Functional nanostructures

Size: px
Start display at page:

Download "Functional nanostructures"

Transcription

1 Functional nanostructures Ionut Enculescu Functional Nanostructures group Multifunctional Materials and Structures Lab National Institute of Materials Physics Magurele, Romania

2 Outline Introduction Fabricating nanowires by template methods Metallic nanowires Semiconductor nanowires Nanowire devices and transport properties Electrospinning process and nanofibers Nanofiber devices Fibers and wires hierarchical structures Conclusions

3 Outline Introduction Fabricating nanowires by template methods Metallic nanowires Semiconductor nanowires Nanowire devices and transport properties Electrospinning process and nanofibers Nanofiber devices Fibers and wires hierarchical structures Conclusions

4 One-dimensional (1D) structures: high aspect ratio Fibers Tubes Wires Rods

5 Spectacular look lots of preparation methods: wet, physical, chemical, top down or bottom up 1-D Nanostructures 5

6 Applications of 1D structures Electronics Biomimetics Optoelectronics Solar cells Sensors Catalysis

7 Outline Introduction Fabricating nanowires by template methods Metallic nanowires Semiconductor nanowires Nanowire devices and transport properties Electrospinning process and nanofibers Nanofiber devices Fibers and wires hierarchical structures Conclusions

8 Ionut Enculescu, National Institute of Materials Physics, Magurele, Romania How to prepare a nanoporous membrane by swift heavy ion irradiation Irradiation Ions: - conditions to obtain continuous etchable tracks Swift kinetic energy higher than 4MeV/nucleon Heavy Mass>Xe When passing through the material deposit energy cylindrical defect zone possibility of selective etching

9 Synthesizing nanowires producing the template NaOH + CH 3 OH

10 Synthesizing nanowires - electrodeposition Cylindrical pores in PC Polycarbonate foil (PC) Au thin film Cu thick film A V Electrolytic solution E Anode Reference electrode Polycarbonate foil (PC) Cathode

11 Outline Introduction Fabricating nanowires by template methods Metallic nanowires Semiconductor nanowires Nanowire devices and transport properties Electrospinning process and nanofibers Nanofiber devices Fibers and wires hierarchical structures Conclusions

12 Metallic nanowires NiCu 12

13 NiCu nanowire arrays prepared by electrochemical template replication SEM images of NiCu alloy nanowires: (a) -800 mv, (b) -900 mv, (c) mv si (d) mv. X ray diffraction of 130 nm diameter nanowire arrays, electrodeposited at: (a) -800 mv, (b) -900 mv, (c) mv si (d) mv. 13

14 Magnetic properties (a) (c) J Nanopart Res (2013) 15:1863 Ni=20% Ni=75% (b) (d) Ni=54% Ni=92% Hysteresis curves mmeasured at low and high temperatures (10 K and 300 K), magnetic fields up to 10 K Oe applied paralel and perpendicular to the nanowires grown at: (a) -800 mv, (b) -900 mv, (c) mv and (d) mv

15 Photolithography Design of a photomask with an interdigitated electrod used for 2 probe points measurements of nanostructures Final pattern of Ti/Au interdigated electrodes on SiO 2 /Si wafer obtained in the cleanroom facility of NIMP BioSun, of July 2013 Camelia - Florina FLORICA

16 Transport properties of NiCu alloy nanowires (a) (b) (c) (d) (e) (a) Nanofire plasate pe substratul de SiO 2 /Si, intre electrozii metalici interdigitati obtinuti prin fotolitografie; (b) Alinierea substratului de SiO 2 /Si cu suportul de probe al microscopului; (c) Proba acoperita cu un film subtire de polimer de sacrificiu (PMMA) depus prin centrifugare; (d) Iradierea stratului de PMMA in vederea conectarii capetelor nanofirului cu electrozii interdigitati; (e) Imagini SEM ale unui nanofir de NiCu contactat prin EBL.

17 Electrical contacts on single NiCu nanowires (a),(c) si (d) Imagini SEM (la mariri diferite) ale unui nanofir din aliaj de NiCu contactat prin EBL si (b) Analiza EDX a distributiei elementelor in proba. 17

18 NiCu magnetoresistance Ni=20% Ni=54% Ni=75% Ni=92% 18

19 Electrodeposited alloy nanowires Electrodeposited nanowires magnetoresistance as a function of nickel content

20 Ionut Enculescu, National Institute of Materials Physics, Magurele, Romania Semiconducting nanowires ZnO electrochemical deposition was employed for fabricating nanowires. Nitrate bath 2e - +NO H 2 O NO OH - (1) Zn OH - Zn(OH) 2 ZnO +H 2 O (2) or global reaction: Zn(NO 3 ) 2 +2e - ZnO +NO NO 2 - (3) PVP was used as an additive in order to improve pore wetting

21 Using templates: Ionut Enculescu, National Institute of Materials Physics, Magurele, Romania

22 Photolithography 1 mm SEM image of the Ti/Au thin film deposited on the previously processed wafer Optical microscope image of the AZ5214E image reversal photoresist after being developed Metallic deposition SEM image of the Ti/Au interdigitated contacts deposited on SiO 2 /Si

23 e beam lithography Graphical representation of nanowires on SiO 2 between micrometric contacts Aligning the writing field with the sample area Scanning the desired pattern for making the contact between the nanowire and the micrometric electrodes EDX mapping of the Pt contacts on a ZnO nanowire

24

25 I D [A] Field effect transistor based on electrodeposited ZnO single nanowire 7.50x10-8 Vg = 0 V Vg = 2 V Vg = 4 V 6.00x10-8 Vg = 6 V Vg = 8 V Vg = 10 V Vg = 12 V 4.50x10-8 Vg = 14 V Vg = 16 V Vg = 18 V 3.00x x10-8 V GS μm V DS [V] Gate

26

27

28

29 Uniform arrays of CdTe nanowires Cd 2+ + HTeO H + + 6e CdTe + 2H 2 O.

30 Cd (%) Te (%) F(R) 2 CdTe(311) I(a.u.) CdTe(220) CdTe(111) Cu (200) Synthesizing CdTe nanowires 16 E g =1.48 ev 300 Cu (111) Photon energy (1240/) [ev] Kubelka-Munk function versus the photon energy for determining the energy bandgap of the CdTe nanowires (E g =1.48 ev) XRD spectrum of CdTe wires showing zinc cubic blend structure U (mv) U (mv)

31 Contacting single CdTe nanowires Photolithography

32 Contacting single CdTe nanowires Focused Ion Beam Induced Deposition (FIBID) Ion gun (CH 3 ) 3 Pt(CH 3 ) Pt Deposition of Pt from an organo-metallic gas with the help of an ion beam

33 Contacting single CdTe nanowires FIBID Ion gun (CH 3 ) 3 Pt(CH 3 ) Pt Deposition of Pt from an organo-metallic gas with the help of an ion beam SEM image of Pt stripes deposited with the help of FIB at different currents of the ion beam

34 Contacting single CdTe nanowires FIBID

35

36 I (A) Electrical properties of single CdTe nanowires 2.0x x10-9 Pt-CdTe(nw)-Pt FIBID x x10-9 non-passivated passivated with PMMA U (V)

37 I DS (A) I DS (A) Field effect transistor based on electrodeposited CdTe single nanowire 9.0x x x10-9 V G 0 V 6 V 12 V 18 V 1.2x x x10-9 V G 0 V 6 V 12 V 18 V 3.0x Pt-CdTe(nw)-Pt FIBID 0.0 Pt-CdTe(nw)-Pt FIBID PMMA passivation V DS (V) V DS (V)

38 Typical one obtains polycrystalline films with crystallite morphology influenced by substrate, bath composition and deposition temperature: In the concentration range M Zn 2+ ions we deal with arrays of hexagonal prisms or platelets E. Matei, I. Enculescu, Materials Research Bulletin 2011.

39 In the concentration range M Zn 2+ ions we deal with arrays of hexagonal nanowires e.g. arrays of nanowires obtained by electrodeposition after sputtering a ZnO seed layer I. Enculescu et al in press.

40 Deposition conditions can be made more complex e.g. pulsed deposition to form structures such as tubes or cones Deposition using inverse ramp potential leads to hollow hexagonal prisms: a deposition etching process Matei et al. Mat. Chem Phys

41 Structure is also influenced by the deposition conditions (including deposition rate, concentration of deposition bath and so on). Evolution of structure as a function of deposition parameters for ramp potential deposition: Matei et al. Mat. Chem Phys. 2012

42 In the concentration range M Zn 2+ ions we deal with arrays of hexagonal nanowires e.g. arrays of nanowires obtained by electrodeposition after sputtering a ZnO seed layer I. Enculescu et al in press.

43 V When employing the appropriate electrodes one can directly electrodeposit self contacted arrays of nanowires which can be further employed as electronic devices 43

44 Templateless deposited ZnO nanowires Xray diffraction data for arrays of nanowires deposited at different overvoltages (a)-800 mv, (b) mv si (c) mv. M images of arrays of nanowires deposited onto interdigitated electrodes at different overvoltages (a, b) -800 mv; (c, d) mv and (e, f) mv. 44

45 Templateless deposited ZnO nanowires (a) Refleiton spectra employed for determining the band gap using the Kubelka Munk representation 45

46 Templateless deposited ZnO nanowires (a) Reflection spectra employed for determining the band gap using the Kubelka Munk representation (a) (b) Photoluminescence spectra of the arrays of nanowires deposited at different voltages and ratio between excitonic peak and defect peak heights 46

47 Templateless deposited ZnO nanowires IV characteristics measured at different temperatures for samples deposited at different overvoltages (a) -800 mv, (b) mv si (c) mv. 47

48 Templateless deposited ZnO nanowires -800 mv -800 mv Space charge limited current -linear distribution of traps J SCLCl = 9 8 εµ qn O U O exp(αu) C d2 ; α = C 1 qdkt N t -exponential distribution of traps J SCLCe = µ o N c q 1 γ [ γ = T 0 /T εγ N t (γ+1) ]γ ( 2γ+1 Uγ+1 )γ+1 γ+1 d 2γ mv mv mv mv IV characteristics measured at different temperatures for samples deposited at different overvoltages (a) -800 mv, (b) mv si (c) mv. Log log representations of the I-V curves 48

49 Templateless deposited ZnO nanowires ln(r) vs. 1000/T for nanowires grown at (a) -800 mv, (b) mv si (c) mv; evidentiind prezenta a doua zone. 49

50 Electrospinning process Electrospinning is simple and inexpensive method used for the synthesis of metallic, polymer and ceramic fibers. Fiber diameter ranges from tens of nanometers to several micrometers. Stationary collector nonwoven meshes Rotating collector well-aligned arrays

51 Electrospinning process Solution parameters: polymer type and molecular weight; solvent type; solution surface tension, viscosity and conductivity. Process parameters: spinneret diameter; solution feed rate; applied voltage; distance between spinneret and collector; collector type. Ambient parameters: temperature; humidity; pressure; atmosphere type.

52 Thermochromic devices Schematic of the process for attaching the web electrodes to the substrates. GOLD SILVER Textile Paper SEM images of metal-covered polymer fiber webs attached to substrates.

53 Thermochromic devices Transmission spectra of polymer fiber webs attached to glass substrates and the correlation between transmission and resistance (inset figure). SEM images of metal-covered polymer fiber webs attached to substrates.

54 Thermochromic devices Au/Glass Ag/Textile Ag/Paper Temperature vs. time as a function of the applied voltage for metal-covered polymer fiber webs attached to substrates.

55 Thermochromic devices

56 Electrochromism and electroactivity Schematic of the electrochromic device fabrication.

57 Electrochromism and electroactivity Transmission spectra of polymer fiber webs attached to glass substrates.

58 Electrochromism and electroactivity Chronoamperogram for polyaniline deposition on polymer fiber webs. SEM images of polyaniline-covered fiber webs.

59 Electrochromism and electroactivity

60 ZnO electrodeposition on fiber webs The steps in preparing the substrates for ZnO electrodeposition. Current vs. time curves for all deposition experiments.

61 ZnO electrodeposition on fiber webs Transmission spectra of fiber webs before and after ZnO electrodeposition. SEM images of ZnO-covered fiber webs. XRD patterns of electrodeposited ZnO.

62 ZnO electrodeposition on fiber webs PL emission spectra excited at 350 nm of electrodeposited ZnO.

63 ZnO electrodeposition on fiber webs PL emission spectra excited at 350 nm of electrodeposited ZnO. Photocatalytic degradation curves of MB under UV irradiation for electrodeposited ZnO webs.

64 Conclusions -1 D structures are interesting for a wide range of applications; -combination of techniques necessary for fabricating such nanostructures -integrating them into devices lithographical techniques at multiscale -there are possibilities to fabricate cheap large scale nanostructures -use of green materials possible -open up possibilities for new generation of devices

65 Ionut Enculescu Elena Matei Nicoleta Preda Monica Enculescu Andreea Costas; Alex Evanghelidis; Camelia Florica; Mihaela Oancea; Cristina Busuioc

66 Thank you for your attention!

Supplementary Information

Supplementary Information Supplementary Information Wireless thin film transistor based on micro magnetic induction coupling antenna Byoung Ok Jun 1, Gwang Jun Lee 1, Jong Gu Kang 1,2, Seung Uk Kim 1, Ji Woong Choi 1, Seung Nam

More information

SYNTHESIS AND CHARACTERIZATION OF II-IV GROUP AND SILICON RELATED NANOMATERIALS

SYNTHESIS AND CHARACTERIZATION OF II-IV GROUP AND SILICON RELATED NANOMATERIALS SYNTHESIS AND CHARACTERIZATION OF II-IV GROUP AND SILICON RELATED NANOMATERIALS ISMATHULLAKHAN SHAFIQ MASTER OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG FEBRUARY 2008 CITY UNIVERSITY OF HONG KONG 香港城市大學

More information

Non-Volatile Memory Based on Solid Electrolytes

Non-Volatile Memory Based on Solid Electrolytes Non-Volatile Memory Based on Solid Electrolytes Michael Kozicki Chakku Gopalan Murali Balakrishnan Mira Park Maria Mitkova Center for Solid State Electronics Research Introduction The electrochemical redistribution

More information

The Department of Advanced Materials Engineering. Materials and Processes in Polymeric Microelectronics

The Department of Advanced Materials Engineering. Materials and Processes in Polymeric Microelectronics The Department of Advanced Materials Engineering Materials and Processes in Polymeric Microelectronics 1 Outline Materials and Processes in Polymeric Microelectronics Polymeric Microelectronics Process

More information

FABRICATION AND CHARACTERIZATION OF NICKEL NANOWIRES

FABRICATION AND CHARACTERIZATION OF NICKEL NANOWIRES FABRICATION AND CHARACTERIZATION OF NICKEL NANOWIRES Raminder Kaur Department of Basic and Applied Sciences, Punjabi University, Patiala, India ABSTRACT This paper shows that nickel nanowires of length

More information

Raman Spectroscopy and Transmission Electron Microscopy of Si x Ge 1-x -Ge-Si Core-Double-Shell Nanowires

Raman Spectroscopy and Transmission Electron Microscopy of Si x Ge 1-x -Ge-Si Core-Double-Shell Nanowires Raman Spectroscopy and Transmission Electron Microscopy of Si x Ge 1-x -Ge-Si Core-Double-Shell Nanowires Paola Perez Mentor: Feng Wen PI: Emanuel Tutuc Background One-dimensional semiconducting nanowires

More information

Nano-structured superconducting single-photon detector

Nano-structured superconducting single-photon detector Nano-structured superconducting single-photon detector G. Gol'tsman *a, A. Korneev a,v. Izbenko a, K. Smirnov a, P. Kouminov a, B. Voronov a, A. Verevkin b, J. Zhang b, A. Pearlman b, W. Slysz b, and R.

More information

Contents. Nano-2. Nano-2. Nanoscience II: Nanowires. 2. Growth of nanowires. 1. Nanowire concepts Nano-2. Nano-2

Contents. Nano-2. Nano-2. Nanoscience II: Nanowires. 2. Growth of nanowires. 1. Nanowire concepts Nano-2. Nano-2 Contents Nanoscience II: Nanowires Kai Nordlund 17.11.2010 Faculty of Science Department of Physics Division of Materials Physics 1. Introduction: nanowire concepts 2. Growth of nanowires 1. Spontaneous

More information

Supporting Information. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of

Supporting Information. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Supporting Information Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices Ping Hu, Mengyu Yan, Xuanpeng Wang, Chunhua Han,*

More information

pattern. (c-e) TEM and HRTEM images of the nanowire (SAED pattern in inset).

pattern. (c-e) TEM and HRTEM images of the nanowire (SAED pattern in inset). Figure S1. The pristine Co 2 (OH) 2 CO 3 nanowire arrays. (a) Low-magnification SEM image of the Co 2 (OH) 2 CO 3 nanowire arrays on nickel foam and (b) corresponding XRD pattern. (c-e) TEM and HRTEM images

More information

Supporting Information. for. Visualization of Electrode-Electrolyte Interfaces in LiPF 6 /EC/DEC Electrolyte for Lithium Ion Batteries via In-Situ TEM

Supporting Information. for. Visualization of Electrode-Electrolyte Interfaces in LiPF 6 /EC/DEC Electrolyte for Lithium Ion Batteries via In-Situ TEM Supporting Information for Visualization of Electrode-Electrolyte Interfaces in LiPF 6 /EC/DEC Electrolyte for Lithium Ion Batteries via In-Situ TEM Zhiyuan Zeng 1, Wen-I Liang 1,2, Hong-Gang Liao, 1 Huolin

More information

write-nanocircuits Direct-write Jaebum Joo and Joseph M. Jacobson Molecular Machines, Media Lab Massachusetts Institute of Technology, Cambridge, MA

write-nanocircuits Direct-write Jaebum Joo and Joseph M. Jacobson Molecular Machines, Media Lab Massachusetts Institute of Technology, Cambridge, MA Fab-in in-a-box: Direct-write write-nanocircuits Jaebum Joo and Joseph M. Jacobson Massachusetts Institute of Technology, Cambridge, MA April 17, 2008 Avogadro Scale Computing / 1 Avogadro number s? Intel

More information

Lateral Nanoconcentrator Nanowire Multijunction Photovoltaic Cells

Lateral Nanoconcentrator Nanowire Multijunction Photovoltaic Cells Lateral Nanoconcentrator Nanowire Multijunction Photovoltaic Cells Investigators Professor H.-S. Philip Wong (Department of Electrical Engineering) Professor Peter Peumans (Department of Electrical Engineering)

More information

Waveguiding in PMMA photonic crystals

Waveguiding in PMMA photonic crystals ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 12, Number 3, 2009, 308 316 Waveguiding in PMMA photonic crystals Daniela DRAGOMAN 1, Adrian DINESCU 2, Raluca MÜLLER2, Cristian KUSKO 2, Alex.

More information

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors Veerendra Dhyani 1, and Samaresh Das 1* 1 Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi-110016,

More information

Chapter 3 Fabrication

Chapter 3 Fabrication Chapter 3 Fabrication The total structure of MO pick-up contains four parts: 1. A sub-micro aperture underneath the SIL The sub-micro aperture is used to limit the final spot size from 300nm to 600nm for

More information

Fabrication Techniques of Optical ICs

Fabrication Techniques of Optical ICs Fabrication Techniques of Optical ICs Processing Techniques Lift off Process Etching Process Patterning Techniques Photo Lithography Electron Beam Lithography Photo Resist ( Microposit MP1300) Electron

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/cgi/content/full/science.1234855/dc1 Supplementary Materials for Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active/Adaptive Tactile Imaging Wenzhuo Wu,

More information

Electrochemical fabrication and magnetic properties of highly ordered silver nickel core-shell nanowires

Electrochemical fabrication and magnetic properties of highly ordered silver nickel core-shell nanowires Journal of Alloys and Compounds 449 (2008) 232 236 Electrochemical fabrication and magnetic properties of highly ordered silver nickel core-shell nanowires Shih-Chin Lin a, San-Yuan Chen a,, Yun-Tien Chen

More information

Magnesium and Magnesium-Silicide coated Silicon Nanowire composite Anodes for. Lithium-ion Batteries

Magnesium and Magnesium-Silicide coated Silicon Nanowire composite Anodes for. Lithium-ion Batteries Magnesium and Magnesium-Silicide coated Silicon Nanowire composite Anodes for Lithium-ion Batteries Alireza Kohandehghan a,b, Peter Kalisvaart a,b,*, Martin Kupsta b, Beniamin Zahiri a,b, Babak Shalchi

More information

p-n Junction Diodes Fabricated Using Poly (3-hexylthiophene-2,5-dyil) Thin Films And Nanofibers

p-n Junction Diodes Fabricated Using Poly (3-hexylthiophene-2,5-dyil) Thin Films And Nanofibers Proceedings of the National Conference On Undergraduate Research (NCUR) 2017 University of Memphis, TN Memphis, Tennessee April 6 8, 2017 p-n Junction Diodes Fabricated Using Poly (3-hexylthiophene-2,5-dyil)

More information

Nanofluidic Diodes based on Nanotube Heterojunctions

Nanofluidic Diodes based on Nanotube Heterojunctions Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions Ruoxue Yan, Wenjie Liang, Rong Fan, Peidong Yang 1 Department of Chemistry, University of California, Berkeley, CA 94720, USA

More information

Fabrication of a submicron patterned using an electrospun single fiber as mask. Author(s)Ishii, Yuya; Sakai, Heisuke; Murata,

Fabrication of a submicron patterned using an electrospun single fiber as mask. Author(s)Ishii, Yuya; Sakai, Heisuke; Murata, JAIST Reposi https://dspace.j Title Fabrication of a submicron patterned using an electrospun single fiber as mask Author(s)Ishii, Yuya; Sakai, Heisuke; Murata, Citation Thin Solid Films, 518(2): 647-650

More information

Metal Oxide Nanowires: : Synthesis, Characterization and Device Applications

Metal Oxide Nanowires: : Synthesis, Characterization and Device Applications Metal Oxide Nanowires: : Synthesis, Characterization and Device Applications Jia Grace Lu Dept. of Chemical Engineering and Materials Science & Dept. of Electrical Engineering and Computer Science University

More information

Supplementary Information

Supplementary Information Supplementary Information For Nearly Lattice Matched All Wurtzite CdSe/ZnTe Type II Core-Shell Nanowires with Epitaxial Interfaces for Photovoltaics Kai Wang, Satish C. Rai,Jason Marmon, Jiajun Chen, Kun

More information

Supporting Information. Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells

Supporting Information. Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells Supporting Information Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells Sarah Brittman, 1,2 Youngdong Yoo, 1 Neil P. Dasgupta, 1,3 Si-in Kim, 4 Bongsoo Kim, 4 and Peidong

More information

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon

More information

Zinc Oxide Nanowires Impregnated with Platinum and Gold Nanoparticle for Ethanol Sensor

Zinc Oxide Nanowires Impregnated with Platinum and Gold Nanoparticle for Ethanol Sensor CMU. J.Nat.Sci. Special Issue on Nanotechnology (2008) Vol. 7(1) 185 Zinc Oxide Nanowires Impregnated with Platinum and Gold Nanoparticle for Ethanol Sensor Weerayut Wongka, Sasitorn Yata, Atcharawan Gardchareon,

More information

Nanotechnology, the infrastructure, and IBM s research projects

Nanotechnology, the infrastructure, and IBM s research projects Nanotechnology, the infrastructure, and IBM s research projects Dr. Paul Seidler Coordinator Nanotechnology Center, IBM Research - Zurich Nanotechnology is the understanding and control of matter at dimensions

More information

Beams and Scanning Probe Microscopy

Beams and Scanning Probe Microscopy IFN-CNR, Sezione di Trento Istituto Trentino di Cultura of Trento Department of Physics University of Trento Towards the joint use of X-ray Beams and Scanning Probe Microscopy Silvia Larcheri SILS 2005

More information

High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage. and Hong Jin Fan, *

High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage. and Hong Jin Fan, * Supporting Information for High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage Xinhui Xia, Jiangping Tu,, * Yongqi Zhang, Xiuli Wang, Changdong

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11293 1. Formation of (111)B polar surface on Si(111) for selective-area growth of InGaAs nanowires on Si. Conventional III-V nanowires (NWs) tend to grow in

More information

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Andrea Kroner We present 85 nm wavelength top-emitting vertical-cavity surface-emitting lasers (VCSELs) with integrated photoresist

More information

SILICON NANOWIRE HYBRID PHOTOVOLTAICS

SILICON NANOWIRE HYBRID PHOTOVOLTAICS SILICON NANOWIRE HYBRID PHOTOVOLTAICS Erik C. Garnett, Craig Peters, Mark Brongersma, Yi Cui and Mike McGehee Stanford Univeristy, Department of Materials Science, Stanford, CA, USA ABSTRACT Silicon nanowire

More information

SYNTHESIS AND ANALYSIS OF SILICON NANOWIRES GROWN ON Si (111) SUBSTRATE AT DIFFERENT SILANE GAS FLOW RATE

SYNTHESIS AND ANALYSIS OF SILICON NANOWIRES GROWN ON Si (111) SUBSTRATE AT DIFFERENT SILANE GAS FLOW RATE SYNTHESIS AND ANALYSIS OF SILICON NANOWIRES GROWN ON Si (111) SUBSTRATE AT DIFFERENT SILANE GAS FLOW RATE Habib Hamidinezhad*, Yussof Wahab, Zulkafli Othaman and Imam Sumpono Ibnu Sina Institute for Fundamental

More information

Mini-project report. Nanowire Photovoltaics Correlating the Optical and Structural Properties of GaAs Nanowires Containing InGaAs Quantum Dots

Mini-project report. Nanowire Photovoltaics Correlating the Optical and Structural Properties of GaAs Nanowires Containing InGaAs Quantum Dots Mini-project report Nanowire Photovoltaics Correlating the Optical and Structural Properties of GaAs Nanowires Containing InGaAs Quantum Dots Alex Barrows a.barrows@sheffield.ac.uk 18/05/2012 1 Abstract

More information

Electronic Supplementary Information:

Electronic Supplementary Information: Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information: Fabrication and optical characterization

More information

3D SOI elements for System-on-Chip applications

3D SOI elements for System-on-Chip applications Advanced Materials Research Online: 2011-07-04 ISSN: 1662-8985, Vol. 276, pp 137-144 doi:10.4028/www.scientific.net/amr.276.137 2011 Trans Tech Publications, Switzerland 3D SOI elements for System-on-Chip

More information

NANOSTRUCTURED CuCo NANOWIRES. Fedosyuk V.M.

NANOSTRUCTURED CuCo NANOWIRES. Fedosyuk V.M. NANOSTRUCTURED CuCo NANOWIRES Fedosyuk V.M. Institute of Solid State Physics and Semiconductors of the Belorussian Academy of Sciences, P Brovki str 19, 220072 Minsk, Belarus E-mail:fedosyuk@ifttp.bas-net.by

More information

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2 Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS 2 /hon a 300- BN/graphene heterostructures. a, CVD-grown b, Graphene was patterned into graphene strips by oxygen monolayer

More information

Additional information Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

Additional information Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels Additional information Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels By Don-Ju Kim 1, Hyo-Joong Kim 1, Ki-Won Seo 1, Ki-Hyun Kim 2, Tae-Wong Kim

More information

Effect of thermal stress and diameter on I-V characteristics of template synthesized Cu-Se heterostructures

Effect of thermal stress and diameter on I-V characteristics of template synthesized Cu-Se heterostructures Effect of thermal stress and diameter on I-V characteristics of template synthesized Cu-Se heterostructures S.K.Chakarvarti and Meeru Chaudhri 2 Department of Applied Physics, National Institute of Technology

More information

Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors

Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors Supplementary Information Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors J. A. Caraveo-Frescas and H. N. Alshareef* Materials Science and Engineering, King

More information

Ni-BASED NANOWIRE ARRAYS AS CHEMICAL AND MAGNETIC FIELD SENSORS

Ni-BASED NANOWIRE ARRAYS AS CHEMICAL AND MAGNETIC FIELD SENSORS THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 18, Number 3/2017, pp. 207 214 Ni-BASED NANOWIRE ARRAYS AS CHEMICAL AND MAGNETIC FIELD SENSORS Adrian

More information

Supplementary Information

Supplementary Information Supplementary Information Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes M. M. Shaijumon, F. S. Ou, L. Ci, and P. M. Ajayan * Department of Mechanical

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

Supplementary Note 1: Structural control of BCs. The availability of PS spheres in various

Supplementary Note 1: Structural control of BCs. The availability of PS spheres in various Supplementary Note 1: Structural control of BCs. The availability of PS spheres in various sizes (from < 100 nm to > 10 µm) allows us to design synthetic BCs with a broad range of structural geometries.

More information

Jian-Wei Liu, Jing Zheng, Jin-Long Wang, Jie Xu, Hui-Hui Li, Shu-Hong Yu*

Jian-Wei Liu, Jing Zheng, Jin-Long Wang, Jie Xu, Hui-Hui Li, Shu-Hong Yu* Supporting Information Ultrathin 18 O 49 Nanowire Assemblies for Electrochromic Devices Jian-ei Liu, Jing Zheng, Jin-Long ang, Jie Xu, Hui-Hui Li, Shu-Hong Yu* Experimental Section Synthesis and Assembly

More information

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. The lithographic process

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. The lithographic process Section 2: Lithography Jaeger Chapter 2 Litho Reader The lithographic process Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon dioxide barrier layer Positive photoresist

More information

Ion Beam Lithography next generation nanofabrication

Ion Beam Lithography next generation nanofabrication Ion Beam Lithography next generation nanofabrication EFUG Bordeaux 2011 ion beams develop Lloyd Peto IBL sales manager Copyright 2011 by Raith GmbH ionline new capabilities You can now Apply an ion beam

More information

*Corresponding author.

*Corresponding author. Supporting Information for: Ligand-Free, Quantum-Confined Cs 2 SnI 6 Perovskite Nanocrystals Dmitriy S. Dolzhnikov, Chen Wang, Yadong Xu, Mercouri G. Kanatzidis, and Emily A. Weiss * Department of Chemistry,

More information

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 Litho Reader EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered

More information

Integrated into Nanowire Waveguides

Integrated into Nanowire Waveguides Supporting Information Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides Anthony Fu, 1,3 Hanwei Gao, 1,3,4 Petar Petrov, 1, Peidong Yang 1,2,3* 1 Department of Chemistry,

More information

Nanomagnet Arrays for Patterned Magnetic Media and Magnonic Crystal Applications

Nanomagnet Arrays for Patterned Magnetic Media and Magnonic Crystal Applications Nanomagnet Arrays for Patterned Magnetic Media and Magnonic Crystal Applications Manish Sharma Final Report for Project AOARD-08-4023 Asian Office of Aerospace Research and Development US Air Force Centre

More information

Index. BaF 2 crystal 41 biochemical sensor 7, 316, ,

Index. BaF 2 crystal 41 biochemical sensor 7, 316, , Index acousto-optic effect 243 44 air bandedge 35, 266 air gap 188, 197, 224, 240 41 air holes 16 17, 52 53, 55, 64, 189, 192, 216 18, 241 43, 245, 266 68, 270 72, 298 99, 333 34, 336 37, 341 42 air pores

More information

Microprobe-enabled Terahertz sensing applications

Microprobe-enabled Terahertz sensing applications Microprobe-enabled Terahertz sensing applications World of Photonics, Laser 2015, Munich Protemics GmbH Aachen, Germany Terahertz microprobing technology: Taking advantage of Terahertz range benefits without

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Surface-Guided CsPbBr 3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response Eitan Oksenberg, Ella Sanders, Ronit

More information

EG2605 Undergraduate Research Opportunities Program. Large Scale Nano Fabrication via Proton Lithography Using Metallic Stencils

EG2605 Undergraduate Research Opportunities Program. Large Scale Nano Fabrication via Proton Lithography Using Metallic Stencils EG2605 Undergraduate Research Opportunities Program Large Scale Nano Fabrication via Proton Lithography Using Metallic Stencils Tan Chuan Fu 1, Jeroen Anton van Kan 2, Pattabiraman Santhana Raman 2, Yao

More information

- Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy

- Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy - Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy Yongho Seo Near-field Photonics Group Leader Wonho Jhe Director School of Physics and Center for Near-field

More information

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 69 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array Roland Jäger and Christian Jung We have designed and fabricated

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/6/e1501326/dc1 Supplementary Materials for Organic core-sheath nanowire artificial synapses with femtojoule energy consumption Wentao Xu, Sung-Yong Min, Hyunsang

More information

Nanovie. Scanning Tunnelling Microscope

Nanovie. Scanning Tunnelling Microscope Nanovie Scanning Tunnelling Microscope Nanovie STM Always at Hand Nanovie STM Lepto for Research Nanovie STM Educa for Education Nanovie Auto Tip Maker Nanovie STM Lepto Portable 3D nanoscale microscope

More information

Single Nanoparticle Plasmonic Electro-Optic Modulator Based on MoS 2 Monolayers

Single Nanoparticle Plasmonic Electro-Optic Modulator Based on MoS 2 Monolayers Single Nanoparticle Plasmonic Electro-Optic Modulator Based on MoS 2 Monolayers Bowen Li,, Shuai Zu,, Jiadong Zhou, Qiao Jiang, Bowen Du, Hangyong Shan, Yang Luo, Zheng Liu, Xing Zhu, and Zheyu Fang,*

More information

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by Supporting online material Materials and Methods Single-walled carbon nanotube (SWNT) devices are fabricated using standard photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited

More information

Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers

Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers Receivers & Array Workshop 2010 September 20th, 2010 Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers Andreas R. Alt, Colombo R. Bolognesi Millimeter-Wave Electronics Group (MWE)

More information

POLYMER MICROSTRUCTURE WITH TILTED MICROPILLAR ARRAY AND METHOD OF FABRICATING THE SAME

POLYMER MICROSTRUCTURE WITH TILTED MICROPILLAR ARRAY AND METHOD OF FABRICATING THE SAME POLYMER MICROSTRUCTURE WITH TILTED MICROPILLAR ARRAY AND METHOD OF FABRICATING THE SAME Field of the Invention The present invention relates to a polymer microstructure. In particular, the present invention

More information

Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells

Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells Alexei Pudov 1, James Sites 1, Tokio Nakada 2 1 Department of Physics, Colorado State University, Fort

More information

Synthesis of Silicon. applications. Nanowires Team. Régis Rogel (Ass.Pr), Anne-Claire Salaün (Ass. Pr)

Synthesis of Silicon. applications. Nanowires Team. Régis Rogel (Ass.Pr), Anne-Claire Salaün (Ass. Pr) Synthesis of Silicon nanowires for sensor applications Anne-Claire Salaün Nanowires Team Laurent Pichon (Pr), Régis Rogel (Ass.Pr), Anne-Claire Salaün (Ass. Pr) Ph-D positions: Fouad Demami, Liang Ni,

More information

Nanoscale FEATURE ARTICLE. Transparent metal oxide nanowire transistors. Dynamic Article Links C <

Nanoscale FEATURE ARTICLE. Transparent metal oxide nanowire transistors. Dynamic Article Links C < Nanoscale View Article Online / Journal Homepage / Table of Contents for this issue Dynamic Article Links C < Cite this: Nanoscale, 2012, 4, 3001 www.rsc.org/nanoscale Transparent metal oxide nanowire

More information

Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor

Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor Supporting Information Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor Xiang Xiao 1, Letao Zhang 1, Yang Shao 1, Xiaoliang Zhou 2, Hongyu He 1, and Shengdong Zhang 1,2 * 1 School

More information

A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE

A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE Chih-Yuan Chang and Yi-Min Hsieh and Xuan-Hao Hsu Department of Mold and Die Engineering, National

More information

Current Optics Research at the ElectroOptics Research Institute & Nanotechnology Center

Current Optics Research at the ElectroOptics Research Institute & Nanotechnology Center Current Optics Research at the ElectroOptics Research Institute & Nanotechnology Center Robert W. Cohn, Director ElectroOptics Research Institute & Nanotechnology Center University of Louisville ElectroOptics

More information

Functional Materials. Optoelectronic devices

Functional Materials. Optoelectronic devices Functional Materials Lecture 2: Optoelectronic materials and devices (inorganic). Photonic materials Optoelectronic devices Light-emitting diode (LED) displays Photodiode and Solar cell Photoconductive

More information

Supplementary Figure S1. Characterization using X-ray diffraction (XRD). (a) Starting titanium (Ti) foil used for the synthesis (JCPDS No ).

Supplementary Figure S1. Characterization using X-ray diffraction (XRD). (a) Starting titanium (Ti) foil used for the synthesis (JCPDS No ). Supplementary Figure S1. Characterization using X-ray diffraction (XRD). (a) Starting titanium (Ti) foil used for the synthesis (JCPDS No. 65-3362). (b) Oxidized Rutile titanium dioxide (TiO 2 ) obtained

More information

Electrosynthesis of Polythiophene Nanowires on Fabricated Anodic Alumina Oxide Templates

Electrosynthesis of Polythiophene Nanowires on Fabricated Anodic Alumina Oxide Templates K. Cui et al. / Acta Manilana 55 (2007) 9-14 Acta Manilana 55 (2007) pp. 9-14 Printed in the Philippines ISSN 0065-1370 9 Electrosynthesis of Polythiophene Nanowires on Fabricated Anodic Alumina Oxide

More information

Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires

Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires Electronic Supplementary Material Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires Minliang Lai 1, Qiao Kong 1, Connor G. Bischak 1, Yi Yu 1,2, Letian Dou

More information

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation 238 Hitachi Review Vol. 65 (2016), No. 7 Featured Articles Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation AFM5500M Scanning Probe Microscope Satoshi Hasumura

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/7/e1629/dc1 Supplementary Materials for Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films Xuewen Wang, Xuexia He, Hongfei Zhu,

More information

Supplementary information for Stretchable photonic crystal cavity with

Supplementary information for Stretchable photonic crystal cavity with Supplementary information for Stretchable photonic crystal cavity with wide frequency tunability Chun L. Yu, 1,, Hyunwoo Kim, 1, Nathalie de Leon, 1,2 Ian W. Frank, 3 Jacob T. Robinson, 1,! Murray McCutcheon,

More information

Synthesis of Silver Nanowires with Reduced Diameters Using Benzoin-Derived Radicals to Make Transparent Conductors with High Transparency and Low Haze

Synthesis of Silver Nanowires with Reduced Diameters Using Benzoin-Derived Radicals to Make Transparent Conductors with High Transparency and Low Haze Supporting Information Synthesis of Silver Nanowires with Reduced Diameters Using Benzoin-Derived Radicals to Make Transparent Conductors with High Transparency and Low Haze Zhiqiang Niu,, Fan Cui,, Elisabeth

More information

PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory. Simple Si solar Cell!

PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory. Simple Si solar Cell! Where were we? Simple Si solar Cell! Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion

More information

Supporting Information

Supporting Information Supporting Information Uniform Nickel Vanadate (Ni3V2O8) Nanowire Arrays Organized by Ultrathin Nanosheets with Enhanced Lithium Storage Properties Chang Wang 1, Dong Fang 1,*, Hong en Wang 2, Yunhe Cao

More information

Life under low Reynolds numbers How do microorganisms swim?

Life under low Reynolds numbers How do microorganisms swim? Manipulation of Nanoentities in Suspension C. L. Chien Johns Hopkins University Outline Introduction Low Reynolds number regime AC electric field and DEP force Manipulation, Patterning, and Rotation of

More information

Laser printing for micro and nanomanufacturing

Laser printing for micro and nanomanufacturing Laser printing for micro and nanomanufacturing Ph. Delaporte Lasers, Plasmas and Photonics Processes Laboratory, CNRS, Aix-Marseille University Marseille, France Contact: Philippe Delaporte delaporte@lp3.univ-mrs.fr

More information

5. Lithography. 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen

5. Lithography. 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen 5. Lithography 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen References: Semiconductor Devices: Physics and Technology. 2 nd Ed. SM

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Transfer printing stacked nanomembrane lasers on silicon Hongjun Yang 1,3, Deyin Zhao 1, Santhad Chuwongin 1, Jung-Hun Seo 2, Weiquan Yang 1, Yichen Shuai 1, Jesper Berggren 4, Mattias Hammar 4, Zhenqiang

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #3 is due today No class Monday, Feb 26 Pre-record

More information

Module - 2 Lecture - 13 Lithography I

Module - 2 Lecture - 13 Lithography I Nano Structured Materials-Synthesis, Properties, Self Assembly and Applications Prof. Ashok. K.Ganguli Department of Chemistry Indian Institute of Technology, Delhi Module - 2 Lecture - 13 Lithography

More information

Supporting Information. A Tough and High-Performance Transparent Electrode from a. Scalable Transfer-Free Method

Supporting Information. A Tough and High-Performance Transparent Electrode from a. Scalable Transfer-Free Method Supporting Information A Tough and High-Performance Transparent Electrode from a Scalable Transfer-Free Method Tianda He, Aozhen Xie, Darrell H. Reneker and Yu Zhu * Department of Polymer Science, College

More information

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs 1 CMOS Digital Integrated Circuits 3 rd Edition Categories of Materials Materials can be categorized into three main groups regarding their

More information

HipoCIGS: enamelled steel as substrate for thin film solar cells

HipoCIGS: enamelled steel as substrate for thin film solar cells HipoCIGS: enamelled steel as substrate for thin film solar cells Lecturer D. Jacobs*, Author S. Efimenko, Co-author C. Schlegel *:PRINCE Belgium bvba, Pathoekeweg 116, 8000 Brugge, Belgium, djacobs@princecorp.com

More information

Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits

Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits Marcello Graziosi, ESR 3 within PICQUE (Marie Curie ITN project) and PhD student marcello.graziosi@ifn.cnr.it Istituto

More information

Vertical Nanowall Array Covered Silicon Solar Cells

Vertical Nanowall Array Covered Silicon Solar Cells International Conference on Solid-State and Integrated Circuit (ICSIC ) IPCSIT vol. () () IACSIT Press, Singapore Vertical Nanowall Array Covered Silicon Solar Cells J. Wang, N. Singh, G. Q. Lo, and D.

More information

Supporting Information. Air-stable surface charge transfer doping of MoS 2 by benzyl viologen

Supporting Information. Air-stable surface charge transfer doping of MoS 2 by benzyl viologen Supporting Information Air-stable surface charge transfer doping of MoS 2 by benzyl viologen Daisuke Kiriya,,ǁ, Mahmut Tosun,,ǁ, Peida Zhao,,ǁ, Jeong Seuk Kang, and Ali Javey,,ǁ,* Electrical Engineering

More information

Monolithically integrated InGaAs nanowires on 3D. structured silicon-on-insulator as a new platform for. full optical links

Monolithically integrated InGaAs nanowires on 3D. structured silicon-on-insulator as a new platform for. full optical links Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links Hyunseok Kim 1, Alan C. Farrell 1, Pradeep Senanayake 1, Wook-Jae Lee 1,* & Diana.

More information

Growth and replication of ordered ZnO nanowire arrays on general flexible substrates

Growth and replication of ordered ZnO nanowire arrays on general flexible substrates COMMUNICATION www.rsc.org/materials Journal of Materials Chemistry Growth and replication of ordered ZnO nanowire arrays on general flexible substrates Su Zhang, ab Yue Shen, b Hao Fang, b Sheng Xu, b

More information

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26 Today s Outline - January 25, 2018 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today s Outline - January 25, 2018 HW #2 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Submitted to Electronic Supplementary Information Scalable Fabrication of

More information

Part 5-1: Lithography

Part 5-1: Lithography Part 5-1: Lithography Yao-Joe Yang 1 Pattern Transfer (Patterning) Types of lithography systems: Optical X-ray electron beam writer (non-traditional, no masks) Two-dimensional pattern transfer: limited

More information