Monolithically integrated InGaAs nanowires on 3D. structured silicon-on-insulator as a new platform for. full optical links

Size: px
Start display at page:

Download "Monolithically integrated InGaAs nanowires on 3D. structured silicon-on-insulator as a new platform for. full optical links"

Transcription

1 Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links Hyunseok Kim 1, Alan C. Farrell 1, Pradeep Senanayake 1, Wook-Jae Lee 1,* & Diana. L. Huffaker 1,2 1 Department of Electrical Engineering, University of California Los Angeles, Los Angeles, California 90095, United States 2 California Nano-Systems Institute, University of California Los Angeles, Los Angeles, California 90095, United States 1

2 Supporting Information S1. Sample preparation processes A lightly p-doped (Boron, 10.cm) 6-inch SOI (111) wafer (SEH America Inc., USA) with an SOI layer thickness of 2 m, a buried oxide layer thickness of 2 m, and a Si handling layer thickness of 675 m is used for the nanowire growth. Wafer thinning. The wafer thinning process is necessary if the SOI layer of a bare SOI wafer is thicker than the desired SOI layer thickness. We adopted thermal oxidation process to reduce the thickness of the SOI layer, because other thinning processes such as wet chemical etching and dry etching typically degrade the surface roughness of the SOI layer. A bare SOI wafer is first cleaned using a piranha solution (4:1 H2SO4:H2O2) for 15 min at 120 ⁰C to remove organic contaminants. The wafer is then loaded into a furnace (TYTAN mini 3600, Tystar Co., USA) for thermal oxidation. Following the wet oxidation carried out at 1050 ⁰C (Fig. S1(b)), the as-grown thermal oxide is removed using a 6:1 buffered oxide etch (BOE) solution. The final SOI layer thickness is precisely controlled to be 220 nm, as shown in Fig. S1(c). (b) (a) (c) (d) (g) (h) E-beam resist Si SiO2 Si (d) (f) Si3N4 nanowires Figure S1. Fabrication process for InGaAs nanowires on SOI platform. 2

3 3D structure patterning. 3D structures including waveguides, gratings, and alignment markers are patterned on the thinned SOI layer by e-beam lithography and dry etching processes. First, e- beam resist, ZEP520A (ZEON Co., Japan) diluted with ZEP-A (ZEON Co., Japan) by the ratio of 2:1, is spin-coated on the thinned SOI wafer, followed by e-beam lithography using e-beam writer (Vistec EBPG 5000+, Vistec Electron Beam GmbH, Germany) and developing using ZED-N50 (ZEON Co., Japan), as shown in Fig. S1(d). Then, dry etching is carried out using the e-beam resist as an etch-mask. The SOI layer is etched using an ICP etcher (Oxford 80Plus, Oxford instruments, UK) by flowing 10 sccm of SF6, 25 sccm of CHF3, and 2 sccm of O2 under the RF power of 200 W and the chamber pressure of 30 mtorr. The depth of the trench is controlled to be 180 nm. The etch-mask is removed after the dry etching, as shown in Fig. S1(e), by N-Methyl-2-pyrrolidone (NMP) rinsing and piranha cleaning. Growth mask patterning. A dielectric mask is required to control the position of nanowires in selective-area epitaxy. First, a 20 nm-thick Si3N4 film is deposited using low-pressure chemical vapor deposition (LPCVD) (Tystar 17, Tystar Co., USA) at 800 ⁰C on the 3D structured SOI wafer (Fig. S1(f)). E-beam resist, ZEP520A diluted with ZEP-A by the ratio of 1:2, is then spin-coated on the wafer. The dilution ratio is different from the e-beam resist employed for the 3D structure patterning, because the nanohole size is on the order of tens of nanometers, requiring thinner e- beam resist for fine patterning. Next, e-beam writing is carried out to pattern nanoholes, employing the alignment markers patterned on the substrate to precisely align the position of the nanoholes on the 3D structures. The alignment error was less than 20 nm in our system. After developing the e-beam resist using ZED N-50, dry etching is carried out to expose nanoholes on the Si3N4 mask. The Si3N4 mask is patterned using an ICP etcher (Oxford 80Plus) by flowing 98 sccm of CHF3 and 2 sccm of O2 under the RF power of 50 W and the chamber pressure of 35 mtorr. 3

4 Sample preparation for growth. Following the growth mask patterning, the 6-inch wafer is diced into square-shaped samples with the size of 8 mm 8 mm for the growth. After the dicing, the resist is stripped by N-Methyl-2-pyrrolidone (NMP) rinsing and piranha cleaning, as shown in Fig. 1(g). Right before loading the sample into the MOCVD reactor, the native oxide on the exposed Si is stripped using a 6:1 BOE solution for 30 seconds, and rinsed using deionized water for 20 seconds followed by drying with compressed nitrogen gas. S2. Temperature-dependent photoluminescence of InGaAs nanowires Room-temperature photoluminescence (PL) spectra of InGaAs nanowires grown on SOI substrates are compared with PL spectra measured at cryogenic temperature to demonstrate optical properties of the nanowires. Nanowire arrays grown under different In and Ga flow rates are optically pumped using a diode laser with a 660 nm peak wavelength and an average pump power of 900 W. The emission spectra are measured using Fourier transform infrared spectroscopy under nitrogen condition in order to prevent CO2 and H2O absorption. The PL spectra of an In0.32Ga0.68As nanowire array and an In0.68Ga0.32As nanowire array measured at 77 K and room temperature are shown in Fig. S2. The peak intensities of nanowire arrays measured at 77 K are normalized for comparison with the spectra at 300 K. As the temperature increases from 77 K to 300 K, the emission of both Ga-rich and In-rich InGaAs nanowire arrays red-shifts and broadens, which are typical features originating from the change of the bandgap and the thermal excitation of electrons. It should be highlighted that the peak emission intensities of both In0.32Ga0.68As and In0.68Ga0.32As nanowires at 300 K are still ~25 % compared with 77 K measurements, which explicitly shows that the proposed platform can be potentially used for room-temperature 4

5 Figure S2. PL spectra of an In 0.32 Ga 0.68 As and an In 0.64 Ga 0.36 As arrays measured at 77 K and room temperature. The peak intensities of nanowire arrays measured at 77 K are normalized to 100 for comparison with the spectra at 300K. applications. Passivating the surface of nanowires with larger bandgap materials can further improve the emission properties of InGaAs nanowires by suppressing non-radiative surface recombination. S3. Pump power-dependent PL intensity of InGaAs nanowires A single InGaAs nanowire and a nanowire array with 500 nm pitch are optically pumped with various pump powers to investigate emission characteristics. A 660 nm pulsed laser is used as a pump source, and the emission spectra are measured using an InGaAs focal plane array detector at room temperature. The pump power is varied from 1.67 W to 3270 W, and Fig. S3(a) shows the PL spectra of the nanowire array at several pump powers as an example. The light-light (LL) curves of the nanowire array and the single nanowire are depicted in Fig. S3(b), where the integrated PL intensity (y-axis) is derived by integrating the emission spectra. 5

6 As shown in Fig. S3(b), the output intensity linearly increases with the pump power until it saturates due to the heating of the nanowires, which is a common aspect of optically pumped emitters. Interestingly, the saturation pump power of the single nanowire is 3110 W, which is about twice higher than that of the nanowire array (1570 W). These saturation pump powers of 3110 W and 1570 W correspond to the pump power densities of 15.8 kw/cm 2 and 8.0 kw/cm 2, respectively, assuming that the beam spot size is 5 m. This difference can be explained by the dissipation of heat accumulated in nanowires. The dissipation of heat from each nanowire in a densely packed nanowire array is not as effective as a single nanowire standing alone with no nearby structure, and this results in higher nanowire array temperature compared with the case of a single nanowire pumped with the same intensity. This local heating makes the saturation pump power of the nanowire array lower than the single nanowire. Although the quantum efficiency of the InGaAs nanowires cannot be directly derived because the collection efficiency of the objective lens and the responsivity of the detector are unknown, the linear increase of the emission intensity (a) 300 K (b) 10 Figure S3. (a) Photoluminescence spectra of an InGaAs nanowire array with various pump powers measured at room temperature. (b) LL curves of an InGaAs nanowire array and a single nanowire. The PL intensity of the single nanowire is magnified 10 times for visibility. 6

7 with the pump power density up to 15.8 kw/cm 2 at room temperature implies good optical properties of the nanowire. S4. Pump power-dependent spectral linewidth of InGaAs nanowires The material quality of InGaAs nanowires can be inferred from the spectral linewidth of the emission spectra. To evaluate the material quality, the full-width at half-maximum (FWHM) is calculated from room-temperature PL spectra of an InGaAs nanowire array, which are measured and shown in the previous section (S3). The emission spectra shown in Fig. S3(a) is normalized in Fig. S4(a) for comparison, which clearly show that the emission from the nanowires broadens as the pump power increases. The FWHM is calculated from the pump power of 16.8 W to the pump power of 3270 W, as the emission spectra are too noisy to calculate the FWHM when the pump power is below 16.8 W. The FWHM is 98 mev when the pump power is 16.8 W, which increases with the pump power due to the sample heating and the band filling effect, as shown in Fig. S4(b). Theoretically the FWHM of bulk InGaAs at room temperature is between 64 mev (a) 300 K (b) Figure S4. (a) Normalized PL spectra of an InGaAs nanowire array with various pump powers measured at room temperature. (b) Spectral linewidths of the InGaAs nanowire array as a function of pump power. 7

8 (2.5kbT) and 77 mev (3kbT). Although the FWHM of 98 mev at low pump power is around mev wider than bulk InGaAs, the discrepancy is not significant, implying the reasonably good material quality of InGaAs nanowires. Possible reasons for the broader linewidth of nanowires compared with bulk InGaAs include In/Ga composition inhomogeneity, zinc-blende/wurtzite polytypism, and ionized impurity scattering. S5. Difference between InGaAs nanowires grown on SOI and bulk Si substrates In the case of the III-V film growth on Si, a compliant SOI substrate instead of a Si substrate is known to improve the quality of the epitaxial layer grown on top by releasing the strain. To the best of our knowledge, however, there has been no report yet about the effect of compliant layers on the growth and material properties in the case of nanowires grown by selective-area epitaxy. SEM images of InGaAs nanowire arrays grown on bulk Si and SOI are shown in Fig. S5(a) and (b), respectively. These two samples are loaded together in the MOCVD reactor to ensure that the growth condition is exactly same for the two samples. The diameter and the height of the nanowires grown on Si are 308 nm and 1880 nm, while the nanowires grown on SOI have smaller size with (a) (b) (c) 300 K Figure S5. (a-b) SEM images of InGaAs nanowires grown on (a) bulk Si and (b) SOI. All images are tilted 30 from normal view and scale-bars represent 500 nm. (c) Room-temperature PL of InGaAs nanowires grown on Si and SOI. 8

9 the diameter of 270 nm and the height of 1730 nm. The difference in the size of the nanowires is thought to be from the insulating SiO2 layer of the SOI substrate, which makes the temperature of the surface of the SOI substrate different from the surface of bulk Si during the MOCVD growth. Interestingly, even though the volume of each nanowire grown on Si is around 40 % larger than the nanowires on SOI, the PL intensity of the nanowire array on Si is around 7 % lower than the nanowire array on SOI, as shown in Fig. S5(c). This implies that the material quality of InGaAs nanowires on SOI is superior to InGaAs nanowires on Si. We speculate that the compliant SOI substrate decreases the misfit dislocation density of the substrate-nanowire interface, in a similar way to the case of the film growth. However, further study is necessary to verify this speculation. 9

Supplementary Information

Supplementary Information Supplementary Information For Nearly Lattice Matched All Wurtzite CdSe/ZnTe Type II Core-Shell Nanowires with Epitaxial Interfaces for Photovoltaics Kai Wang, Satish C. Rai,Jason Marmon, Jiajun Chen, Kun

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11293 1. Formation of (111)B polar surface on Si(111) for selective-area growth of InGaAs nanowires on Si. Conventional III-V nanowires (NWs) tend to grow in

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si Authors: Yi Sun 1,2, Kun Zhou 1, Qian Sun 1 *, Jianping Liu 1, Meixin Feng 1, Zengcheng Li 1, Yu Zhou 1, Liqun

More information

plasmonic nanoblock pair

plasmonic nanoblock pair Nanostructured potential of optical trapping using a plasmonic nanoblock pair Yoshito Tanaka, Shogo Kaneda and Keiji Sasaki* Research Institute for Electronic Science, Hokkaido University, Sapporo 1-2,

More information

Nanofluidic Diodes based on Nanotube Heterojunctions

Nanofluidic Diodes based on Nanotube Heterojunctions Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions Ruoxue Yan, Wenjie Liang, Rong Fan, Peidong Yang 1 Department of Chemistry, University of California, Berkeley, CA 94720, USA

More information

Hybrid Group IV Nanophotonic Structures. Incorporating Diamond Silicon-Vacancy Color

Hybrid Group IV Nanophotonic Structures. Incorporating Diamond Silicon-Vacancy Color Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers Jingyuan Linda Zhang, Hitoshi Ishiwata 2,3, Thomas M. Babinec, Marina Radulaski, Kai Müller, Konstantinos G.

More information

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 69 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array Roland Jäger and Christian Jung We have designed and fabricated

More information

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in semiconductor material Pumped now with high current density

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

Supporting Information. Filter-free image sensor pixels comprising silicon. nanowires with selective color absorption

Supporting Information. Filter-free image sensor pixels comprising silicon. nanowires with selective color absorption Supporting Information Filter-free image sensor pixels comprising silicon nanowires with selective color absorption Hyunsung Park, Yaping Dan,, Kwanyong Seo,, Young J. Yu, Peter K. Duane, Munib Wober,

More information

High throughput ultra-long (20cm) nanowire fabrication using a. wafer-scale nanograting template

High throughput ultra-long (20cm) nanowire fabrication using a. wafer-scale nanograting template Supporting Information High throughput ultra-long (20cm) nanowire fabrication using a wafer-scale nanograting template Jeongho Yeon 1, Young Jae Lee 2, Dong Eun Yoo 3, Kyoung Jong Yoo 2, Jin Su Kim 2,

More information

State-of-the-art device fabrication techniques

State-of-the-art device fabrication techniques State-of-the-art device fabrication techniques! Standard Photo-lithography and e-beam lithography! Advanced lithography techniques used in semiconductor industry Deposition: Thermal evaporation, e-gun

More information

SILICON NANOWIRE HYBRID PHOTOVOLTAICS

SILICON NANOWIRE HYBRID PHOTOVOLTAICS SILICON NANOWIRE HYBRID PHOTOVOLTAICS Erik C. Garnett, Craig Peters, Mark Brongersma, Yi Cui and Mike McGehee Stanford Univeristy, Department of Materials Science, Stanford, CA, USA ABSTRACT Silicon nanowire

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/cgi/content/full/science.1234855/dc1 Supplementary Materials for Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active/Adaptive Tactile Imaging Wenzhuo Wu,

More information

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in semiconductor material Pumped now with high current density

More information

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors Veerendra Dhyani 1, and Samaresh Das 1* 1 Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi-110016,

More information

Supplementary information for Stretchable photonic crystal cavity with

Supplementary information for Stretchable photonic crystal cavity with Supplementary information for Stretchable photonic crystal cavity with wide frequency tunability Chun L. Yu, 1,, Hyunwoo Kim, 1, Nathalie de Leon, 1,2 Ian W. Frank, 3 Jacob T. Robinson, 1,! Murray McCutcheon,

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al-Al 2 O 3 -Al Trilayers

Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al-Al 2 O 3 -Al Trilayers Supporting Information Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al-Al 2 O 3 -Al Trilayers Thang Duy Dao 1,2,3,*, Kai Chen 1,2, Satoshi Ishii 1,2, Akihiko Ohi 1,2, Toshihide Nabatame

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature InP distributed feedback laser array directly grown on silicon Zhechao Wang, Bin Tian, Marianna Pantouvaki, Weiming Guo, Philippe Absil, Joris Van Campenhout, Clement Merckling and Dries

More information

Scaling of InGaAs MOSFETs into deep-submicron regime (invited)

Scaling of InGaAs MOSFETs into deep-submicron regime (invited) Scaling of InGaAs MOSFETs into deep-submicron regime (invited) Y.Q. Wu, J.J. Gu, and P.D. Ye * School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 * Tel: 765-494-7611,

More information

Major Fabrication Steps in MOS Process Flow

Major Fabrication Steps in MOS Process Flow Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide Silicon substrate Oxidation (Field oxide) Photoresist Coating Mask-Wafer Alignment

More information

High-Q Photonic Crystal Microcavities in InAsP/InGaAsP Multi-Quantum-Well Membranes

High-Q Photonic Crystal Microcavities in InAsP/InGaAsP Multi-Quantum-Well Membranes 125 Chapter 3 High-Q Photonic Crystal Microcavities in InAsP/InGaAsP Multi-Quantum-Well Membranes 3.1 Introduction With the high-q photonic crystal microcavity designs of chapter 2 in hand, the next step

More information

Supplementary Figure 1 Reflective and refractive behaviors of light with normal

Supplementary Figure 1 Reflective and refractive behaviors of light with normal Supplementary Figures Supplementary Figure 1 Reflective and refractive behaviors of light with normal incidence in a three layer system. E 1 and E r are the complex amplitudes of the incident wave and

More information

Session 2: Silicon and Carbon Photonics (11:00 11:30, Huxley LT311)

Session 2: Silicon and Carbon Photonics (11:00 11:30, Huxley LT311) Session 2: Silicon and Carbon Photonics (11:00 11:30, Huxley LT311) (invited) Formation and control of silicon nanocrystals by ion-beams for photonic applications M Halsall The University of Manchester,

More information

EUV Interference Lithography in NewSUBARU

EUV Interference Lithography in NewSUBARU EUV Interference Lithography in NewSUBARU Takeo Watanabe 1, Tae Geun Kim 2, Yasuyuki Fukushima 1, Noki Sakagami 1, Teruhiko Kimura 1, Yoshito Kamaji 1, Takafumi Iguchi 1, Yuuya Yamaguchi 1, Masaki Tada

More information

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab Silicon Photonics Photo-Detector Announcement Mario Paniccia Intel Fellow Director, Photonics Technology Lab Agenda Intel s Silicon Photonics Research 40G Modulator Recap 40G Photodetector Announcement

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Photoresist erosion studied in an inductively coupled plasma reactor employing CHF 3

Photoresist erosion studied in an inductively coupled plasma reactor employing CHF 3 Photoresist erosion studied in an inductively coupled plasma reactor employing CHF 3 M. F. Doemling, N. R. Rueger, and G. S. Oehrlein a) Department of Physics, University at Albany, State University of

More information

GaAs polytype quantum dots

GaAs polytype quantum dots GaAs polytype quantum dots Vilgailė Dagytė, Andreas Jönsson and Andrea Troian December 17, 2014 1 Introduction An issue that has haunted nanowire growth since it s infancy is the difficulty of growing

More information

Silicon-based photonic crystal nanocavity light emitters

Silicon-based photonic crystal nanocavity light emitters Silicon-based photonic crystal nanocavity light emitters Maria Makarova, Jelena Vuckovic, Hiroyuki Sanda, Yoshio Nishi Department of Electrical Engineering, Stanford University, Stanford, CA 94305-4088

More information

Near/Mid-Infrared Heterogeneous Si Photonics

Near/Mid-Infrared Heterogeneous Si Photonics PHOTONICS RESEARCH GROUP Near/Mid-Infrared Heterogeneous Si Photonics Zhechao Wang, PhD Photonics Research Group Ghent University / imec, Belgium ICSI-9, Montreal PHOTONICS RESEARCH GROUP 1 Outline Ge-on-Si

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Transfer printing stacked nanomembrane lasers on silicon Hongjun Yang 1,3, Deyin Zhao 1, Santhad Chuwongin 1, Jung-Hun Seo 2, Weiquan Yang 1, Yichen Shuai 1, Jesper Berggren 4, Mattias Hammar 4, Zhenqiang

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

Integrated into Nanowire Waveguides

Integrated into Nanowire Waveguides Supporting Information Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides Anthony Fu, 1,3 Hanwei Gao, 1,3,4 Petar Petrov, 1, Peidong Yang 1,2,3* 1 Department of Chemistry,

More information

GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm

GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm Clifford Frez 1, Kale J. Franz 1, Alexander Ksendzov, 1 Jianfeng Chen 2, Leon Sterengas 2, Gregory L. Belenky 2, Siamak

More information

Optoelectronics ELEC-E3210

Optoelectronics ELEC-E3210 Optoelectronics ELEC-E3210 Lecture 4 Spring 2016 Outline 1 Lateral confinement: index and gain guiding 2 Surface emitting lasers 3 DFB, DBR, and C3 lasers 4 Quantum well lasers 5 Mode locking P. Bhattacharya:

More information

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide [ APPLIED PHYSICS LETTERS ] High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide Dazeng Feng, Shirong Liao, Roshanak Shafiiha. etc Contents 1. Introduction

More information

Cavity QED with quantum dots in semiconductor microcavities

Cavity QED with quantum dots in semiconductor microcavities Cavity QED with quantum dots in semiconductor microcavities M. T. Rakher*, S. Strauf, Y. Choi, N.G. Stolz, K.J. Hennessey, H. Kim, A. Badolato, L.A. Coldren, E.L. Hu, P.M. Petroff, D. Bouwmeester University

More information

Visible Light Photon R&D in the US. A. Bross KEK ISS Meeting January 25, 2006

Visible Light Photon R&D in the US. A. Bross KEK ISS Meeting January 25, 2006 Visible Light Photon R&D in the US A. Bross KEK ISS Meeting January 25, 2006 Some History First VLPC History In 1987, a paper was published by Rockwell detailing the performance of Solid State PhotoMultipliers

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #3 is due today No class Monday, Feb 26 Pre-record

More information

Supplementary Information

Supplementary Information Supplementary Information Wireless thin film transistor based on micro magnetic induction coupling antenna Byoung Ok Jun 1, Gwang Jun Lee 1, Jong Gu Kang 1,2, Seung Uk Kim 1, Ji Woong Choi 1, Seung Nam

More information

Chapter 3 Fabrication

Chapter 3 Fabrication Chapter 3 Fabrication The total structure of MO pick-up contains four parts: 1. A sub-micro aperture underneath the SIL The sub-micro aperture is used to limit the final spot size from 300nm to 600nm for

More information

High-Ohmic Resistors using Nanometer-Thin Pure-Boron Chemical-Vapour-Deposited Layers

High-Ohmic Resistors using Nanometer-Thin Pure-Boron Chemical-Vapour-Deposited Layers High-Ohmic Resistors using Nanometer-Thin Pure-Boron Chemical-Vapour-Deposited Layers Negin Golshani, Vahid Mohammadi, Siva Ramesh, Lis K. Nanver Delft University of Technology The Netherlands ESSDERC

More information

Research Article Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes

Research Article Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes OptoElectronics Volume 22, Article ID 96275, 4 pages doi:.55/22/96275 Research Article Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes E. Kasper, M. Oehme, T. Arguirov,

More information

Si and InP Integration in the HELIOS project

Si and InP Integration in the HELIOS project Si and InP Integration in the HELIOS project J.M. Fedeli CEA-LETI, Grenoble ( France) ECOC 2009 1 Basic information about HELIOS HELIOS photonics ELectronics functional Integration on CMOS www.helios-project.eu

More information

Vertical Nanowall Array Covered Silicon Solar Cells

Vertical Nanowall Array Covered Silicon Solar Cells International Conference on Solid-State and Integrated Circuit (ICSIC ) IPCSIT vol. () () IACSIT Press, Singapore Vertical Nanowall Array Covered Silicon Solar Cells J. Wang, N. Singh, G. Q. Lo, and D.

More information

Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature

Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature Supporting Information Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature Hyunseok Kim 1, Wook-Jae Lee 2*, Alan C. Farrell 1, Juan S. D. Morales 3,4, Pradeep

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g< Robert G. Hunsperger Integrated Optics Theory and Technology Sixth Edition 4ü Spri rineer g< 1 Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of Optical Fibers with Other Interconnectors

More information

Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature

Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature Hyunseok Kim 1, Wook-Jae Lee 2*, Alan C. Farrell 1, Pradeep Senanayake 1, and Diana L. Huffaker 1,3,4 1 Department

More information

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Printing on Stones Map of Munich Stone Print Contact Printing light

More information

isagers. Three aicron gate spacing was

isagers. Three aicron gate spacing was LIJEAR POLY GATE CHARGE COUPLED DEVICE IMAGING ARRAYS Lucien Randazzese Senior Microelectronic Engineering Student Rochester Institute of Technology ABSTRACT A five cask level process was used to fabricate

More information

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon

More information

Photolithography I ( Part 1 )

Photolithography I ( Part 1 ) 1 Photolithography I ( Part 1 ) Chapter 13 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Bjørn-Ove Fimland, Department of Electronics and Telecommunication, Norwegian University of Science

More information

Grating-waveguide structures and their applications in high-power laser systems

Grating-waveguide structures and their applications in high-power laser systems Grating-waveguide structures and their applications in high-power laser systems Marwan Abdou Ahmed*, Martin Rumpel, Tom Dietrich, Stefan Piehler, Benjamin Dannecker, Michael Eckerle, and Thomas Graf Institut

More information

Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits

Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits Marcello Graziosi, ESR 3 within PICQUE (Marie Curie ITN project) and PhD student marcello.graziosi@ifn.cnr.it Istituto

More information

Hybrid vertical-cavity laser integration on silicon

Hybrid vertical-cavity laser integration on silicon Invited Paper Hybrid vertical-cavity laser integration on Emanuel P. Haglund* a, Sulakshna Kumari b,c, Johan S. Gustavsson a, Erik Haglund a, Gunther Roelkens b,c, Roel G. Baets b,c, and Anders Larsson

More information

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth Record Extrinsic Transconductance (2.45 ms/μm at = 0.5 V) InAs/In 0.53 Ga 7 As Channel MOSFETs Using MOCVD Source-Drain Regrowth Sanghoon Lee 1*, C.-Y. Huang 1, A. D. Carter 1, D. C. Elias 1, J. J. M.

More information

Development of Nanoimprint Mold Using JBX-9300FS

Development of Nanoimprint Mold Using JBX-9300FS Development of Nanoimprint Mold Using JBX-9300FS Morihisa Hoga, Mikio Ishikawa, Naoko Kuwahara Tadahiko Takikawa and Shiho Sasaki Dai Nippon Printing Co., Ltd Research & Development Center Electronic Device

More information

High-efficiency, high-speed VCSELs with deep oxidation layers

High-efficiency, high-speed VCSELs with deep oxidation layers Manuscript for Review High-efficiency, high-speed VCSELs with deep oxidation layers Journal: Manuscript ID: Manuscript Type: Date Submitted by the Author: Complete List of Authors: Keywords: Electronics

More information

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs 1 CMOS Digital Integrated Circuits 3 rd Edition Categories of Materials Materials can be categorized into three main groups regarding their

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

Feature-level Compensation & Control

Feature-level Compensation & Control Feature-level Compensation & Control 2 Sensors and Control Nathan Cheung, Kameshwar Poolla, Costas Spanos Workshop 11/19/2003 3 Metrology, Control, and Integration Nathan Cheung, UCB SOI Wafers Multi wavelength

More information

Growth of Antimony Telluride and Bismuth Selenide Topological Insulator Nanowires

Growth of Antimony Telluride and Bismuth Selenide Topological Insulator Nanowires Growth of Antimony Telluride and Bismuth Selenide Topological Insulator Nanowires Maxwell Klefstad Cornell University (Dated: August 28, 2011) Topological insulators are a relatively new class of materials,

More information

Newer process technology (since 1999) includes :

Newer process technology (since 1999) includes : Newer process technology (since 1999) includes : copper metalization hi-k dielectrics for gate insulators si on insulator strained silicon lo-k dielectrics for interconnects Immersion lithography for masks

More information

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical 286 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 2, JANUARY 15, 2008 Design and Fabrication of Sidewalls-Extended Electrode Configuration for Ridged Lithium Niobate Electrooptical Modulator Yi-Kuei Wu,

More information

An electrically pumped germanium laser

An electrically pumped germanium laser An electrically pumped germanium laser The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Camacho-Aguilera,

More information

PROCESS DEVELOPMENT FOR SMALL-AREA GaN/AlGaN HBT s

PROCESS DEVELOPMENT FOR SMALL-AREA GaN/AlGaN HBT s PROCESS DEVELOPMENT FOR SMALL-AREA GaN/AlGaN HBT s K.P.Lee (1), A.P.Zhang (1), G.Dang (1), F.Ren (1), J.Han (2), W.S.Hobson (3), J.Lopata (3), C.R.Abernathy (1), S.J.Pearton (1), J.W.Lee (4) (1) University

More information

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Abstract We report the fabrication and testing of a GaAs-based high-speed resonant cavity enhanced (RCE) Schottky photodiode. The

More information

Supporting Information. Vertical Graphene-Base Hot-Electron Transistor

Supporting Information. Vertical Graphene-Base Hot-Electron Transistor Supporting Information Vertical Graphene-Base Hot-Electron Transistor Caifu Zeng, Emil B. Song, Minsheng Wang, Sejoon Lee, Carlos M. Torres Jr., Jianshi Tang, Bruce H. Weiller, and Kang L. Wang Department

More information

Fabrication and Characterization of Broad-Area Lasers with Dry-Etched Mirrors

Fabrication and Characterization of Broad-Area Lasers with Dry-Etched Mirrors Broad-Area Lasers with Dry-Etched Mirrors 31 Fabrication and Characterization of Broad-Area Lasers with Dry-Etched Mirrors Franz Eberhard and Eckard Deichsel Using reactive ion-beam etching (RIBE) we have

More information

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

Micro-sensors - what happens when you make classical devices small: MEMS devices and integrated bolometric IR detectors Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors Dean P. Neikirk 1 MURI bio-ir sensors kick-off 6/16/98 Where are the targets

More information

Supporting Information. Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells

Supporting Information. Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells Supporting Information Epitaxially Aligned Cuprous Oxide Nanowires for All-Oxide, Single-Wire Solar Cells Sarah Brittman, 1,2 Youngdong Yoo, 1 Neil P. Dasgupta, 1,3 Si-in Kim, 4 Bongsoo Kim, 4 and Peidong

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/6/2007 MOSFETs Lecture 6 BJTs- Lecture 1 Reading Assignment: Chapter 10 More Scalable Device Structures Vertical Scaling is important. For example,

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules Reference: Uyemura, John P. "Introduction to

More information

PROJECT. DOCUMENT IDENTIFICATION D2.2 - Report on low cost filter deposition process DISSEMINATION STATUS PUBLIC DUE DATE 30/09/2011 ISSUE 2 PAGES 16

PROJECT. DOCUMENT IDENTIFICATION D2.2 - Report on low cost filter deposition process DISSEMINATION STATUS PUBLIC DUE DATE 30/09/2011 ISSUE 2 PAGES 16 GRANT AGREEMENT NO. ACRONYM TITLE CALL FUNDING SCHEME 248898 PROJECT 2WIDE_SENSE WIDE spectral band & WIDE dynamics multifunctional imaging SENSor ENABLING SAFER CAR TRANSPORTATION FP7-ICT-2009.6.1 STREP

More information

Silicon Light Machines Patents

Silicon Light Machines Patents 820 Kifer Road, Sunnyvale, CA 94086 Tel. 408-240-4700 Fax 408-456-0708 www.siliconlight.com Silicon Light Machines Patents USPTO No. US 5,808,797 US 5,841,579 US 5,798,743 US 5,661,592 US 5,629,801 US

More information

High-yield Fabrication Methods for MEMS Tilt Mirror Array for Optical Switches

High-yield Fabrication Methods for MEMS Tilt Mirror Array for Optical Switches : MEMS Device Technologies High-yield Fabrication Methods for MEMS Tilt Mirror Array for Optical Switches Joji Yamaguchi, Tomomi Sakata, Nobuhiro Shimoyama, Hiromu Ishii, Fusao Shimokawa, and Tsuyoshi

More information

EE 330 Lecture 7. Design Rules. IC Fabrication Technology Part 1

EE 330 Lecture 7. Design Rules. IC Fabrication Technology Part 1 EE 330 Lecture 7 Design Rules IC Fabrication Technology Part 1 Review from Last Time Technology Files Provide Information About Process Process Flow (Fabrication Technology) Model Parameters Design Rules

More information

Plasma Enhanced Chemical Vapor Deposition (PECVD) of Silicon Nitride (SiNx) Using Oxford Instruments System 100 PECVD

Plasma Enhanced Chemical Vapor Deposition (PECVD) of Silicon Nitride (SiNx) Using Oxford Instruments System 100 PECVD University of Pennsylvania ScholarlyCommons Tool Data Browse by Type 2-28-2017 Plasma Enhanced Chemical Vapor Deposition (PECVD) of Silicon Nitride (SiNx) Using Oxford Instruments System 100 PECVD Meredith

More information

Enabling Breakthroughs In Technology

Enabling Breakthroughs In Technology Enabling Breakthroughs In Technology Mike Mayberry Director of Components Research VP, Technology and Manufacturing Group Intel Corporation June 2011 Defined To be defined Enabling a Steady Technology

More information

Characterization of SOI MOSFETs by means of charge-pumping

Characterization of SOI MOSFETs by means of charge-pumping Paper Characterization of SOI MOSFETs by means of charge-pumping Grzegorz Głuszko, Sławomir Szostak, Heinrich Gottlob, Max Lemme, and Lidia Łukasiak Abstract This paper presents the results of charge-pumping

More information

CHAPTER 2 Principle and Design

CHAPTER 2 Principle and Design CHAPTER 2 Principle and Design The binary and gray-scale microlens will be designed and fabricated. Silicon nitride and photoresist will be taken as the material of the microlens in this thesis. The design

More information

The Simulation, Design, and Fabrication of Optical Filters

The Simulation, Design, and Fabrication of Optical Filters Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Physics and Optical Engineering Graduate Theses 11-2017 The Simulation, Design, and Fabrication of Optical Filters John-Michael

More information

Flip-Chip Integration of 2-D 850 nm Backside Emitting Vertical Cavity Laser Diode Arrays

Flip-Chip Integration of 2-D 850 nm Backside Emitting Vertical Cavity Laser Diode Arrays Flip-Chip Integration of 2-D 850 nm Backside Emitting Vertical Cavity Laser Diode Arrays Hendrik Roscher Two-dimensional (2-D) arrays of 850 nm substrate side emitting oxide-confined verticalcavity lasers

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 PROBLEM SET #2. Due (at 7 p.m.): Tuesday, Sept. 27, 2011, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 PROBLEM SET #2. Due (at 7 p.m.): Tuesday, Sept. 27, 2011, in the EE C245 HW box in 240 Cory. Issued: Tuesday, Sept. 13, 2011 PROBLEM SET #2 Due (at 7 p.m.): Tuesday, Sept. 27, 2011, in the EE C245 HW box in 240 Cory. 1. Below in Figure 1.1 is a description of a DRIE silicon etch using the Marvell

More information

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics

2. Pulsed Acoustic Microscopy and Picosecond Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Picosecond Ultrasonic Microscopy of Semiconductor Nanostructures Thomas J GRIMSLEY

More information

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I Prof. Utpal Das Professor, Department of lectrical ngineering, Laser Technology Program, Indian Institute

More information

Instruction manual and data sheet ipca h

Instruction manual and data sheet ipca h 1/15 instruction manual ipca-21-05-1000-800-h Instruction manual and data sheet ipca-21-05-1000-800-h Broad area interdigital photoconductive THz antenna with microlens array and hyperhemispherical silicon

More information

Nanowires for Quantum Optics

Nanowires for Quantum Optics Nanowires for Quantum Optics N. Akopian 1, E. Bakkers 1, J.C. Harmand 2, R. Heeres 1, M. v Kouwen 1, G. Patriarche 2, M. E. Reimer 1, M. v Weert 1, L. Kouwenhoven 1, V. Zwiller 1 1 Quantum Transport, Kavli

More information

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS.

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS. Tapered Amplifiers For Amplification of Seed Sources or for External Cavity Laser Setups 750 nm to 1070 nm COHERENT.COM DILAS.COM Welcome DILAS Semiconductor is now part of Coherent Inc. With operations

More information

Generating integrated-circuit patterns via cutting and stitching of gratings

Generating integrated-circuit patterns via cutting and stitching of gratings Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 11-2009 Generating integrated-circuit patterns via cutting and stitching of gratings Lin Zhao Purdue University -

More information

Innovative Technologies for RF & Power Applications

Innovative Technologies for RF & Power Applications Innovative Technologies for RF & Power Applications > Munich > Nov 14, 2017 1 Key Technologies Key Technologies Veeco Market Focus Advanced Packaging, MEMS & RF Lighting, Display & Power Electronics Lithography

More information

Graphene electro-optic modulator with 30 GHz bandwidth

Graphene electro-optic modulator with 30 GHz bandwidth Graphene electro-optic modulator with 30 GHz bandwidth Christopher T. Phare 1, Yoon-Ho Daniel Lee 1, Jaime Cardenas 1, and Michal Lipson 1,2,* 1School of Electrical and Computer Engineering, Cornell University,

More information

Long-Wavelength Waveguide Photodiodes for Optical Subscriber Networks

Long-Wavelength Waveguide Photodiodes for Optical Subscriber Networks Long-Wavelength Waveguide Photodiodes for Optical Subscriber Networks by Masaki Funabashi *, Koji Hiraiwa *, Kazuaki Nishikata * 2, Nobumitsu Yamanaka *, Norihiro Iwai * and Akihiko Kasukawa * Waveguide

More information

Long wavelength electrically pumped GaSb-based Buried Tunnel Junction VCSELs

Long wavelength electrically pumped GaSb-based Buried Tunnel Junction VCSELs Available online at www.sciencedirect.com Physics Physics Procedia Procedia 3 (2010) 00 (2009) 1155 1159 000 000 www.elsevier.com/locate/procedia 14 th International Conference on Narrow Gap Semiconductors

More information

Supplementary Figure 1: Optical Properties of V-shaped Gold Nanoantennas a) Illustration of the possible plasmonic modes.

Supplementary Figure 1: Optical Properties of V-shaped Gold Nanoantennas a) Illustration of the possible plasmonic modes. Supplementary Figure 1: Optical Properties of V-shaped Gold Nanoantennas a) Illustration of the possible plasmonic modes. S- symmetric, AS antisymmetric. b) Calculated linear scattering spectra of individual

More information

Fabrication Techniques of Optical ICs

Fabrication Techniques of Optical ICs Fabrication Techniques of Optical ICs Processing Techniques Lift off Process Etching Process Patterning Techniques Photo Lithography Electron Beam Lithography Photo Resist ( Microposit MP1300) Electron

More information

Supporting Information

Supporting Information Supporting Information Mode imaging and selection in strongly coupled nanoantennas Jer-Shing Huang 1,*, Johannes Kern 1, Peter Geisler 1, Pia Weimann 2, Martin Kamp 2, Alfred Forchel 2, Paolo Biagioni

More information