERSITY OF TECHNOLOGY By: Fadhil A. Hasan ELECTRICAL MACHINES UNIVERSITY OF TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING Year: Second 2016-2017 By: Fadhil A. Hasan ELECTRICAL MACHINES І Module-II: AC Transformers o Single phase transformers o Three-phase transformers

More information

Unit-4. Magnetic Circuits

Unit-4. Magnetic Circuits Unit-4 Magnetic Circuits Topics to be Discussed Magnetic Coupling. Coefficient of Coupling (k). Sign of Mutual Voltage. Dot Convention. September 9, 0 Magnetic Circuits Magnetically Coupled Circuits A

More information

TRANSFORMER OPERATION

TRANSFORMER OPERATION Chapter 3 TRANSFORMER OPERATION 1 A transformer is a static device (no moving parts) used to transfer energy from one AC circuit to another. This transfer of energy may involve an increase or decrease

More information

Inductance in DC Circuits

Inductance in DC Circuits Inductance in DC Circuits Anurag Srivastava Concept: Inductance is characterized by the behavior of a coil of wire in resisting any change of electric current through the coil. Arising from Faraday's law,

More information

CHAPTER 2. Transformers. Dr Gamal Sowilam

CHAPTER 2. Transformers. Dr Gamal Sowilam CHAPTER Transformers Dr Gamal Sowilam Introduction A transformer is a static machine. It is not an energy conversion device, it is indispensable in many energy conversion systems. A transformer essentially

More information

ELECTRICAL ENGINEERING ESE TOPIC WISE OBJECTIVE SOLVED PAPER-II

ELECTRICAL ENGINEERING ESE TOPIC WISE OBJECTIVE SOLVED PAPER-II ELECTRICAL ENGINEERING ESE TOPIC WISE OBJECTIVE SOLVED PAPER-II From (1992 2017) Office : F-126, (Lower Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-26522064 Mobile : 8130909220, 9711853908

More information

By Gill ( ) PDF created with FinePrint pdffactory trial version

By Gill (  ) PDF created with FinePrint pdffactory trial version By Gill (www.angelfire.com/al4/gill ) 1 Introduction One of the main reasons of adopting a.c. system instead of d.c. for generation, transmission and distribution of electrical power is that alternatin

More information

Modeling of power autotransformer

Modeling of power autotransformer Modeling of ower autotransformer VLADMÍR VOLČKO, ŽAETA ELEHOVÁ, ATO BELÁŇ, PETER JAGA, DOMK VGLAŠ, MROLAVA MTKOVÁ Deartment of Electrical Power Engineering lovak niversity of Technology in Bratislava lkovičova,

More information

Wireless Energy Transfer with Three-Phase Magnetic Field System: Experimental Results

Wireless Energy Transfer with Three-Phase Magnetic Field System: Experimental Results International Conference on Renewable Energies and Power Quality (ICREPQ 16) Madrid (Sain), 4 th to 6 th May, 2016 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.14 May 2016 Wireless

More information

EE 462: Laboratory Assignment 6 Biasing of Transistors: N- channel MOSFET

EE 462: Laboratory Assignment 6 Biasing of Transistors: N- channel MOSFET EE 46: Laboratory Assignment 6 Biasing of Transistors: N channel MOFET by r. A.V. adun and r... onohue (10//03 eartment of Elecical and Comuter Engineering University of entucky Lexington, Y 40506 Laboratory

More information

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos "t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E Review hysics for Scientists & Engineers Spring Semester 005 Lecture 30! If we have a single loop RLC circuit, the charge in the circuit as a function of time is given by! Where q = q max e! Rt L cos "t

More information

Three-Phase Series-Buck Rectifier with Split DC- Bus Based on the Scott Transformer

Three-Phase Series-Buck Rectifier with Split DC- Bus Based on the Scott Transformer Three-Phase Series-Buck Rectifier with Slit DC- Bus Based on the Scott Transformer Alceu André Badin and Io Barbi Federal Uniersity of Santa Catarina/Deartment of Electrical Engineering/Power Electronics

More information

P202/219 Laboratory IUPUI Physics Department INDUCED EMF

P202/219 Laboratory IUPUI Physics Department INDUCED EMF INDUCED EMF BJECIVE o obtain a qualitative understanding of Faraday s Law of Electromagnetic Induction and Lenz s Law of Induced Current by constructing a simple transformer. EQUIMEN wo identical coils,

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 Problem Set 3 Due: Monday September 28 Recommended Reading: Fitzgerald

More information

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits QUESTION BANK ETE (17331) CM/IF Chapter1: DC Circuits Q1. State & explain Ohms law. Also explain concept of series & parallel circuit with the help of diagram. 3M Q2. Find the value of resistor in fig.

More information

Operating principle of a transformer

Operating principle of a transformer Transformers Operating principle of a transformer Transformers are stationary electrical machines which transmit energy from systems with certain current and voltage values into systems with generally

More information

An Overview of Substrate Noise Reduction Techniques

An Overview of Substrate Noise Reduction Techniques An Overview of Substrate Noise Reduction Techniques Shahab Ardalan, and Manoj Sachdev ardalan@ieee.org, msachdev@ece.uwaterloo.ca Deartment of Electrical and Comuter Engineering University of Waterloo

More information

Electrical Machines I : Transformers

Electrical Machines I : Transformers UNIT TRANSFORMERS PART A (Q&A) 1. What is step down transformer? The transformer used to step down the voltage from primary to secondary is called as step down transformer. (Ex: /11).. Draw the noload

More information

Modeling and Analysis of Conducted EMI Emissions of a Single-Phase PWM Inverters

Modeling and Analysis of Conducted EMI Emissions of a Single-Phase PWM Inverters Asian Power Electronics Journal, Vol. 4, No.3 December 010 Modeling and Analysis of Conducted EMI Emissions of a Single-Phase PWM Inverters D. Anand 1 S. Jeevananthan Abstract - In this aer, the analysis

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

EXPERIMENT 6 CLOSED-LOOP TEMPERATURE CONTROL OF AN ELECTRICAL HEATER

EXPERIMENT 6 CLOSED-LOOP TEMPERATURE CONTROL OF AN ELECTRICAL HEATER YEDITEPE UNIVERSITY ENGINEERING & ARCHITECTURE FACULTY INDUSTRIAL ELECTRONICS LABORATORY EE 432 INDUSTRIAL ELECTRONICS EXPERIMENT 6 CLOSED-LOOP TEMPERATURE CONTROL OF AN ELECTRICAL HEATER Introduction:

More information

Chapter 11. Alternating Current

Chapter 11. Alternating Current Unit-2 ECE131 BEEE Chapter 11 Alternating Current Objectives After completing this chapter, you will be able to: Describe how an AC voltage is produced with an AC generator (alternator) Define alternation,

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lecture-19 Magnetic Circuits and Introduction to Transformers 2 SERIES CONNECTION OF MUTUALLY COUPLED COILS A mutual term will alter the total inductance

More information

Exclusive Technology Feature. Leakage Inductance (Part 1): Friend Or Foe? The Underlying Physics. ISSUE: October 2015

Exclusive Technology Feature. Leakage Inductance (Part 1): Friend Or Foe? The Underlying Physics. ISSUE: October 2015 ISSUE: October 2015 Leakage Inductance (Part 1): Friend Or Foe? by Ernie Wittenbreder, Technical Witts, Flagstaff, Ariz There are situations in which leakage inductance in a transformer or coupled inductor

More information

Analysis and Control of Three Phase PWM Rectifier for Power Factor Improvement of IM Drive

Analysis and Control of Three Phase PWM Rectifier for Power Factor Improvement of IM Drive htt://dx.doi.org/0.272/ijiet.02.9 Analysis and Control of Three Phase PWM Rectifier for Power Factor Imrovement of IM Drive Ajesh P S, Jisha Kuruvila P 2, Dr. Anasraj R 3 PG Scholar, Deartment of Electrical

More information

Cornerstone Electronics Technology and Robotics Week 32 Transformers

Cornerstone Electronics Technology and Robotics Week 32 Transformers Cornerstone Electronics Technology and Robotics Week 32 Transformers Administration: o Prayer o Turn in quiz Electricity and Electronics, Section 12.1, Transformer Theory: o A transformer is a device that

More information

APPLICATION NOTE - 018

APPLICATION NOTE - 018 APPLICATION NOTE - 018 Power Transformers Background Power Transformers are used within an AC power distribution systems to increase or decrease the operating voltage to achieve the optimum transmission

More information

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current PHYSICS WORKSHEET CLASS : XII Topic: Alternating current 1. What is mean by root mean square value of alternating current? 2. Distinguish between the terms effective value and peak value of an alternating

More information

Transformers. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. April 23, 2013

Transformers. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. April 23, 2013 Transformers Department of Physics & Astronomy Texas Christian University, Fort Worth, TX April 23, 2013 1 Introduction In the early nineteenth century, Hans Christian Øersted discovered that a magnetic

More information

Lab Report 1 Single Phase Transformer

Lab Report 1 Single Phase Transformer Abu Dhabi University EEN 340 - Energy Conversion Lab Report 1 Single Phase Transformer Author: Muhammad Obaidullah 1030313 Ali Raza 1012542 Abdulla Ibrahim Hammoud 1002480 Supervisor: Dr. Muhammad Akmal

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits C HAP T E O UTLI N E 33 1 AC Sources 33 2 esistors in an AC Circuit 33 3 Inductors in an AC Circuit 33 4 Capacitors in an AC Circuit 33 5 The L Series Circuit 33

More information

Engineering Science OUTCOME 4 - TUTORIAL 3 CONTENTS. 1. Transformers

Engineering Science OUTCOME 4 - TUTORIAL 3 CONTENTS. 1. Transformers Unit : Unit code: QCF Level: 4 Credit value: 5 SYLLABUS Engineering Science L/60/404 OUTCOME 4 - TUTOIAL 3 Be able to apply single phase AC theory to solve electrical and electronic engineering problems

More information

PROBLEMS on Transformers

PROBLEMS on Transformers PROBLEMS on Transformers (A) Simple Problems 1. A single-phase, 250-kVA, 11-kV/415-V, 50-Hz transformer has 80 turns on the secondary. Calculate (a) the approximate values of the primary and secondary

More information

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment)

ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT (Assignment) 1. In an A.C. circuit A ; the current leads the voltage by 30 0 and in circuit B, the current lags behind the voltage by 30 0. What is the

More information

A Novel, Robust DSP-Based Indirect Rotor Position Estimation for Permanent Magnet AC Motors Without Rotor Saliency

A Novel, Robust DSP-Based Indirect Rotor Position Estimation for Permanent Magnet AC Motors Without Rotor Saliency IEEE TANSACTIONS ON POWE EECTONICS, VO. 18, NO. 2, MACH 2003 539 A Novel, obust DSP-Based Indirect otor Position Estimation for Permanent Magnet AC Motors Without otor Saliency i Ying and Nesimi Ertugrul,

More information

Design of a Power Converter Based on UC3842 for Blade Electric Vehicle

Design of a Power Converter Based on UC3842 for Blade Electric Vehicle Design of a Power Converter Based on UC3842 for Blade Electric Vehicle Zhenyou Wang, Qun Sun*, Hongqiang Guo School of Mechanical and Automotive Engineering, Liaocheng University Liaocheng, China *Corresonding

More information

Origins of Stator Current Spectra in DFIGs with Winding Faults and Excitation Asymmetries

Origins of Stator Current Spectra in DFIGs with Winding Faults and Excitation Asymmetries Origins of Stator Current Sectra in DFIGs with Wing Faults and Excitation Asymmetries S. Williamson * and S. Djurović * University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom School of Electrical

More information

Sensors and Actuators Introduction to sensors

Sensors and Actuators Introduction to sensors Sensors and Actuators Introduction to sensors Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems INDUCTIVE SENSORS (Chapter 3.4, 7.3) 3 Inductive sensors 4 Inductive

More information