SYNTHESIS AND CHARACTERIZATION OF II-IV GROUP AND SILICON RELATED NANOMATERIALS

Size: px
Start display at page:

Download "SYNTHESIS AND CHARACTERIZATION OF II-IV GROUP AND SILICON RELATED NANOMATERIALS"

Transcription

1 SYNTHESIS AND CHARACTERIZATION OF II-IV GROUP AND SILICON RELATED NANOMATERIALS ISMATHULLAKHAN SHAFIQ MASTER OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG FEBRUARY 2008

2 CITY UNIVERSITY OF HONG KONG 香港城市大學 Synthesis and Characterization of II-IV Group and Silicon Related Nanomaterials 與硅相關的二至四組納米材料的合成與特性描述 Submitted to Department of Physics and Materials Science 物理及材料科學學系 in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy 哲學碩士學位 by ISMATHULLAKHAN Shafiq February 2008 二零零八年二月

3 Abstract i Despite considerable efforts, rational synthesis of ZnO nanostructures with tunable n-type conductivity is a challenging issue. On the other hand, as-synthesized ZnO nanostructures are often randomly oriented, and thus have limited applications in optoelectronic devices. Herein, we report a controlled growth and doping process of well-aligned zinc oxide (ZnO) nanowire (NW) arrays via thermal evaporation. Influence of Gallium (Ga) dopant on the growth direction of ZnO NWs was examined. The growth direction of ZnO NWs was found to depend on the dopant content. Electrical transport properties of ZnO NWs were studied by fabricating and characterizing single nanowire field-effect transistors (FETs). It is shown that the ZnO NW conductivity can be tuned by two orders of magnitude, through the way of doping. Doping is a widely used method to tailor the electrical and optical properties of semiconductors by introducing discrete energy states in the band gap. In this regard, the role of Indium (In) as a luminescence activator and as a compensator of n-type materials is of considerable significance for II VI compound semiconductors. In this work, high quality n-type Indium doped cadmium sulphide (CdS) nanomaterials were fabricated by doping through a simple thermal evaporation method. Photoluminescence studies on the intrinsic and doped nanoribbons reveal the presence of discrete exciton emission bands in doped samples. Studies on field emission properties of doped CdS nanopens and nanopencils were also carried out. It is found that the nanopens with sharp tip has less turn on field compared to the nanopencil samples. Photoconductive response characteristics of single CdS nanoribbon (NR) to various wavelengths were also investigated. It is shown that a single CdS NR

4 ii photoconductor can be used as one switch in optoelectronic applications, because of its reversible switching ability between high and low conductivities. Manipulation of nanomaterials remains as another major challenge in the field of nanotechnology, despite significant progress. The fabrication of integrated systems using nanomaterial requires the site-specific growth or placement on relevant device platforms. In addition, the formation of complex and multi-component structures are needed for low-dimensional structures and electronic devices. In this dissertation, heteroepitaxial growth of single-crystalline ZnS x Se 1-x nanowire arrays on ZnS nanoribbon substrates by the metal-catalyzed vapor-liquid-solid growth method were carried out. ZnS x Se 1-x nanowire arrays were aligned crosswise to the top surface and vertically grown on side surfaces of ZnS nanoribbon substrates with variable compositions making it having tunable optical properties. Photoluminescence spectroscopy of the nanostructures reveals the lasing emission from the nanowires beyond threshold excitation intensity and exciton emissions below threshold and at low temperatures. Control of channel diameter and branching of a hierarchical tubular nanostructure is important for developing nano-channels or nano-containers for various applications. A simple thermo-evaporation synthesis and two-step method for epitaxial growth of branched silicon oxide (SiO) nanotubes from ZnS/SiO core-shell nanowire heterostructures using zinc sulfide (ZnS) and SiO as sources were studied. ZnS nanowires were synthesized by Au-catalyzed vapor-liquid-solid growth, and served as templates to form amorphous SiO nanotubes via evaporation of the ZnS core. Successive SiO coating and ZnS wire removal was found to graft new branches to the original tube and the diameter of the prepared porous SiO nanotube could be post-processed by electron beam irradiation. The resulting core-shell structures were

5 iii found to have uniform diameters, which are suitable for heterostructure nanodevices fabrication. Low-temperature photoluminescence studies on the SiO nanotubes sample reveal the visible-light emission centered at 612 nm. The present growth template approach may be extended to assemble nano-fluidic channel network for bioanalytical and chemical separations and branched field effect transistors.

6 Table of contents Abstract...i Certificate of approval by panel of examiners...iv Acknowledgements...v Table of contents...vi List of figures...ix 1 Chapter-1.Introduction One-dimensional semiconductor nanomaterials Silicon based Nanomaterials Overview on Silicon nanowire technology Properties of silicon nanowires Introduction to Nanodevices Scope of the dissertation References Chapter-2.Methodology Introduction X- Ray diffraction X-ray diffractor Electron microscopy Scanning electron microscope (SEM) Transmission electron microscope (TEM) Optical spectroscopy Spectroscopy and Raman Effect Photoluminescence (PL) Raman Spectroscopy Device fabrication Shadow mask method Photolithography vi

7 2.6 Reference Chapter-3.Tunable n-type conductivity and transport properties of Gadoped ZnO nanowire arrays Overview Experiments Characterization Electron microscopy characterization Optical properties FET based on single ZnO Nanostructures Conclusion References Chapter-4.Synthesis and characterization of indium doped cadmium sulfide nanostructure Introduction Experiments Characterization Characterization of low temperature product: Nanoribbons Characterization of high temperature product: Nanopens and Nanopencils Conclusion References Chapter-5.Synthesis of ZnS x Se 1-x nanowire arrays grown heteroepitaxially on ZnS nanoribbon substrates and their optical properties Introduction Experiments Results and discussion Conclusion References...78 vii

8 viii 6 Chapter-6.Grafting Branches to Nanotubes via a Templating Process Overview Experiments Characterization SEM and TEM Characterization of SiO Nanotubes Production and branching of SiO nanotubes Diameter change of nano-network Optical Characterization Conclusion References Chapter-7.Conclusion...92

9 List of figures ix Figure 1.1 Silicon nanowire arrays fabricated by E-Beam Lithography technique Figure 2.1 X Ray Diffractor experimental Setup Figure 2.2 Figure showing the electron interaction with specimen and the probing depth Figure 2.3 Construction of a typical Scanning electron microscope Figure 2.4 Schematic setup of a Transmission electron microscope Figure 2.5 Schematic illustration of the experimental setup of photoluminescence spectroscopy Figure 2.6 Schematic of the experimental setup of Renishaw in via Raman microscope Figure 2.7 Schematic illustration of the fabrication process by shadow mask method Figure 2.8 Schematic illustration of the experimental setup fabrication process by photolithography method Figure 3.1 (a-b) SEM image of undoped ZnO nanowire arrays. (c) SEM image of Gadoped (1%) ZnO nanowire arrays. The corresponding EDS spectrum measured at NW tips is shown in the inset in (b) and (c). (d) HRTEM image of an undoped ZnO nanowire. (e) HRTEM of a Ga-doped (0.2%) ZnO nanowire. (f) HRTEM of a Gadoped (1%) ZnO NW s Figure 3.2 (a) Room temperature PL spectra of undoped and Ga-doped ZnO NWs. (b) XPS spectra of Ga-doped (1%) ZnO NWs. The inset shows Ga 2p peak Figure 3.3 I-V curves from 2-probe and 4-probe measurements of Ga-doped (0.2%) ZnO NW FET. The inset is the SEM image of the ZnO NW FET Figure 3.4 Characteristics of undoped ZnO NWs FET with a diameter of 76 nm and an effective length of about 2 µm. (a) I DS -V DS plots at different V g. The insets show

10 SEM image of a single nanowire FET (upper) and logarithmic plot of the transfer characteristics at V DS =1V (lower). (b) I DS -V g plots at different V DS x Figure 3.5 I DS -V DS plots of Ga-doped ZnO NWs at different V g. (a) 0.2 at % of Ga, and the diameter of NW is 62 nm and effective length is 2 µm. (b) 1 at % of Ga, and the diameter of NW is 90 nm and effective length is 2 µm Figure 3.6 Distribution of conductivity values for 45 devices. 15 devices each for Gadoped (0%), (0.2%), and (1%) ZnO NW s Figure 4.1 (a) & (b) SEM images of undoped nanoribbon at lower and higher magnifications respectively. (c) & (d) SEM images of doped nanoribbons at lower and higher magnifications respectively (e) & (f) XRD spectra of undoped and doped CdS nanoribbons respectively Figure 4.2 (a) & (b) TEM and HRTEM images of undoped nanoribbons with corresponding SAED pattern on the inset. (c) & (d) TEM and HRTEM images of doped nanoribbons with corresponding SAED pattern on the inset (e) EDS spectrum of the doped CdS nanoribbon Figure 4.3 (a) Temperature-dependent photoluminescence (PL) spectra of undoped CdS nanoribbons. The spectra are shifted vertically for clarity and the numbers 1 to 10 correspond to the measuring temperatures T = 9, 20, 35, 55, 80, 100, 130, 200, 250 and 293 K, respectively. (b) Temperature-dependent photoluminescence (PL) spectra of In doped CdS nanoribbons. (c) & (d) Temperature dependence of peak energy of band edge emission and full-width half maximum (FWHM) of band edge emission of undoped nanoribbon respectively. (e) Temperature dependence of peak energy of band edge emission and the exciton emission Figure 4.4 (a) I-V curves of a doped CdS single nanoribbon illuminated with light of different wavelength. The light intensity is kept constant at 1.75mW/cm 2. The insets show the optical microscopic image of the single-nanoribbon device. (b) I-V curves of a CdS single nanoribbon under light irradiation of varying intensity at 490nm. An enlarged view of the I-V curve measured in the dark is shown in the inset

11 Figure 4.5 Real-time photocurrent of a CdS:In nanoribbon at a 2 V bias to 490nm light illumination with a period of 5 s ON and 5 s OFF xi Figure 4.6 (a) & (b) SEM Image of doped nanopens at lower and higher magnification respectively. (c) & (d) SEM Image of doped nanorods at lower and higher magnification respectively (e) & (f) SEM Image of doped nanopencils at lower and higher magnification respectively. (g) nanopencils at initial growth stage (h) Schematic of growth of nanopens and nanopencils respectively Figure 4.7 (a) & (b) TEM images of doped nanopens and nano penholders respectively (c) TEM Image of gold tip at nano penholders at initial growth stage (d) Schematic setup of the field measurement setup (e) Field-emission measurements of the CdS nanopencils and nanopens respectively, showing current density-electric field characteristics with the inset for the corresponding Fowhler Nordheim (F-N) plot.58 Figure 5.1 (a) SEM image of as-grown ZnS Nanoribbon substrates. (b) SEM image of cross-aligned ZnS x Se 1-x nanowire arrays on ZnS Nanoribbon substrates (c) SEM image showing the angle of cross-aligned growth of ZnS x Se 1-x nanowires. The inset is an EDX spectrum of ZnS x Se 1-x nanowires (d) SEM image of cross-aligned ZnS x Se 1-x nanowire arrays during initial growth stage (e) SEM image showing the vertical growth of ZnS x Se 1-x nanowires on side surfaces of ZnS nanoribbon substrates (f) SEM image of vertical ZnS x Se 1-x nanowire arrays during initial growth stage. (g) and (h) EDX spectrum of ZnS x Se 1-x nanowire arrays corresponding to values of X~0.85 and 0.45 respectively Figure 5.2 (a) TEM image of as-grown ZnS Nanoribbon substrates. (b) HRTEM image of ZnS Nanoribbon substrates. Inset: SAED pattern ([100] zone axis) inset indicate the wurtzite nature of the single-crystal nanowires. (c) TEM image showing the angle of cross-aligned growth and vertically grown ZnS x Se 1-x nanowires. (d) & e) HRTEM images revealing the [210] and [001] growth directions of the nanowire. Inset: The electron diffraction patterns ([100] zone axis) indicate the wurtzite nature of the single-crystal nanowires. (f) Schematic diagram showing the alignment of nanowires grown on different surfaces of the substrate Figure 5.3 TEM and HRTEM images of ZnS x Se 1-x nanowires grown on the top ZnS nanoribbon substrates (a) and (c) TEM image of nanowire corresponding to

12 xii composition of x~0.45 and x~0.85 respectively (b) and (d) corresponding HRTEM image of nanowires shown in (a) and (c) revealing the growth direction of [210].The electron diffraction patterns ([100] zone axis) inset indicate the wurtzite nature of the single-crystal nanowires Figure 5.4 PL spectra under 266nm excitation for nanowire arrays of different compositions a) x~0.85 b) x~0.76 and c) x~0.45. Main graph: PL spectra of the ZnS x Se 1-x excited under different power densities. (Left Inset: Relation between the PL intensity and corresponding power density revealing the lasing threshold of the nanowire arrays) Figure 5.5 (a) (c) Normalized PL spectrums of the ZnSxSe1-x nanowire arrays for composition corresponding to X~0.45,0.76, 0.85 in the temperature range of 9K- 293K. (d) & (e) Variation of peak energy P3 and I1 with respect to temperature for the samples corresponding to X~0.45 and 0.85 respectively Figure 6.1 (a) High-temperature tube furnace with two movable sample holders for synthesis and branching of SiO nanotubes. b) Schematic graph showing the temperature profile of the tube furnace during growth Figure 6.2 SEM images of the as-prepared sample showing (a) ribbon and (b) wirelike nanostructures, (c) and (d) TEM images of the as-prepared sample having branches grown in different directions from the same trunk or connect each other forming a network Figure 6.3 a) Low-resolution TEM image and b) High-resolution TEM image of the white-section of the sample Figure 6.4 TEM images of nanotubes containing Au particles Figure 6.5 Diameter change of a T-nano-branched pipe (a) before exposure and (b) after exposure to electron beam Figure 6.6 Photoluminescence spectrums of a) SiO/ZnS Heterostructures and b) SiO Nanotube at 9K temperature

Supplementary Information

Supplementary Information Supplementary Information For Nearly Lattice Matched All Wurtzite CdSe/ZnTe Type II Core-Shell Nanowires with Epitaxial Interfaces for Photovoltaics Kai Wang, Satish C. Rai,Jason Marmon, Jiajun Chen, Kun

More information

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by Supporting online material Materials and Methods Single-walled carbon nanotube (SWNT) devices are fabricated using standard photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/cgi/content/full/science.1234855/dc1 Supplementary Materials for Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active/Adaptive Tactile Imaging Wenzhuo Wu,

More information

Raman Spectroscopy and Transmission Electron Microscopy of Si x Ge 1-x -Ge-Si Core-Double-Shell Nanowires

Raman Spectroscopy and Transmission Electron Microscopy of Si x Ge 1-x -Ge-Si Core-Double-Shell Nanowires Raman Spectroscopy and Transmission Electron Microscopy of Si x Ge 1-x -Ge-Si Core-Double-Shell Nanowires Paola Perez Mentor: Feng Wen PI: Emanuel Tutuc Background One-dimensional semiconducting nanowires

More information

Design, Fabrication, Characterization, and Application of Semiconductor Nanocomposites

Design, Fabrication, Characterization, and Application of Semiconductor Nanocomposites Design, Fabrication, Characterization, and Application of Semiconductor Nanocomposites Yang-Fang Chen Department of Physics, National Taiwan University, Taipei, Taiwan 1 I. A perfect integration of zero

More information

SYNTHESIS AND ANALYSIS OF SILICON NANOWIRES GROWN ON Si (111) SUBSTRATE AT DIFFERENT SILANE GAS FLOW RATE

SYNTHESIS AND ANALYSIS OF SILICON NANOWIRES GROWN ON Si (111) SUBSTRATE AT DIFFERENT SILANE GAS FLOW RATE SYNTHESIS AND ANALYSIS OF SILICON NANOWIRES GROWN ON Si (111) SUBSTRATE AT DIFFERENT SILANE GAS FLOW RATE Habib Hamidinezhad*, Yussof Wahab, Zulkafli Othaman and Imam Sumpono Ibnu Sina Institute for Fundamental

More information

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors Veerendra Dhyani 1, and Samaresh Das 1* 1 Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi-110016,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. Photon-triggered nanowire transistors Jungkil Kim, Hoo-Cheol Lee, Kyoung-Ho Kim, Min-Soo Hwang, Jin-Sung Park, Jung Min Lee, Jae-Pil So, Jae-Hyuck Choi,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Surface-Guided CsPbBr 3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response Eitan Oksenberg, Ella Sanders, Ronit

More information

Metal Oxide Nanowires: : Synthesis, Characterization and Device Applications

Metal Oxide Nanowires: : Synthesis, Characterization and Device Applications Metal Oxide Nanowires: : Synthesis, Characterization and Device Applications Jia Grace Lu Dept. of Chemical Engineering and Materials Science & Dept. of Electrical Engineering and Computer Science University

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11293 1. Formation of (111)B polar surface on Si(111) for selective-area growth of InGaAs nanowires on Si. Conventional III-V nanowires (NWs) tend to grow in

More information

Nanoscale FEATURE ARTICLE. Transparent metal oxide nanowire transistors. Dynamic Article Links C <

Nanoscale FEATURE ARTICLE. Transparent metal oxide nanowire transistors. Dynamic Article Links C < Nanoscale View Article Online / Journal Homepage / Table of Contents for this issue Dynamic Article Links C < Cite this: Nanoscale, 2012, 4, 3001 www.rsc.org/nanoscale Transparent metal oxide nanowire

More information

Nanowires for Quantum Optics

Nanowires for Quantum Optics Nanowires for Quantum Optics N. Akopian 1, E. Bakkers 1, J.C. Harmand 2, R. Heeres 1, M. v Kouwen 1, G. Patriarche 2, M. E. Reimer 1, M. v Weert 1, L. Kouwenhoven 1, V. Zwiller 1 1 Quantum Transport, Kavli

More information

BROADBAND DIFFERENTIAL FED INTEGRATED ANTENNA

BROADBAND DIFFERENTIAL FED INTEGRATED ANTENNA BROADBAND DIFFERENTIAL FED INTEGRATED ANTENNA MOK SIU YEE NOYES MASTER OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG JUNE 2008 CITY UNIVERSITY OF HONG KONG 香港城市大學 Broadband Differential Fed Integrated Antenna

More information

Supplementary information for: Surface passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon

Supplementary information for: Surface passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon Supplementary information for: Surface passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon Jeppe V. Holm 1, Henrik I. Jørgensen 1, Peter Krogstrup 2, Jesper Nygård 2,4,

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

write-nanocircuits Direct-write Jaebum Joo and Joseph M. Jacobson Molecular Machines, Media Lab Massachusetts Institute of Technology, Cambridge, MA

write-nanocircuits Direct-write Jaebum Joo and Joseph M. Jacobson Molecular Machines, Media Lab Massachusetts Institute of Technology, Cambridge, MA Fab-in in-a-box: Direct-write write-nanocircuits Jaebum Joo and Joseph M. Jacobson Massachusetts Institute of Technology, Cambridge, MA April 17, 2008 Avogadro Scale Computing / 1 Avogadro number s? Intel

More information

GaAs polytype quantum dots

GaAs polytype quantum dots GaAs polytype quantum dots Vilgailė Dagytė, Andreas Jönsson and Andrea Troian December 17, 2014 1 Introduction An issue that has haunted nanowire growth since it s infancy is the difficulty of growing

More information

Supporting Information

Supporting Information Supporting Information Resistive Switching Memory Effects of NiO Nanowire/Metal Junctions Keisuke Oka 1, Takeshi Yanagida 1,2 *, Kazuki Nagashima 1, Tomoji Kawai 1,3 *, Jin-Soo Kim 3 and Bae Ho Park 3

More information

Monolithically integrated InGaAs nanowires on 3D. structured silicon-on-insulator as a new platform for. full optical links

Monolithically integrated InGaAs nanowires on 3D. structured silicon-on-insulator as a new platform for. full optical links Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links Hyunseok Kim 1, Alan C. Farrell 1, Pradeep Senanayake 1, Wook-Jae Lee 1,* & Diana.

More information

Nanophotonics: Single-nanowire electrically driven lasers

Nanophotonics: Single-nanowire electrically driven lasers Nanophotonics: Single-nanowire electrically driven lasers Ivan Stepanov June 19, 2010 Single crystaline nanowires have unique optic and electronic properties and their potential use in novel photonic and

More information

Directional Growth of Ultra-long CsPbBr 3 Perovskite. Nanowires for High Performance Photodetectors

Directional Growth of Ultra-long CsPbBr 3 Perovskite. Nanowires for High Performance Photodetectors Supporting information Directional Growth of Ultra-long CsPbBr 3 Perovskite Nanowires for High Performance Photodetectors Muhammad Shoaib, Xuehong Zhang, Xiaoxia Wang, Hong Zhou, Tao Xu, Xiao Wang, Xuelu

More information

Contents. Nano-2. Nano-2. Nanoscience II: Nanowires. 2. Growth of nanowires. 1. Nanowire concepts Nano-2. Nano-2

Contents. Nano-2. Nano-2. Nanoscience II: Nanowires. 2. Growth of nanowires. 1. Nanowire concepts Nano-2. Nano-2 Contents Nanoscience II: Nanowires Kai Nordlund 17.11.2010 Faculty of Science Department of Physics Division of Materials Physics 1. Introduction: nanowire concepts 2. Growth of nanowires 1. Spontaneous

More information

Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors

Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors Supplementary Information Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors J. A. Caraveo-Frescas and H. N. Alshareef* Materials Science and Engineering, King

More information

Integrated into Nanowire Waveguides

Integrated into Nanowire Waveguides Supporting Information Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides Anthony Fu, 1,3 Hanwei Gao, 1,3,4 Petar Petrov, 1, Peidong Yang 1,2,3* 1 Department of Chemistry,

More information

pattern. (c-e) TEM and HRTEM images of the nanowire (SAED pattern in inset).

pattern. (c-e) TEM and HRTEM images of the nanowire (SAED pattern in inset). Figure S1. The pristine Co 2 (OH) 2 CO 3 nanowire arrays. (a) Low-magnification SEM image of the Co 2 (OH) 2 CO 3 nanowire arrays on nickel foam and (b) corresponding XRD pattern. (c-e) TEM and HRTEM images

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION 1. Head-to-side welding mode In addition to aforementioned head-to-head and side-to-side joining geometries, cold-welding can also be realized in other geometries depending on

More information

A Brief Introduction to Single Electron Transistors. December 18, 2011

A Brief Introduction to Single Electron Transistors. December 18, 2011 A Brief Introduction to Single Electron Transistors Diogo AGUIAM OBRECZÁN Vince December 18, 2011 1 Abstract Transistor integration has come a long way since Moore s Law was first mentioned and current

More information

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Feature Article JY Division I nformation Optical Spectroscopy Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Raymond Pini, Salvatore Atzeni Abstract Multichannel

More information

Manipulation, Assembly & Characterization. of Optically Functional 1-D Organic. Nanostructures.

Manipulation, Assembly & Characterization. of Optically Functional 1-D Organic. Nanostructures. 1 Manipulation, Assembly & Characterization of Optically Functional 1-D Organic Nanostructures. Authors: Ken Reynolds, P. Lovera, D. Iacopino, H. Doyle, A. O Riordan, G. Redmond. Nanotechnology Group Tyndall

More information

Supporting Information. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of

Supporting Information. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Supporting Information Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices Ping Hu, Mengyu Yan, Xuanpeng Wang, Chunhua Han,*

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Vertical Nanowall Array Covered Silicon Solar Cells

Vertical Nanowall Array Covered Silicon Solar Cells International Conference on Solid-State and Integrated Circuit (ICSIC ) IPCSIT vol. () () IACSIT Press, Singapore Vertical Nanowall Array Covered Silicon Solar Cells J. Wang, N. Singh, G. Q. Lo, and D.

More information

Jian-Wei Liu, Jing Zheng, Jin-Long Wang, Jie Xu, Hui-Hui Li, Shu-Hong Yu*

Jian-Wei Liu, Jing Zheng, Jin-Long Wang, Jie Xu, Hui-Hui Li, Shu-Hong Yu* Supporting Information Ultrathin 18 O 49 Nanowire Assemblies for Electrochromic Devices Jian-ei Liu, Jing Zheng, Jin-Long ang, Jie Xu, Hui-Hui Li, Shu-Hong Yu* Experimental Section Synthesis and Assembly

More information

Nanofluidic Diodes based on Nanotube Heterojunctions

Nanofluidic Diodes based on Nanotube Heterojunctions Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions Ruoxue Yan, Wenjie Liang, Rong Fan, Peidong Yang 1 Department of Chemistry, University of California, Berkeley, CA 94720, USA

More information

Micro- and Nano- Fabrication and Replication Techniques

Micro- and Nano- Fabrication and Replication Techniques Micro- and Nano- Fabrication and Replication Techniques Why do we have to write thing small and replicate fast? Plenty of Room at the Bottom Richard P. Feynman, December 1959 How do we write it? We have

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature InP distributed feedback laser array directly grown on silicon Zhechao Wang, Bin Tian, Marianna Pantouvaki, Weiming Guo, Philippe Absil, Joris Van Campenhout, Clement Merckling and Dries

More information

Supplementary Figure S1 X-ray diffraction pattern of the Ag nanowires shown in Fig. 1a dispersed in their original solution. The wavelength of the

Supplementary Figure S1 X-ray diffraction pattern of the Ag nanowires shown in Fig. 1a dispersed in their original solution. The wavelength of the Supplementary Figure S1 X-ray diffraction pattern of the Ag nanowires shown in Fig. 1a dispersed in their original solution. The wavelength of the x-ray beam was 0.1771 Å. The saturated broad peak and

More information

Supplemental information for Selective GaSb Radial Growth on Crystal Phase Engineered InAs Nanowires

Supplemental information for Selective GaSb Radial Growth on Crystal Phase Engineered InAs Nanowires Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplemental information for Selective GaSb Radial Growth on Crystal Phase Engineered InAs Nanowires

More information

Final Report for AFOSR Project

Final Report for AFOSR Project Final Report for AFOSR Project March 19, 2007 Title Synthesis and modulation of visible-bandgap semiconductor nanowires and their optical sensor application Research Period: 2006. 1. 1 ~ 2006. 12. 31 Principal

More information

Supplementary Information

Supplementary Information Supplementary Information Wireless thin film transistor based on micro magnetic induction coupling antenna Byoung Ok Jun 1, Gwang Jun Lee 1, Jong Gu Kang 1,2, Seung Uk Kim 1, Ji Woong Choi 1, Seung Nam

More information

Beams and Scanning Probe Microscopy

Beams and Scanning Probe Microscopy IFN-CNR, Sezione di Trento Istituto Trentino di Cultura of Trento Department of Physics University of Trento Towards the joint use of X-ray Beams and Scanning Probe Microscopy Silvia Larcheri SILS 2005

More information

INNOVATIVE PASSIVE MICROWAVE COMPONENTS FOR WIRELESS COMMUNICATION

INNOVATIVE PASSIVE MICROWAVE COMPONENTS FOR WIRELESS COMMUNICATION INNOVATIVE PASSIVE MICROWAVE COMPONENTS FOR WIRELESS COMMUNICATION CHEUNG KING YIN MASTER OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG SEPTEMBER 2010 CITY UNIVERSITY OF HONG KONG 香港城市大學 Innovative Passive

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/7/e1629/dc1 Supplementary Materials for Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films Xuewen Wang, Xuexia He, Hongfei Zhu,

More information

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation 238 Hitachi Review Vol. 65 (2016), No. 7 Featured Articles Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation AFM5500M Scanning Probe Microscope Satoshi Hasumura

More information

Rudolf C. Hoffmann, Mareiki Kaloumenos, Silvio Heinschke, Peter Jakes, Emre Erdem Rüdiger-A. Eichel, and Jörg J. Schneider *,

Rudolf C. Hoffmann, Mareiki Kaloumenos, Silvio Heinschke, Peter Jakes, Emre Erdem Rüdiger-A. Eichel, and Jörg J. Schneider *, Molecular precursor derived and solution processed indium zinc oxide as semiconductor in a field-effect transistor device. Towards an improved understanding of semiconductor film composition. Rudolf C.

More information

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications Part I: RF Applications Introductions and Motivations What are RF MEMS? Example Devices RFIC RFIC consists of Active components

More information

Supporting Information: Determination of n-type doping level in single GaAs. nanowires by cathodoluminescence

Supporting Information: Determination of n-type doping level in single GaAs. nanowires by cathodoluminescence Supporting Information: Determination of n-type doping level in single GaAs nanowires by cathodoluminescence Hung-Ling Chen 1, Chalermchai Himwas 1, Andrea Scaccabarozzi 1,2, Pierre Rale 1, Fabrice Oehler

More information

DEVELOPMENT OF SILICON NANOWIRE FIELD EFFECT TRANSISTORS. Prathyusha Nukala. Thesis Prepared for the Degree of MASTER OF SCIENCE

DEVELOPMENT OF SILICON NANOWIRE FIELD EFFECT TRANSISTORS. Prathyusha Nukala. Thesis Prepared for the Degree of MASTER OF SCIENCE DEVELOPMENT OF SILICON NANOWIRE FIELD EFFECT TRANSISTORS Prathyusha Nukala Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS December 2011 APPROVED: Usha Philipose, Major Professor

More information

Growth and Characterization of single crystal InAs nanowire arrays and their application to plasmonics

Growth and Characterization of single crystal InAs nanowire arrays and their application to plasmonics Growth and Characterization of single crystal InAs nanowire arrays and their application to plasmonics S.M. Prokes, H.D. Park* and O.J. Glembocki US Naval Research Laboratory 4555 Overlook Ave. SW, Washington

More information

Supporting Information. Air-stable surface charge transfer doping of MoS 2 by benzyl viologen

Supporting Information. Air-stable surface charge transfer doping of MoS 2 by benzyl viologen Supporting Information Air-stable surface charge transfer doping of MoS 2 by benzyl viologen Daisuke Kiriya,,ǁ, Mahmut Tosun,,ǁ, Peida Zhao,,ǁ, Jeong Seuk Kang, and Ali Javey,,ǁ,* Electrical Engineering

More information

Electrical and Optical Tunability in All-Inorganic Halide. Perovskite Alloy Nanowires

Electrical and Optical Tunability in All-Inorganic Halide. Perovskite Alloy Nanowires Supporting Information for: Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires Teng Lei, 1 Minliang Lai, 1 Qiao Kong, 1 Dylan Lu, 1 Woochul Lee, 2 Letian Dou, 3 Vincent

More information

Improving the Collection Efficiency of Raman Scattering

Improving the Collection Efficiency of Raman Scattering PERFORMANCE Unparalleled signal-to-noise ratio with diffraction-limited spectral and imaging resolution Deep-cooled CCD with excelon sensor technology Aberration-free optical design for uniform high resolution

More information

We are right on schedule for this deliverable. 4.1 Introduction:

We are right on schedule for this deliverable. 4.1 Introduction: DELIVERABLE # 4: GaN Devices Faculty: Dipankar Saha, Subhabrata Dhar, Subhananda Chakrabati, J Vasi Researchers & Students: Sreenivas Subramanian, Tarakeshwar C. Patil, A. Mukherjee, A. Ghosh, Prantik

More information

Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells

Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In 1-x Ga x )Se 2 Thin-Film Solar Cells Alexei Pudov 1, James Sites 1, Tokio Nakada 2 1 Department of Physics, Colorado State University, Fort

More information

:... resolution is about 1.4 μm, assumed an excitation wavelength of 633 nm and a numerical aperture of 0.65 at 633 nm.

:... resolution is about 1.4 μm, assumed an excitation wavelength of 633 nm and a numerical aperture of 0.65 at 633 nm. PAGE 30 & 2008 2007 PRODUCT CATALOG Confocal Microscopy - CFM fundamentals :... Over the years, confocal microscopy has become the method of choice for obtaining clear, three-dimensional optical images

More information

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Mini-project report. Nanowire Photovoltaics Correlating the Optical and Structural Properties of GaAs Nanowires Containing InGaAs Quantum Dots

Mini-project report. Nanowire Photovoltaics Correlating the Optical and Structural Properties of GaAs Nanowires Containing InGaAs Quantum Dots Mini-project report Nanowire Photovoltaics Correlating the Optical and Structural Properties of GaAs Nanowires Containing InGaAs Quantum Dots Alex Barrows a.barrows@sheffield.ac.uk 18/05/2012 1 Abstract

More information

Supporting Information. Silicon Nanowire - Silver Indium Selenide Heterojunction Photodiodes

Supporting Information. Silicon Nanowire - Silver Indium Selenide Heterojunction Photodiodes Supporting Information Silicon Nanowire - Silver Indium Selenide Heterojunction Photodiodes Mustafa Kulakci 1,2, Tahir Colakoglu 1, Baris Ozdemir 3, Mehmet Parlak 1,2, Husnu Emrah Unalan 2,3,*, and Rasit

More information

Characterisation of Photovoltaic Materials and Cells

Characterisation of Photovoltaic Materials and Cells Standard Measurement Services and Prices No. Measurement Description Reference 1 Large area, 0.35-sun biased spectral response (SR) 2 Determination of linearity of spectral response with respect to irradiance

More information

Current Optics Research at the ElectroOptics Research Institute & Nanotechnology Center

Current Optics Research at the ElectroOptics Research Institute & Nanotechnology Center Current Optics Research at the ElectroOptics Research Institute & Nanotechnology Center Robert W. Cohn, Director ElectroOptics Research Institute & Nanotechnology Center University of Louisville ElectroOptics

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g< Robert G. Hunsperger Integrated Optics Theory and Technology Sixth Edition 4ü Spri rineer g< 1 Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of Optical Fibers with Other Interconnectors

More information

Supporting Information for

Supporting Information for Supporting Information for High performance WSe 2 phototransistors with 2D/2D ohmic contacts Tianjiao Wang 1, Kraig Andrews 2, Arthur Bowman 2, Tu Hong 1, Michael Koehler 3, Jiaqiang Yan 3,4, David Mandrus

More information

Photoluminescence spectroscopy and optical pumping of zinc oxide nanowires

Photoluminescence spectroscopy and optical pumping of zinc oxide nanowires Zinc Oxide Nanolaser Photoluminescence spectroscopy and optical pumping of zinc oxide nanowires Filip August Heitmann Master of Science in Electronics Submission date: February 2012 Supervisor: Helge Weman,

More information

Add CLUE to your SEM. High-efficiency CL signal-collection. Designed for your SEM and application. Maintains original SEM functionality

Add CLUE to your SEM. High-efficiency CL signal-collection. Designed for your SEM and application. Maintains original SEM functionality Add CLUE to your SEM Designed for your SEM and application The CLUE family offers dedicated CL systems for imaging and spectroscopic analysis suitable for most SEMs. In addition, when combined with other

More information

Supporting Information. Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells

Supporting Information. Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells Supporting Information Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells Sarah Brittman, 1,2 Youngdong Yoo, 1 Neil P. Dasgupta, 1,3 Si-in Kim, 4 Bongsoo Kim, 4 and Peidong

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si Authors: Yi Sun 1,2, Kun Zhou 1, Qian Sun 1 *, Jianping Liu 1, Meixin Feng 1, Zengcheng Li 1, Yu Zhou 1, Liqun

More information

Highly efficient SERS nanowire/ag composites

Highly efficient SERS nanowire/ag composites Highly efficient SERS nanowire/ag composites S.M. Prokes, O.J. Glembocki and R.W. Rendell Electronics Science and Technology Division Introduction: Optically based sensing provides advantages over electronic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrically pumped continuous-wave III V quantum dot lasers on silicon Siming Chen 1 *, Wei Li 2, Jiang Wu 1, Qi Jiang 1, Mingchu Tang 1, Samuel Shutts 3, Stella N. Elliott 3, Angela Sobiesierski 3, Alwyn

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules Reference: Uyemura, John P. "Introduction to

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Zinc Oxide Nanowires Impregnated with Platinum and Gold Nanoparticle for Ethanol Sensor

Zinc Oxide Nanowires Impregnated with Platinum and Gold Nanoparticle for Ethanol Sensor CMU. J.Nat.Sci. Special Issue on Nanotechnology (2008) Vol. 7(1) 185 Zinc Oxide Nanowires Impregnated with Platinum and Gold Nanoparticle for Ethanol Sensor Weerayut Wongka, Sasitorn Yata, Atcharawan Gardchareon,

More information

NanoFocus Inc. Next Generation Scanning Probe Technology. Tel : Fax:

NanoFocus Inc. Next Generation Scanning Probe Technology.  Tel : Fax: NanoFocus Inc. Next Generation Scanning Probe Technology www.nanofocus.kr Tel : 82-2-864-3955 Fax: 82-2-864-3956 Albatross SPM is Multi functional research grade system Flexure scanner and closed-loop

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy EMSE-515 02 Scanning Tunneling Microscopy EMSE-515 F. Ernst 1 Scanning Tunneling Microscope: Working Principle 2 Scanning Tunneling Microscope: Construction Principle 1 sample 2 sample holder 3 clamps

More information

Microscopic Structures

Microscopic Structures Microscopic Structures Image Analysis Metal, 3D Image (Red-Green) The microscopic methods range from dark field / bright field microscopy through polarisation- and inverse microscopy to techniques like

More information

4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate

4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate 22 Annual Report 2010 - Solid-State Electronics Department 4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate Student Scientist in collaboration with R. Richter

More information

GCEP award #40654: High-Efficiency, Low-Cost Thin Film Solar Cells

GCEP award #40654: High-Efficiency, Low-Cost Thin Film Solar Cells GCEP award #40654: High-Efficiency, Low-Cost Thin Film Solar Cells Investigators Alberto Salleo, Assistant Professor, Materials Science and Engineering; Yi Cui, Assistant Professor, Materials Science and

More information

SEM Magnification Calibration & Verification: Building Confidence in Your Scale Bar

SEM Magnification Calibration & Verification: Building Confidence in Your Scale Bar SEM Magnification Calibration & Verification: Building Confidence in Your Scale Bar Mark A. Koten, Ph.D. Senior Research Scientist Electron Optics Group McCrone Associates Why check your SEM image calibration?

More information

SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS

SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS SCANNING ELECTRON MICROSCOPY AND X-RAY MICROANALYSIS Robert Edward Lee Electron Microscopy Center Department of Anatomy and Neurobiology Colorado State University P T R Prentice Hall, Englewood Cliffs,

More information

Supporting Information. Absorption of Light in a Single-Nanowire Silicon Solar

Supporting Information. Absorption of Light in a Single-Nanowire Silicon Solar Supporting Information Absorption of Light in a Single-Nanowire Silicon Solar Cell Decorated with an Octahedral Silver Nanocrystal Sarah Brittman, 1,2 Hanwei Gao, 1,2 Erik C. Garnett, 3 and Peidong Yang

More information

Major Fabrication Steps in MOS Process Flow

Major Fabrication Steps in MOS Process Flow Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide Silicon substrate Oxidation (Field oxide) Photoresist Coating Mask-Wafer Alignment

More information

CSCI 2570 Introduction to Nanocomputing

CSCI 2570 Introduction to Nanocomputing CSCI 2570 Introduction to Nanocomputing Introduction to NW Decoders John E Savage Lecture Outline Growing nanowires (NWs) Crossbar-based computing Types of NW decoders Resistive model of decoders Addressing

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy Yasuhiko Terada, Shoji Yoshida, Osamu Takeuchi, and Hidemi Shigekawa*

More information

Dopant Profiling of III-V Nanostructures for Electronic Applications

Dopant Profiling of III-V Nanostructures for Electronic Applications Dopant Profiling of III-V Nanostructures for Electronic Applications By Alexandra Caroline Ford A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy

More information

Synthesis of SiC nanowires from gaseous SiO and pyrolyzed bamboo slices

Synthesis of SiC nanowires from gaseous SiO and pyrolyzed bamboo slices Journal of Physics: Conference Series Synthesis of SiC nanowires from gaseous SiO and pyrolyzed bamboo slices To cite this article: Cui-yan Li et al 2009 J. Phys.: Conf. Ser. 152 012072 View the article

More information

Laboratory #5 BJT Basics and MOSFET Basics

Laboratory #5 BJT Basics and MOSFET Basics Laboratory #5 BJT Basics and MOSFET Basics I. Objectives 1. Understand the physical structure of BJTs and MOSFETs. 2. Learn to measure I-V characteristics of BJTs and MOSFETs. II. Components and Instruments

More information

Visible Light Photon R&D in the US. A. Bross KEK ISS Meeting January 25, 2006

Visible Light Photon R&D in the US. A. Bross KEK ISS Meeting January 25, 2006 Visible Light Photon R&D in the US A. Bross KEK ISS Meeting January 25, 2006 Some History First VLPC History In 1987, a paper was published by Rockwell detailing the performance of Solid State PhotoMultipliers

More information

Nanodrawing of Aligned Single Carbon. Nanotubes with a Nanopen

Nanodrawing of Aligned Single Carbon. Nanotubes with a Nanopen Supporting Information Nanodrawing of Aligned Single Carbon Nanotubes with a Nanopen Talia Yeshua, 1,2 Christian Lehmann, 3 Uwe Hübner, 4 Suzanna Azoubel, 2,5 Shlomo Magdassi, 2,5 Eleanor E. B. Campbell,

More information

Synthesis of Silicon. applications. Nanowires Team. Régis Rogel (Ass.Pr), Anne-Claire Salaün (Ass. Pr)

Synthesis of Silicon. applications. Nanowires Team. Régis Rogel (Ass.Pr), Anne-Claire Salaün (Ass. Pr) Synthesis of Silicon nanowires for sensor applications Anne-Claire Salaün Nanowires Team Laurent Pichon (Pr), Régis Rogel (Ass.Pr), Anne-Claire Salaün (Ass. Pr) Ph-D positions: Fouad Demami, Liang Ni,

More information

The effect of the diameters of the nanowires on the reflection spectrum

The effect of the diameters of the nanowires on the reflection spectrum The effect of the diameters of the nanowires on the reflection spectrum Bekmurat Dalelkhan Lund University Course: FFF042 Physics of low-dimensional structures and quantum devices 1. Introduction Vertical

More information

Semiconductor Nanowires for photovoltaics and electronics

Semiconductor Nanowires for photovoltaics and electronics Semiconductor Nanowires for photovoltaics and electronics M.T. Borgström, magnus.borgstrom@ftf.lth.se NW Doping Total control over axial and radial NW growth NW pn-junctions World record efficiency solar

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications

Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications 7720 J. Phys. Chem. B 2006, 110, 7720-7724 Density-Controlled rowth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications Xudong Wang,

More information

SILICON NANOWIRE HYBRID PHOTOVOLTAICS

SILICON NANOWIRE HYBRID PHOTOVOLTAICS SILICON NANOWIRE HYBRID PHOTOVOLTAICS Erik C. Garnett, Craig Peters, Mark Brongersma, Yi Cui and Mike McGehee Stanford Univeristy, Department of Materials Science, Stanford, CA, USA ABSTRACT Silicon nanowire

More information

Synthesis of nanowires and nanotubes

Synthesis of nanowires and nanotubes Synthesis of nanowires and nanotubes Laser-assisted Catalytic Growth Source target with catalyst is evaporated by laser. Nanomaterials are collected on a cold finger. Synthesized semiconductor NWs - Si,

More information

Formation of ordered and disordered dielectric/metal nanowire arrays and their plasmonic behavior.

Formation of ordered and disordered dielectric/metal nanowire arrays and their plasmonic behavior. Formation of ordered and disordered dielectric/metal nanowire arrays and their plasmonic behavior. S.M. Prokes, H.D. Park*, O.J. Glembocki, D. Alexson** and R.W. Rendell US Naval Research Laboratory 4555

More information

Glass and Bioglass Nanopowders by Flame Synthesis

Glass and Bioglass Nanopowders by Flame Synthesis Supplementary Information Glass and Bioglass Nanopowders by Flame Synthesis Tobias J. Brunner, Robert N. Grass, Wendelin J. Stark* Institute for Chemical and Bioengineering, Department of Chemistry and

More information

Energy beam processing and the drive for ultra precision manufacturing

Energy beam processing and the drive for ultra precision manufacturing Energy beam processing and the drive for ultra precision manufacturing An Exploration of Future Manufacturing Technologies in Response to the Increasing Demands and Complexity of Next Generation Smart

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

Supplementary Information. Phase-selective cation-exchange chemistry in sulfide nanowire systems

Supplementary Information. Phase-selective cation-exchange chemistry in sulfide nanowire systems Supplementary Information Phase-selective cation-exchange chemistry in sulfide nanowire systems Dandan Zhang,, Andrew B. Wong,, Yi Yu,, Sarah Brittman,, Jianwei Sun,, Anthony Fu,, Brandon Beberwyck,,,

More information