Biopotential Amplifiers. Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan

Size: px
Start display at page:

Download "Biopotential Amplifiers. Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan"

Transcription

1 Biopotential Ampliiers Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan

2 Operational ampliier Practical Ideal Biopotential ampliiers

3 Ideal vs. practical OP amp Biopotential ampliiers 3

4 Dierential- and common-mode inputs V o = A d V d + A cm V cm where A d = A ol open-loop gain Ideally, A d =, A cm = CM = log A d A cm = or, = A d A cm Biopotential ampliiers 4

5 Inverting ampliier V o V i = - F I Ideally, in = I and out = Biopotential ampliiers 5

6 Inverting ampliier Biopotential ampliiers 6

7 Noninverting ampliier V o V i = + Ideally, Z i = and Z o = Biopotential ampliiers 7

8 Dierential Ampliier id V V Vo id = V o 4 V V 3 4 V V i 4 3 Biopotential ampliiers 8

9 Dierential Ampliier: Imbalance Eect Vcm Vdm Vdm -ε - + Vo V o V o V V dm cm V V dm cm A dm V dm A cm V cm A dm, A cm CM log A A dm cm log Biopotential ampliiers 9

10 Instrumental Ampliier IA Three OP-AMP IA ealization V + id id = V g ' ' - + V o Vo ' V V g Biopotential ampliiers

11 Analog ilters S. Franco, Design with Operational Ampliiers and Analog Integrated Circuits, Second Edition, 998. Biopotential ampliiers

12 Biopotential ampliiers First-order lowpass active ilter j H j H sc V V s H in O H and C where

13 Biopotential ampliiers 3 First-order lowpass ilter Vi + - Vo C j H j H sc V V s H i O H and C where

14 Biopotential ampliiers 4 First-order highpass ilter H and C where sc sc V V s H in O j j H j H

15 Biopotential ampliiers 5 First-order highpass ilter j j H j H sc sc V V s H i O H and C where Vo - Vi + C

16 First-order bandpass active ilter C Vi C - + Vo log H db - dbdecade H s V V O i sc sc sc H j [ j j ][ j ] where C and C Biopotential ampliiers 6

17 Instrumental ampliier with irst-order highpass ilter V + - ' - Vo V g - + ' + Vre Integrator eedback C - + V o s G V V s C Biopotential ampliiers 7

18 Biopotential ampliiers 8 Second-order ilters s Q s n s n s n s H Low-pass response n = n =, n = ω s Q s s H Q j j H High-pass response n =, n = n = s Q s s s H Q j j H

19 Second-order ilters Low-pass response High-pass response S. Franco, Design with Operational Ampliiers and Analog Integrated Circuits, Second Edition, 998. Biopotential ampliiers 9

20 Second-order Sallen-Key lowpass ilter nc - Vi m + Vo C H j j Q where mnc and Q mn m Biopotential ampliiers

21 Second-order Sallen-Key highpass ilter Vi C nc - m + Vo H j j Q where mnc and Q mn n Biopotential ampliiers

22 Biopotential ampliiers Second-order ilters 3 Band-pass response n =, n =ω Q, n = s Q s s Q s H Q j Q j j H 4 Band-reject response n =, n =, n =ω s Q s s s H Q j j H

23 Second-order band-reject ilters S. Franco, Design with Operational Ampliiers and Analog Integrated Circuits, Second Edition, 998. Biopotential ampliiers 3

24 Biopotential ampliiers 4 Twin-T notch ilter Vo Vi C C C Q j j H 4, Q and C where

25 Twin-T notch ilter Biopotential ampliiers 5

26 Twin-T notch ilter Cont. From WJ. Tompkins, JG. Webster. Design o Microcomputer-Based Medical Instrumentation, Prentice-Hall, 98. Biopotential ampliiers 6

27 Dipole ield o heart when is maximum Biopotential ampliiers 7

28 Electrocardiogram ECG measurements I II + III = Biopotential ampliiers 8

29 Augmented Leads Biopotential ampliiers 9

30 Augmented Leads Biopotential ampliiers 3

31 elation o dierent-lead ECG Einthoven triangle From WJ Tompkins, Biomedical Digital Signal Processing, Prentice-Hall, 993. Biopotential ampliiers 3

32 elation o dierent-lead ECG Cont. From WJ Tompkins, Biomedical Digital Signal Processing, Prentice-Hall, 993. Biopotential ampliiers 3

33 Wilson s central terminal Biopotential ampliiers 33

34 Chest leads Biopotential ampliiers 34

35 ECG measurement using chest leads From JJ Carr, Introduction to Biomedical Equipment Technology, Prentice-Hall, 998. Biopotential ampliiers 35

36 ECG at chest leads Biopotential ampliiers 36

37 -Lead ECG Precordial leads: V -V 6 Einthoven leads: I, II & III Goldberger augmented leads: V, V L & V F Biopotential ampliiers 37

38 Vectorcardiogram VCG Biopotential ampliiers 38

39 ECG ampliier + C 4, MΩ, kω 3, 4.5kΩ, 4.5kΩ g, 8.5kΩ AD6 G=7.3 Hz Highpass Filter G = Analog Device Application eerence Instrumentation ampliier Drievn-right-leg circuit 49.4k Gain educe common-mode voltage g limits the current to patient. C maintains stability o the circuit. Biopotential ampliiers 39

40 Intererences in ECG Power-line intererence Electromyographic intererence Biopotential ampliiers 4

41 Power intererence in ECG measurement Power line, V, 56 Hz C b i b C C C 3 i d3 Zs i d - SShielding Zs i d g Instrumental Ampliier Zcm Driven-right leg circuit + Biopotential ampliiers 4

42 Common-mode voltage by power-line intererence v i cm db Z G Typical value v cm =. μa 5 kω = mv Biopotential ampliiers 4

43 Impedance mismatch in ECG measurement Degradation o CM due to nonzero source resistance and parasitic capacitance s C V g - I A Vo Vcm - + s C V + V V due to s C s C Biopotential ampliiers 43

44 Driven-right-leg circuit V cm V cm s s + - ' cm V cm g a ' a Biopotential ampliiers 44

45 Driven-right-leg circuit cont. Vcm id cm Vcm + - a Vo + - Vcm V a V a o V V o cm cm a V cm V cm i d id cm cm a Biopotential ampliiers 45

46 Driven-right-leg circuit cont. <EX> i d =. μa. A worst-case electrode resistance cm = kω, a and are selected as 5 kω and 5 MΩ respectively. Find V cm. V cm k.a 5M 5k 5V I no right-leg-driven circuit Vcm id cm k.a mv Biopotential ampliiers 46

47 ECG Ampliier: One-Lead ECG Front-End From JJ Carr, Introduction to Biomedical Equipment Technology, Prentice-Hall, 998. Biopotential ampliiers 47

48 Six-Leads ECG Front-End Five Patient Electrodes Voltage at WCT is equal to dc and 6 Hz common-mode voltage L Drive: Inversion o common-mode intererence From JJ Carr, Introduction to Biomedical Equipment Technology, Prentice-Hall, 998.

49 Magnetic-ield pickup in ECG measurement Biopotential ampliiers 49

50 Isolation ampliier Basic architecture Equivalent 8 ~ Ω Input Ampliier Modulator Demodulator Output Ampliier Isolation barrier, can be magnetic transormer, optical, capacitive Biopotential ampliiers 5

51 Isolation ampliier cont. Isolation mode rejection ratio IM V IN Input Common - + V OUT Output Common V IM V OUT V IN where IM VIM Gain IM log IM V IN Gain VIM IM Gain Biopotential ampliiers 5

52 Isolation ampliier cont. IM v.s. Frequency IM o ISO, Burr-Brown Corporation Biopotential ampliiers 5

53 Isolation ampliier vs. instrument ampliier Biopotential ampliiers 53

54 IM vs. CM V OUT V IN VCM CM VIM Gain IM IM ISO >> CM IA > CM ISO ISO: Isolation ampliier IA: Instrumental ampliier Biopotential ampliiers 54

55 Transormer-coupled isolation ampliier Biopotential ampliiers 55

56 Transormer-coupled isolation ampliier ISO, Burr-Brown Corporation Biopotential ampliiers 56

57 Optical-coupled isolation ampliier Biopotential ampliiers 57

58 Optical-coupled isolation ampliier ISO, Burr-Brown Corporation Biopotential ampliiers 58

59 Capacitive isolation ampliier ISO, Burr-Brown Corporation Biopotential ampliiers 59

60 Analog channel-to-channel isolation From JJ Carr, Introduction to Biomedical Equipment Technology, Prentice-Hall, 998. Biopotential ampliiers 6

61 Analog isolation From JJ Carr, Introduction to Biomedical Equipment Technology, Prentice-Hall, 998. Biopotential ampliiers 6

62 Digital isolation From JJ Carr, Introduction to Biomedical Equipment Technology, Prentice-Hall, 998. Biopotential ampliiers 6

63 Digitization trend in physiological monitoring Biopotential ampliiers 63

64 Multichannel EEG recodeings: Neuroscan TM Biopotential ampliiers 64

65 Monopolar measurements Biopotential ampliiers 65

66 Bipolar measuremesnts Biopotential ampliiers 66

67 Pasteless biopotential electrodes Monitoring o pilots alertness Detection o gravitationally induced loss o consciousness caused by extreme g-orces during sharp high-speed light Brain state by EEG Muscle atigue and eye blinks and eyeball movement by EMG Skin preparation to decrease skin-electrode impedance is unacceptable or routine prelight procedures Biopotential ampliiers 67

68 Capacitive active electrode array to record rontal EEG signals Dry electrode Biopotential ampliiers 68

69 eerence JG. Webster, Medical Instrumentation, application and design, 3rd, Houghton Milin,. JJ.Carr, JM.Brown, Introduction to Biomedical Equipment Technology, 4nd Edition, Prentice-Hall,. S. Franco, Design with Operational Ampliiers and Analog Integrated Circuits, Second Edition, 998. D. Prutchi and M. Norris, Design and Development o Medical Electronic Instrumentation: A Practical Perspective o the Design, Construction, and Test o Medical Devices, John Wiley & Sons, 4. 生物醫學工程導論, 滄海書局,8. Biopotential ampliiers 69

Biomedical Instrumentation (BME420 ) Chapter 6: Biopotential Amplifiers John G. Webster 4 th Edition

Biomedical Instrumentation (BME420 ) Chapter 6: Biopotential Amplifiers John G. Webster 4 th Edition Biomedical Instrumentation (BME420 ) Chapter 6: Biopotential Amplifiers John G. Webster 4 th Edition Dr. Qasem Qananwah BME 420 Department of Biomedical Systems and Informatics Engineering 1 Biopotential

More information

Amplificador de Biopotencial

Amplificador de Biopotencial Amplificador de Biopotencial Prof. Sérgio F. Pichorim Baseado no cap 6 do Webster e cap 17 do Kutz & Towe From J. G. Webster (ed.), Medical instrumentation: application and design. 3 rd ed. New York: John

More information

Electrocardiogram (ECG)

Electrocardiogram (ECG) Vectors and ECG s Vectors and ECG s 2 Electrocardiogram (ECG) Depolarization wave passes through the heart and the electrical currents pass into surrounding tissues. Small part of the extracellular current

More information

Biomedical. Measurement and Design ELEC4623. Lectures 9 and 10 Practical biopotential amplifier design and multilead ECG systems

Biomedical. Measurement and Design ELEC4623. Lectures 9 and 10 Practical biopotential amplifier design and multilead ECG systems Biomedical Instrumentation, Measurement and Design ELEC4623 Lectures 9 and 10 Practical biopotential amplifier design and multilead ECG systems Feedback and stability A negative feedback system with closed

More information

Bio-Potential Amplifiers

Bio-Potential Amplifiers Bio-Potential Amplifiers Biomedical Models for Diagnosis Body Signal Sensor Signal Processing Output Diagnosis Body signals and sensors were covered in EE470 The signal processing part is in EE471 Bio-Potential

More information

Biomedical Sensor Systems Laboratory. Institute for Neural Engineering Graz University of Technology

Biomedical Sensor Systems Laboratory. Institute for Neural Engineering Graz University of Technology Biomedical Sensor Systems Laboratory Institute for Neural Engineering Graz University of Technology 2017 Bioinstrumentation Measurement of physiological variables Invasive or non-invasive Minimize disturbance

More information

BIOMEDICAL INSTRUMENTATION PROBLEM SHEET 1

BIOMEDICAL INSTRUMENTATION PROBLEM SHEET 1 BIOMEDICAL INSTRUMENTATION PROBLEM SHEET 1 Dr. Gari Clifford Hilary Term 2013 1. (Exemplar Finals Question) a) List the five vital signs which are most commonly recorded from patient monitors in high-risk

More information

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-III

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-III Module: Electronics II Module Number: 6503 Philadelphia University Faculty o Engineering Communication and Electronics Engineering Ampliier Circuits-III Operational Ampliiers (Op-Amps): An operational

More information

Lecture 4 Biopotential Amplifiers

Lecture 4 Biopotential Amplifiers Bioinstrument Sahand University of Technology Lecture 4 Biopotential Amplifiers Dr. Shamekhi Summer 2016 OpAmp and Rules 1- A = (gain is infinity) 2- Vo = 0, when v1 = v2 (no offset voltage) 3- Rd = (input

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

Kanchan S. Shrikhande. Department of Instrumentation Engineering, Vivekanand Education Society s Institute of.

Kanchan S. Shrikhande. Department of Instrumentation Engineering, Vivekanand Education Society s Institute of. ISOLATED ECG AMPLIFIER WITH RIGHT LEG DRIVE Kanchan S. Shrikhande Department of Instrumentation Engineering, Vivekanand Education Society s Institute of Technology(VESIT),kanchans90@gmail.com Abstract

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 14: Special-purpose op-amp circuits Prof. Manar Mohaisen Department of EEC Engineering eview of the Precedent Lecture Introduce the level detection op-amp circuits

More information

GBM8320 Dispositifs Médicaux Intelligents

GBM8320 Dispositifs Médicaux Intelligents GBM8320 Dispositifs Médicaux Intelligents Biopotential amplifiers Part 1 Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim http://www.cours.polymtl.ca/gbm8320/ mohamad.sawan@polymtl.ca M5418

More information

Design on Electrocardiosignal Detection Sensor

Design on Electrocardiosignal Detection Sensor Sensors & Transducers 203 by IFSA http://www.sensorsportal.com Design on Electrocardiosignal Detection Sensor Hao ZHANG School of Mathematics and Computer Science, Tongling University, 24406, China E-mail:

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biomedical Instrumentation Kung-Bin Sung 5/8/007 Outline Chapter 8 and chapter 5 of st edition: Bioinstrumentation Bridge circuit Operational amplifiers, instrumentation

More information

E40M. Instrumentation Amps and Noise. M. Horowitz, J. Plummer, R. Howe 1

E40M. Instrumentation Amps and Noise. M. Horowitz, J. Plummer, R. Howe 1 E40M Instrumentation Amps and Noise M. Horowitz, J. Plummer, R. Howe 1 ECG Lab - Electrical Picture Signal amplitude 1 mv Noise level will be significant will need to amplify and filter We ll use filtering

More information

HUMAN DETECTION AND RESCUE USING BIO POTENTIAL SIGNALS

HUMAN DETECTION AND RESCUE USING BIO POTENTIAL SIGNALS ISET GOLDEN JUBILEE SYMPOSIUM Indian Society of Earthquake Technology Department of Earthquake Engineering Building IIT Roorkee, Roorkee October 20-21, 2012 Paper No. A007 HUMAN DETECTION AND RESCUE USING

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers Lock-In Ampliiers SR510 and SR530 Analog lock-in ampliiers SR510/SR530 Lock-In Ampliiers 0.5 Hz to 100 khz requency range Current and voltage inputs Up to 80 db dynamic reserve Tracking band-pass and line

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.5 Integrators and Differentiators Utilized resistors in the op-amp feedback and feed-in path Ideally independent of frequency Use of capacitors together

More information

EXPERIMENT 7 NEGATIVE FEEDBACK and APPLICATIONS

EXPERIMENT 7 NEGATIVE FEEDBACK and APPLICATIONS PH315 A. La osa EXPEIMENT 7 NEGATIE FEEDBACK and APPLICATIONS I. PUPOSE: To use various types o eedback with an operational ampliier. To build a gaincontrolled ampliier, an integrator, and a dierentiator.

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

EE 230 Experiment 10 ECG Measurements Spring 2010

EE 230 Experiment 10 ECG Measurements Spring 2010 EE 230 Experiment 10 ECG Measurements Spring 2010 Note: If for any reason the students are uncomfortable with doing this experiment, please talk to the instructor for the course and an alternative experiment

More information

Indigenous Design of Electronic Circuit for Electrocardiograph

Indigenous Design of Electronic Circuit for Electrocardiograph Indigenous Design of Electronic Circuit for Electrocardiograph Raman Gupta 1, Sandeep Singh 2, Kashish Garg 3, Shruti Jain 4 U.G student, Department of Electronics and Communication Engineering,Jaypee

More information

Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG)

Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG) Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG) 1. Introduction: The Electrocardiogram (ECG) is a technique of

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

An active filters means using amplifiers to improve the filter. An acive second-order RC low-pass filter still has two RC components in series.

An active filters means using amplifiers to improve the filter. An acive second-order RC low-pass filter still has two RC components in series. Active Filters An active filters means using amplifiers to improve the filter. An acive second-order low-pass filter still has two components in series. Hjω ( ) -------------------------- 2 = = ----------------------------------------------------------

More information

Lecture #4 Special-purpose Op-amp Circuits

Lecture #4 Special-purpose Op-amp Circuits Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #4 Special-purpose Op-amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Instrumentation Amplifiers

More information

Chapter 4 4. Optoelectronic Acquisition System Design

Chapter 4 4. Optoelectronic Acquisition System Design 4. Optoelectronic Acquisition System Design The present chapter deals with the design of the optoelectronic (OE) system required to translate the obtained optical modulated signal with the photonic acquisition

More information

FET-Input, Low Power INSTRUMENTATION AMPLIFIER

FET-Input, Low Power INSTRUMENTATION AMPLIFIER FET-Input, Low Power INSTRUMENTATION AMPLIFIER FEATURES LOW BIAS CURRENT: ±4pA LOW QUIESCENT CURRENT: ±4µA LOW INPUT OFFSET VOLTAGE: ±µv LOW INPUT OFFSET DRIFT: ±µv/ C LOW INPUT NOISE: nv/ Hz at f = khz

More information

ECG Project. Raphal Blanchet, Axel Boland, Thomas Donnay, Mario Jose Teles Varandas, University of Liege

ECG Project. Raphal Blanchet, Axel Boland, Thomas Donnay, Mario Jose Teles Varandas, University of Liege ECG Project Raphal Blanchet, Axel Boland, Thomas Donnay, Mario Jose Teles Varandas, University of Liege Abstract We were asked to design our own Electrocardiogram. Obviously, recording heart beats without

More information

AC-Coupled Front-End for Biopotential Measurements

AC-Coupled Front-End for Biopotential Measurements IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 50, NO. 3, MARCH 2003 391 AC-Coupled Front-End for Biopotential Measurements Enrique Mario Spinelli 3, Student Member, IEEE, Ramon Pallàs-Areny, Fellow,

More information

WHALETEQ Common Mode Rejection Ratio Tester (CMRR 3.0) User Manual (Revision )

WHALETEQ Common Mode Rejection Ratio Tester (CMRR 3.0) User Manual (Revision ) WHALETEQ Common Mode Rejection Ratio Tester (CMRR 3.0) User Manual (Revision 2017-10-06) Copyright (c) 2013-2017, All Rights Reserved. WhaleTeq Co. LTD No part of this publication may be reproduced, transmitted,

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

AD8232 EVALUATION BOARD DOCUMENTATION

AD8232 EVALUATION BOARD DOCUMENTATION One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com AD8232 EVALUATION BOARD DOCUMENTATION FEATURES Ready to use Heart Rate Monitor (HRM) Front end

More information

Instrumentation amplifier

Instrumentation amplifier Instrumentationamplifieris a closed-loop gainblock that has a differential input and an output that is single-ended with respect to a reference terminal. Application: are intended to be used whenever acquisition

More information

Introduction to Op Amps

Introduction to Op Amps Introduction to Op Amps ENGI 242 ELEC 222 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain 25k AVOL 500k (much higher for FET inputs) high input impedance 500kΩ ZIN 10MΩ

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

Introduction to Operational Amplifiers

Introduction to Operational Amplifiers P. R. Nelson ECE 322 Fall 2012 p. 1/50 Introduction to Operational Amplifiers Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer Engineering California State Polytechnic

More information

Lecture Notes Unit-III

Lecture Notes Unit-III Lecture Notes Unit-III FAQs Q1: An operational amplifier has a differential gain of 103 and CMRR of 100, input voltages are 120µV and 80µV, determine output voltage. 2 MARKS

More information

Lecture 13 Date:

Lecture 13 Date: Lecture 13 Date: 9.09.016 Common Mode Rejection Ratio NonIdealities in Differential mplifier Common Mode Rejection Ratio (CMRR) Differential input amplifiers are devices/circuits that can input and amplify

More information

Wireless Transmission of Real Time Electrocardiogram (ECG) Signals through Radio Frequency (RF) Waves

Wireless Transmission of Real Time Electrocardiogram (ECG) Signals through Radio Frequency (RF) Waves Wireless Transmission of Real Time Electrocardiogram (ECG) Signals through Radio Frequency (RF) Waves D.Sridhar raja Asst. Professor, Bharath University, Chennai-600073, India ABSTRACT:-In this project

More information

TRANSDUCER INTERFACE APPLICATIONS

TRANSDUCER INTERFACE APPLICATIONS TRANSDUCER INTERFACE APPLICATIONS Instrumentation amplifiers have long been used as preamplifiers in transducer applications. High quality transducers typically provide a highly linear output, but at a

More information

350MHz, Ultra-Low-Noise Op Amps

350MHz, Ultra-Low-Noise Op Amps 9-442; Rev ; /95 EVALUATION KIT AVAILABLE 35MHz, Ultra-Low-Noise Op Amps General Description The / op amps combine high-speed performance with ultra-low-noise performance. The is compensated for closed-loop

More information

Optically-Coupled Linear ISOLATION AMPLIFIER

Optically-Coupled Linear ISOLATION AMPLIFIER Optically-Coupled Linear ISOLATION AMPLIFIER FEATURES EASY TO USE, SIMILAR TO AN OP AMP /I IN =, Current Input /V IN = /R IN, Voltage Input % TESTED FOR BREAKDOWN: 5V Continuous Isolation Voltage ULTRA-LOW

More information

Physiological Signal Processing Primer

Physiological Signal Processing Primer Physiological Signal Processing Primer This document is intended to provide the user with some background information on the methods employed in representing bio-potential signals, such as EMG and EEG.

More information

INTERFACE ELECTRONICS FOR PERIPHERAL NERVE RECORDING AND SIGNAL PROCESSING KANOKWAN LIMNUSON. Submitted in partial fulfillment of the requirements

INTERFACE ELECTRONICS FOR PERIPHERAL NERVE RECORDING AND SIGNAL PROCESSING KANOKWAN LIMNUSON. Submitted in partial fulfillment of the requirements INTERFACE ELECTRONICS FOR PERIPHERAL NERVE RECORDING AND SIGNAL PROCESSING By KANOKWAN LIMNUSON Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Advisor:

More information

Biopotential Electrodes

Biopotential Electrodes Biomedical Instrumentation Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr naydin@ieee.org http://www.yildiz.edu.tr/~naydin Biopotential Electrodes 1 2 Electrode electrolyte interface The current crosses

More information

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection a FEATURES High Common-Mode Rejection DC: 100 db typ 60 Hz: 100 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.001% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

More information

Development of Electrocardiograph Monitoring System

Development of Electrocardiograph Monitoring System Development of Electrocardiograph Monitoring System Khairul Affendi Rosli 1*, Mohd. Hafizi Omar 1, Ahmad Fariz Hasan 1, Khairil Syahmi Musa 1, Mohd Fairuz Muhamad Fadzil 1, and Shu Hwei Neu 1 1 Department

More information

An 8-Channel General-Purpose Analog Front- End for Biopotential Signal Measurement

An 8-Channel General-Purpose Analog Front- End for Biopotential Signal Measurement An 8-Channel General-Purpose Analog Front- End for Biopotential Signal Measurement Group 4: Jinming Hu, Xue Yang, Zengweijie Chen, Hang Yang (auditing) 1. System Specifications & Structure 2. Chopper Low-Noise

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

A Duty-Cycle Controlled Variable-Gain Instrumentation Amplifier Applied For Two-electrode ECG Measurement

A Duty-Cycle Controlled Variable-Gain Instrumentation Amplifier Applied For Two-electrode ECG Measurement A Duty-Cycle Controlled Variable-Gain Instrumentation Amplifier Applied For Two-electrode ECG Measurement R. Romero Antayhua, G. Manoel Da Silva, F. Rangel de Sousa Integrated Circuits Laboratory-LCI Federal

More information

BENG 186B Winter 2013 Final

BENG 186B Winter 2013 Final Name (Last, First): BENG 186B Winter 2013 Final This exam is closed book, closed note, calculators are OK. Circle and put your final answers in the space provided; show your work only on the pages provided.

More information

IMPROVEMENTS IN ELECTROCARDIOGRAPHY SMOOTHENING AND AMPLIFICATION

IMPROVEMENTS IN ELECTROCARDIOGRAPHY SMOOTHENING AND AMPLIFICATION IMPROVEMENTS IN ELECTROCARDIOGRAPHY SMOOTHENING AND AMPLIFICATION Manan Joshi, Sarosh Patel, Dr. Lawrence Hmurcik Electrical Engineering Department University of Bridgeport Bridgeport, CT 06604 Abstract

More information

EE301 ELECTRONIC CIRCUITS

EE301 ELECTRONIC CIRCUITS EE30 ELECTONIC CICUITS CHAPTE 5 : FILTES LECTUE : Engr. Muhammad Muizz Electrical Engineering Department Politeknik Kota Kinabalu, Sabah. 5. INTODUCTION Is a device that removes or filters unwanted signal.

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

INTERFERENCE REDUCTION IN ECG RECORDINGS BY USING A DUAL GROUND ELECTRODE

INTERFERENCE REDUCTION IN ECG RECORDINGS BY USING A DUAL GROUND ELECTRODE XIX IMEKO World Congress Fundamental and Applied Metrology September 6 11, 29, Lisbon, Portugal INTERFERENCE REDUCTION IN ECG RECORDINGS BY USING A DUAL GROUND ELECTRODE Delia Díaz, Óscar Casas, Ramon

More information

Single Supply, MicroPower INSTRUMENTATION AMPLIFIER

Single Supply, MicroPower INSTRUMENTATION AMPLIFIER Single Supply, MicroPower INSTRUMENTATION AMPLIFIER FEATURES LOW QUIESCENT CURRENT: µa WIDE POWER SUPPLY RANGE Single Supply:. to Dual Supply:.9/. to ± COMMON-MODE RANGE TO (). RAIL-TO-RAIL OUTPUT SWING

More information

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

LOW POWER QUAD OPERATIONAL AMPLIFIERS General Description. Features. Applications

LOW POWER QUAD OPERATIONAL AMPLIFIERS General Description. Features. Applications General Description Features The consists of four independent, high gain and internally frequency compensated operational amplifiers. It is specifically designed to operate from a single power supply.

More information

An electronic unit that behaves like a voltagecontrolled

An electronic unit that behaves like a voltagecontrolled 1 An electronic unit that behaves like a voltagecontrolled voltage source. An active circuit element that amplifies, sums, subtracts, multiply, divide, differentiate or integrates a signal 2 A typical

More information

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics V Lecture 5 V Operational Amplifers Op-amp is an electronic device that amplify the difference of voltage at its two inputs. V V 8 1 DIP 8 1 DIP 20 SMT 1 8 1 SMT Operational Amplifers

More information

Electrical Characterisation of Dry Electrodes for ECG Recording

Electrical Characterisation of Dry Electrodes for ECG Recording th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July -, 8 Electrical Characterisation of Dry Electrodes for ECG Recording Baba A., Burke M. J. Department of Electronic and Electrical

More information

. 2 SEPARATE STANDBY : REDUCED. . HIGH SPEED : 150MHz - 110V/µs UNITY GAIN STABILITY LOW OFFSET VOLTAGE : 3mV . HIGH VIDEO PERFORMANCES :

. 2 SEPARATE STANDBY : REDUCED. . HIGH SPEED : 150MHz - 110V/µs UNITY GAIN STABILITY LOW OFFSET VOLTAGE : 3mV . HIGH VIDEO PERFORMANCES : HIGH SPEED LOW POWER QUAD OPERATIONAL AMPLIFIER (WITH STANDBY POSITION). 2 SEPARATE STANDBY : REDUCED CONSUMPTION AND HIGH IMPEDANCE OUTPUTS LOW SUPPLY CURRENT : 4.5mA/amp. typ.. HIGH SPEED : 150MHz -

More information

Precision OPERATIONAL AMPLIFIER

Precision OPERATIONAL AMPLIFIER OPA77 查询 OPA77 供应商 OPA77 OPA77 Precision OPERATIONAL AMPLIFIER FEATURES LOW OFFSET VOLTAGE: µv max LOW DRIFT:.µV/ C HIGH OPEN-LOOP GAIN: db min LOW QUIESCENT CURRENT:.mA typ REPLACES INDUSTRY-STANDARD

More information

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544 General-Purpose CMOS Rail-to-Rail Amplifiers AD854/AD8542/AD8544 FEATURES Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μa/amplifier Wide bandwidth: MHz No phase reversal Low input currents:

More information

ELEC207 Linear Integrated Circuits

ELEC207 Linear Integrated Circuits University o Nizwa Faculty o Engineering and Architecture Electrical and omputer Engineering ELE07 Linear Integrated ircuits Week 8 Ate Abu alim Fall 05/06 0/5/05 FILTE A ilter is a device that passes

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD82 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5 V

More information

Analog Circuits Part 3 Operational Amplifiers

Analog Circuits Part 3 Operational Amplifiers Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER

Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER www.burr-brown.com/databook/.html Dual FET-Input, Low Distortion OPERATIONAL AMPLIFIER FEATURES LOW DISTORTION:.3% at khz LOW NOISE: nv/ Hz HIGH SLEW RATE: 25V/µs WIDE GAIN-BANDWIDTH: MHz UNITY-GAIN STABLE

More information

Homework Assignment 13

Homework Assignment 13 Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shunt-shunt, series-shunt, ) 2. True or false: an engineer uses series-shunt

More information

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544 General-Purpose CMOS Rail-to-Rail Amplifiers FEATURES Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μa/amplifier Wide bandwidth: MHz No phase reversal Low input currents: 4 pa Unity gain

More information

ECE 480 Design Team 6 Electrocardiography and Design

ECE 480 Design Team 6 Electrocardiography and Design ECE 480 Design Team 6 Electrocardiography and Design Alex Volinski November 16 th, 2012 Executive Summary Recently there has been a large increase in consumer demand for a new and functional ECG (Electrocardiograph)

More information

Basic Information of Operational Amplifiers

Basic Information of Operational Amplifiers EC1254 Linear Integrated Circuits Unit I: Part - II Basic Information of Operational Amplifiers Mr. V. VAITHIANATHAN, M.Tech (PhD) Assistant Professor, ECE Department Objectives of this presentation To

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.3 The Noninverting Configuration v I is applied directly to the positive input terminal of the op amp One terminal of is connected to ground Closed-loop

More information

Lecture #2 Operational Amplifiers

Lecture #2 Operational Amplifiers Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #2 Operational Amplifiers Instructor: Dr. Ahmad El-Banna Agenda Introduction Op-Amps Input Modes and

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

Ultraprecision Operational Amplifier OP177

Ultraprecision Operational Amplifier OP177 Ultraprecision Operational Amplifier FEATURES Ultralow offset voltage TA = 25 C, 25 μv maximum Outstanding offset voltage drift 0. μv/ C maximum Excellent open-loop gain and gain linearity 2 V/μV typical

More information

Operational Amplifiers

Operational Amplifiers CHAPTER 5 Operational Amplifiers Operational amplifiers (or Op Amp) is an active circuit element that can perform mathematical operations between signals (e.g., amplify, sum, subtract, multiply, divide,

More information

Ultralow Input Bias Current Operational Amplifier AD549

Ultralow Input Bias Current Operational Amplifier AD549 Ultralow Input Bias Current Operational Amplifier AD59 FEATURES Ultralow input bias current 60 fa maximum (AD59L) 250 fa maximum (AD59J) Input bias current guaranteed over the common-mode voltage range

More information

Development of an alternative method for the calibration of ECG simulators

Development of an alternative method for the calibration of ECG simulators Development of an alternative method for the calibration of ECG simulators Roberto Benitez 1,, Romi Uresti 2,, and Carolina Solorzano 3, 1 ETALONS, S.A. de C.V., 64640 Monterrey, Mexico Abstract. In Mexico,

More information

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 Objectives: OPERATIONAL AMPLIFIERS 1.To demonstrate an inverting operational amplifier circuit.

More information

Biomedical Instrumentation B2. Dealing with noise

Biomedical Instrumentation B2. Dealing with noise Biomedical Instrumentation B2. Dealing with noise B18/BME2 Dr Gari Clifford Noise & artifact in biomedical signals Ambient / power line interference: 50 ±0.2 Hz mains noise (or 60 Hz in many data sets)

More information

Instrumentation Amplifier and Filter Design for Biopotential Acquisition System CHANG-HAO CHEN

Instrumentation Amplifier and Filter Design for Biopotential Acquisition System CHANG-HAO CHEN Instrumentation Amplifier and Filter Design for Biopotential Acquisition System by CHANG-HAO CHEN Master of Science in Electrical and Electronics Engineering 2010 Faculty of Science and Technology University

More information

UNISONIC TECHNOLOGIES CO., LTD LM321

UNISONIC TECHNOLOGIES CO., LTD LM321 UNISONIC TECHNOLOGIES CO., LTD LM321 LOW POWER SINGLE OP AMP DESCRIPTION The UTC LM321 s quiescent current is only 430µA (5V). The UTC LM321 brings performance and economy to low power systems, With a

More information

Homework Assignment 04

Homework Assignment 04 Question 1 (Short Takes) Homework Assignment 04 1. Consider the single-supply op-amp amplifier shown. What is the purpose of R 3? (1 point) Answer: This compensates for the op-amp s input bias current.

More information

Experiment 1: Amplifier Characterization Spring 2019

Experiment 1: Amplifier Characterization Spring 2019 Experiment 1: Amplifier Characterization Spring 2019 Objective: The objective of this experiment is to develop methods for characterizing key properties of operational amplifiers Note: We will be using

More information

Low-Power, Dual Current-Feedback OPERATIONAL AMPLIFIER

Low-Power, Dual Current-Feedback OPERATIONAL AMPLIFIER APRIL 22 REVISED JULY 28 Low-Power, Dual Current-Feedback OPERATIONAL AMPLIFIER FEATURES MINIMAL BANDWIDTH CHANGE VERSUS GAIN 17MHz BANDWIDTH AT G = +2 > 12MHz BANDWIDTH TO GAIN > +1 LOW DISTORTION:

More information

400MHz, Ultra-Low-Distortion Op Amps

400MHz, Ultra-Low-Distortion Op Amps 9; Rev ; /97 EVALUATION KIT AVAILABLE MHz, Ultra-Low-Distortion Op Amps General Description The MAX8/MAX9/MAX8/MAX9 op amps combine ultra-high-speed performance with ultra-lowdistortion operation. The

More information

Wideband, Low Power Voltage Feedback OPERATIONAL AMPLIFIER

Wideband, Low Power Voltage Feedback OPERATIONAL AMPLIFIER Wideband, Low Power Voltage Feedback OPERATIONAL AMPLIFIER FEATURES LOW POWER: mw UNITY GAIN STABLE BANDWIDTH: MHz LOW HARMONICS: 77dBc at MHz FAST SETTLING TIME: ns to.% LOW INPUT BIAS CURRENT: µa DIFFERENTIAL

More information

Linear IC s and applications

Linear IC s and applications Questions and Solutions PART-A Unit-1 INTRODUCTION TO OP-AMPS 1. Explain data acquisition system Jan13 DATA ACQUISITION SYSYTEM BLOCK DIAGRAM: Input stage Intermediate stage Level shifting stage Output

More information

DUAL OP AMP AND VOLTAGE REFERENCE General Description. Features

DUAL OP AMP AND VOLTAGE REFERENCE General Description. Features General Description The is a monolithic IC specifically designed to regulate the output current and voltage levels of switching battery chargers and power supplies. The device contains two Op Amps and

More information

Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain Relation Non-Linear Op-Amp Applications DC Imperfections

Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain Relation Non-Linear Op-Amp Applications DC Imperfections Lecture Op-Amp Building Blocks and Applications Instrumentation Amplifiers Filters Integrators Differentiators Frequency-Gain elation Non-Linear Op-Amp Applications DC Imperfections ELG439 Check List for

More information

LOW VOLTAGE / LOW POWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER FOR PORTABLE ECG

LOW VOLTAGE / LOW POWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER FOR PORTABLE ECG LOW VOLTAGE / LOW POWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER FOR PORTABLE ECG A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY BORAM LEE IN PARTIAL FULFILLMENT

More information

ANALYSIS AND DESIGN OF HIGH CMRR INSTRUMENTATION AMPLIFIER FOR ECG SIGNAL ACQUISITION SYSTEM USING 180nm CMOS TECHNOLOGY

ANALYSIS AND DESIGN OF HIGH CMRR INSTRUMENTATION AMPLIFIER FOR ECG SIGNAL ACQUISITION SYSTEM USING 180nm CMOS TECHNOLOGY International Journal of Electronics and Communication Engineering (IJECE) ISSN 2278-9901 Vol. 2, Issue 4, Sep 2013, 67-74 IASET ANALYSIS AND DESIGN OF HIGH CMRR INSTRUMENTATION AMPLIFIER FOR ECG SIGNAL

More information

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP 19-579; Rev ; 12/1 EVALUATION KIT AVAILABLE Rail-to-Rail, 2kHz Op Amp General Description The op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered

More information

BENG 186B Winter 2012 Quiz 3. March 7, NAME (Last, First): This quiz is closed book and closed note. You may use a calculator for algebra.

BENG 186B Winter 2012 Quiz 3. March 7, NAME (Last, First): This quiz is closed book and closed note. You may use a calculator for algebra. BENG 186B Winter 2012 Quiz 3 March 7, 2012 NAME (Last, First): This quiz is closed book and closed note. You may use a calculator for algebra. Circle your final answers in the space provided; show your

More information

120 khz Bandwidth, Low Distortion, Isolation Amplifier AD215

120 khz Bandwidth, Low Distortion, Isolation Amplifier AD215 a FEATURES Isolation Voltage Rating:, V rms Wide Bandwidth: khz, Full Power ( db) Rapid Slew Rate: V/ s Fast Settling Time: 9 s Low Harmonic Distortion: 8 db @ khz Low Nonlinearity:.% Wide Output Range:

More information