Power and data managements

Size: px
Start display at page:

Download "Power and data managements"

Transcription

1 GBM830 Dispositifs Médicaux Intelligents Power and data managements Part : Inductive links Mohamad Sawan et al Laboratoire de neurotechnologies Polystim!! mohamad.sawan@polymtl.ca! M548! April 03

2 Inductive link : Outline Introduction Power and data links Inductive link Choice of carrier frequency Transmitted power limits Inductive system modeling Conditioning and calibration techniques Discrete and integrated circuitries Power transfer Up and downlinks data transmission Modulation and demodulation Batteries Miniature, rechargeable, etc. GBM830 - Dispositifs Médicaux Intelligents

3 Power and Data Link : Typical architecture External controller Receiver Test stimuli Stimuli generator Modulator Demodulator AC/DC Supply Main Controller Current sources Data processing Back telemetry Measure & digitize MUX DeMUX Skin Electrodes GBM830 - Dispositifs Médicaux Intelligents 3

4 Power and Data Link : Multisensing devices Electrical Impedance Pressure Implantable Wireless Sensor Microsystem Analog to Digital Converter RF Transmitter/ Receiver... Data transmitted to a Base Station outside of the body ph MUX Digital Control Unit Modulator & Demodulator Temperature NO or O Concentration Power Regulation GBM830 - Dispositifs Médicaux Intelligents 4

5 Embedded medical devices : Power supplies Power sources Transcutaneous RF inductive powering : Implants, no internal power source Primary (non-rechargeable) batteries : Wearable systems; Low-power design Secondary (rechargeable) batteries : Implantable systems w/ RF inductive link Fuel cells: Rechargeable electrochemical energy converters Electricity/heat generation from reaction of Hydrogen and Oxygen No pollution since water is the main by-product. Energy scavenging and power harvesting : MEMS, Vibration, RF Downlink Battery GBM830 - Dispositifs Médicaux Intelligents 5

6 Transcutaneous link : RF Inductive Powering Inductive powering is a common method for providing energy to implantable wireless devices. For systems having large power consumption or requiring long lifetime External coil is usually driven by a transmitter operating at a suitable frequency to provide adequate power to the device. Vs ~ R C M * * L L C R V rec C3 Voltage Regulator LOAD V DC inductive link rectifier linear regulator GBM830 - Dispositifs Médicaux Intelligents 6

7 Inductive Powering : Choice of Carrier Frequency Two major limits: ) Coil self-resonance frequency, ) EM energy absorption in tissue When EM waves propagate through body tissues (skin, bone, fat, body fluid) to reach the receiving antenna, they are attenuated along the way. K = - exp (- d / Δ) d is tissue thickness. D is tissue skin depth. More power loss in the power transmission and conditioning circuitry at higher frequency For MHz < f c < 0MHz, average density of electromagnetic power absorption in tissue increases as f Carrier Frequency f c ~ Penetration depth D GBM830 - Dispositifs Médicaux Intelligents 7

8 Inductive Powering : Transmitted Power Limits IEEE has recommended a standard for safety with respect to RF exposure. For biomedical implantable systems, RF powering occurs within a controlled environment. Frequency (MHz) Maximum Power Density (W/Cm ) If f c equals 5.MHz and the transmitter coil has a diameter of 0mm, the transmitted power has to be less than 6W. The received power is then determined based upon the inductive link configuration and telemetry distance. GBM830 - Dispositifs Médicaux Intelligents 8

9 Inductive Powering : Coils coupling factor External coil is driven by an RF amplifier at a suitable frequency. Secondary coil captures a portion of the EM field, inducing a current. Captured energy by the secondary coil depends on coupling factor, K. 0 < K < ; dimensionless; Typical values are K = r implant r r implant r reader reader ( x + rreader ) 3 Vs ~ R C M * * L L C R V rec C3 Voltage Regulator LOAD V DC inductive link rectifier linear regulator K is an important factor in the operation of any inductively coupled system r i & r r are the radii of the two coils with x being the distance between them. Assumptions: coils are parallel and center-aligned with only air between them. GBM830 - Dispositifs Médicaux Intelligents 9

10 RF Inductive Powering : System View Model of the inductive link front-end. R = parasitic resistance; C = tuning capacitance; and R L = system load. L and L represent a weakly coupled transformer. L i = / n = k / L n i V L V L = V + (R + jwl ).( R L + jwc ) i V = jwk L ( i n / ) = jwk L L.i V V L = wk L L i = Aki ( wl R L + wr C ) + ( w L C + R R L ) GBM830 - Dispositifs Médicaux Intelligents 0

11 RF Inductive Powering : System View We require V L to be within a certain range. k is a factor of the distance between the coils. Example: L L C R R L f 43.5 uh 3.7 uh 330pF k 4MHz V L = wk L L.i ( wl R L + wr C ) + ( w L C + R R L ) = Aki V L = 70.k.i At a fixed distance, the voltage on the implanted coil can be adjusted by changing the current in the primary coil. GBM830 - Dispositifs Médicaux Intelligents

12 RF Inductive Powering : Conditioning Circuitry But, this is clearly not enough! Received voltage across the secondary coil is a sinusoidal voltage with little or zero dc value. Vs ~ R C M * * L L C R V rec C3 Voltage Regulator inductive link rectifier linear regulator LOAD V DC Power conditioning circuitry such as integrated voltage rectifiers and regulators are also needed to generate a clean dc power supply. Primary resonant signal Secondary induced signal Rectified voltage (half rectifier) Regulated voltage supply GBM830 - Dispositifs Médicaux Intelligents

13 Inductive link : Power transfer efficiency Vs ~ R C M * * L L C R V rec C3 Voltage Regulator LOAD V DC inductive link rectifier linear regulator = Z r = rflink Z k R C ν ν ν R C + k R C rectifier = V rect V rect V rect + V diode regulator V DC GBM830 - Dispositifs Médicaux Intelligents 3

14 Inductive link : Power transfer efficiency (Cont d) Data Modulator External Controller PA C Skin Implant Rectifier Battery L L C Shunt regulator To/From other parts η total = = k C VDC R C P load + k C (V rect + V diode ) V DC k VDC R P load + k (V rect + V diode ) V DC V rect = = R C R k C kr + k C + k R V R RC s V s GBM830 - Dispositifs Médicaux Intelligents 4

15 Inductive link : Power transfer calibration External Implant Data In Data Out ASK Demodulator data direction Data Encoder R C Vs + - * M * L L C R a R b Battery External Controller Data Modulator PA Switching Regulator Vdd ASK Demodulator / DAC/Decoder C L Skin L Implant Rectifier C Load Shift Key (LSK) Shunt regulator Encoder ASK/PSK Demodulator To/From Other parts Power regulation at k=0.07, V REGDC =.8 V. GBM830 - Dispositifs Médicaux Intelligents 5

16 Inductive link : Power transfer calibration (Cont d) mw I I I I I I V 0 V mw 5 mw mw mw Pload η total = = R C P R P load load + + k k ( V k C k V rect V ( V DC DC C rect + V + V diode diode ) V DC ) V DC Power Efficiency Versus Load Power W/O Feedback W Feedback Voltage of Secondary Coil Versus Load Power W/O Feedback W Feedback GBM830 - Dispositifs Médicaux Intelligents 6

17 Inductive link : Power transfer calibration (Cont d) Carrier Frequency : 3.56 MHz. Transmission Mode : Full Duplex. Modulation Methods : Uplink LSK), 00 kbps Downlink BPSK, Mbps. GBM830 - Dispositifs Médicaux Intelligents 7

18 Inductive link : Linear Voltage regulator To increase the power efficiency, low dropout voltage (LDO) regulator is used. Vin Bandgap Voltage Reference.6 V Vref Passing transistor + OPAMP Power loss - Vout R LOAD Advantages of linear regulator - Able to be fully integrated - Less noisy. Drawbacks - Low power efficiency - Only step-down DC-DC converter feasible. R GBM830 - Dispositifs Médicaux Intelligents 8

19 Inductive link : Linear voltage regulator LDO regulators with dual-voltage output SC DC-DC converter Vin_boost Vin Bandgap Reference NM + V g Error Amp - V OH + V M g Error Amp - V OL R b 3.3 V.8 V R b4 Native NMOS transistor: Skips the thresholdvoltage adjustment implant process. R b R L R b3 R L V-I charts of the native NMOS passing transistor (W/L= 400/.) GBM830 - Dispositifs Médicaux Intelligents 9

20 Inductive link : Voltage regulation front-end V rec 3.3V regulator.8v regulator LOAD V L V H I H V rec Parallel/Cascade two linear regulators 3.3V regulator LOAD V H I H.8V regulator LOAD V L I L LOAD I L Coil Resonance circuit & Full-wave rectifier V rec = 3.6 V, V recl =. V V recl SC step up DC-DC converter Start-up Circuit Integrated on chip Bandgap Reference 3.3 V LDO regulator V ref.8v LDO regulator V high V low Stimulator Output Stages & Other Circuitry Load current I L (.8V) Stimulation current I H (3.3V) Delivered Power Power losses Normal Proposed Efficiency Normal Proposed 5 ma.6 ma 4.8 mw 9.48 mw.94 mw 60.6% 8.9% GBM830 - Dispositifs Médicaux Intelligents 0

21 Inductive link : Circuits of the voltage regulator Vin SC DC/DC converter M5 M3 The CMOS bandgap reference M M A Vout Vin MP05 MP06 MP09 MP5 B C C M6 M4 Cout MP07 MP08 MP0 MP MP6 CLK CLK non-overlapping clock generator C Vout Start-up circuit MN03 MN04 MN3 MN M 5 M 6 MN0 MN0 MN4 R M 7 V out R M 8 Q Q Q3 Q4 Q5 M M M 4 M 3 V in V in VSS GBM830 - Dispositifs Médicaux Intelligents

22 Power and Data Inductive ink : Voltage regulator The power recovering chip SC DC/DC converter LDO regulators GBM830 - Dispositifs Médicaux Intelligents

23 RF Inductive Powering : Conditioning Circuitry Rectifiers: They rectify the incoming sinusoidal signal either in every cycle (fullwave rectifier) or in every other cycle (half-wave rectifier). Half- Wave Full- Wave In each cycle (positive or negative), only PMOS transistors conduct. An external capacitor is also used for lowpass filtering the rectified signal to reduce its ripple. Practically, integrated full-wave rectifiers are more complicated than this. Additional devices should be incorporated to protect the main transistors against high voltage and to reduce the possibility of latch-up. GBM830 - Dispositifs Médicaux Intelligents 3

24 Inductive link : Fully integrated solutions Block a Block c R C T4 RF input signal D D C C C R T T3 T5 C L Digital output Block b T T4 T5 T7 T9 T T T3 T6 T8 T0 R R R L DC output GBM830 - Dispositifs Médicaux Intelligents 4

25 Inductive link : Power link V Out C L R L V AC Gnd V DD V AC C L R L V SS GBM830 - Dispositifs Médicaux Intelligents 5

26 Inductive link : Data transmission, up link Data in Switch Off D C D D D 3 D 4 RL C D3 D RL D4 Switch On Req= RL/ D4 LSK Modulation C D3 RL 00 kb/s 00 kb/s R eq = R L /8 GBM830 - Dispositifs Médicaux Intelligents 6

27 Inductive link : Power link GBM830 - Dispositifs Médicaux Intelligents 7

Power and Data Link : Typical architecture. April External controller Receiver. Test stimuli. Stimuli generator. Modulator

Power and Data Link : Typical architecture. April External controller Receiver. Test stimuli. Stimuli generator. Modulator April 0 Introduction Power and data links Inductive link Choice of carrier frequency Transmitted power limits Inductive system modeling Conditioning and calibration techniques Discrete and integrated circuitries

More information

Introduction. Inductive link Choice of carrier frequency Transmitted power limits Inductive system modeling Conditioning and calibration techniques

Introduction. Inductive link Choice of carrier frequency Transmitted power limits Inductive system modeling Conditioning and calibration techniques 19 mars 2014 Introduction Power and data links Inductive link Choice of carrier frequency Transmitted power limits Inductive system modeling Conditioning and calibration techniques Discrete and integrated

More information

Discrete and integrated circuitries

Discrete and integrated circuitries 17 & 4 novembre 014 Introduction Power and data links Inductive link Choice of carrier frequency Transmitted power limits Inductive system modeling Conditioning and calibration techniques Discrete and

More information

April Features: Switching power amplifier (AP) Power link and bidirectional. Demodulator. Modulator. User Interface

April Features: Switching power amplifier (AP) Power link and bidirectional. Demodulator. Modulator. User Interface April 2011 Introduction Power and data links Inductive link Choice of carrier frequency Transmitted power limits Inductive system modeling Conditioning and calibration techniques iscrete and integrated

More information

Microelectronics Part 2: Basic analog CMOS circuits

Microelectronics Part 2: Basic analog CMOS circuits GBM830 Dispositifs Médicaux Intelligents Microelectronics Part : Basic analog CMOS circuits Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim!! http://www.cours.polymtl.ca/gbm830/! mohamad.sawan@polymtl.ca!

More information

Inductive Power Link for a Wireless Cortical Implant with Biocompatible Packaging

Inductive Power Link for a Wireless Cortical Implant with Biocompatible Packaging Inductive Power Link for a Wireless Cortical Implant with Biocompatible Packaging Kanber Mithat Silay, Catherine Dehollain, Michel Declercq Institute of Electrical Engineering, RFIC Research Group Ecole

More information

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT ABSTRACT: This paper describes the design of a high-efficiency energy harvesting

More information

Battery lifetime modelling for a 2.45GHz cochlear implant application

Battery lifetime modelling for a 2.45GHz cochlear implant application Battery lifetime modelling for a 2.45GHz cochlear implant application William Tatinian LEAT UMR UNS CNRS 6071 250 Avenue A. Enstein 06560 Valbonne, France (+33) 492 94 28 51 william.tatinian@unice.fr Yannick

More information

Session 11 CMOS Biochips and Bioelectronics A Sub-1 µw Multiparameter Injectable BioMote for Continuous Alcohol Monitoring

Session 11 CMOS Biochips and Bioelectronics A Sub-1 µw Multiparameter Injectable BioMote for Continuous Alcohol Monitoring Session 11 CMOS Biochips and Bioelectronics A Sub-1 µw Multiparameter Injectable BioMote for Continuous Alcohol Monitoring Haowei Jiang, Xiahan Zhou, Saurabh Kulkarni, Michael Uranian, Rajesh Seenivasan,

More information

Motivation. Approach. Requirements. Optimal Transmission Frequency for Ultra-Low Power Short-Range Medical Telemetry

Motivation. Approach. Requirements. Optimal Transmission Frequency for Ultra-Low Power Short-Range Medical Telemetry Motivation Optimal Transmission Frequency for Ultra-Low Power Short-Range Medical Telemetry Develop wireless medical telemetry to allow unobtrusive health monitoring Patients can be conveniently monitored

More information

Battery lifetime modeling for a 2.45GHz cochlear implant application

Battery lifetime modeling for a 2.45GHz cochlear implant application Behavioral Modeling and System conference September 23-24, 2010 3.1 10:00-10:30 AM Battery lifetime modeling for a 2.45GHz cochlear implant application William Tatinian LEAT UMR UNS CNRS 6071 (+33) 492

More information

Study on High Efficiency CMOS Rectifiers for Energy Harvesting and Wireless Power Transfer Systems

Study on High Efficiency CMOS Rectifiers for Energy Harvesting and Wireless Power Transfer Systems Waseda University Doctoral Dissertation Study on High Efficiency CMOS Rectifiers for Energy Harvesting and Wireless Power Transfer Systems Qiang LI Graduate School of Information, Production and Systems

More information

An Integrated, Dynamically Adaptive Energy-Management Framework for Linear RF Power Amplifiers

An Integrated, Dynamically Adaptive Energy-Management Framework for Linear RF Power Amplifiers An Integrated, Dynamically Adaptive Energy-Management Framework for Linear RF Power Amplifiers Georgia Tech Analog Consortium Biranchinath Sahu Advisor: Prof. Gabriel A. Rincón-Mora Georgia Tech Analog

More information

Long Range Passive RF-ID Tag With UWB Transmitter

Long Range Passive RF-ID Tag With UWB Transmitter Long Range Passive RF-ID Tag With UWB Transmitter Seunghyun Lee Seunghyun Oh Yonghyun Shim seansl@umich.edu austeban@umich.edu yhshim@umich.edu About RF-ID Tag What is a RF-ID Tag? An object for the identification

More information

An ultra-low power BPSK demodulator with dual band filtering for implantable biomedical devices

An ultra-low power BPSK demodulator with dual band filtering for implantable biomedical devices LETTER IEICE Electronics Express, Vol.10, No.7, 1 5 An ultra-low power BPSK demodulator with dual band filtering for implantable biomedical devices Benjamin P. Wilkerson, Joon-Hyup Seo, Jin-Cheol Seo,

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 87-96 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Development of Power Recovery Circuit for Bio-Implantable Stimulator Mokhalad Khaleel

More information

!"#$%&"'(&)'(*$&+,&-*.#/'0&'1&%& )%--/2*&3/.$'(%2*&+,45& #$%0-)'06*$&/0&789:&3/.$'0&;/<=>?!

!#$%&'(&)'(*$&+,&-*.#/'0&'1&%& )%--/2*&3/.$'(%2*&+,45& #$%0-)'06*$&/0&789:&3/.$'0&;/<=>?! Università di Pisa!"#$%&"'(&)'(*$&+,&-*.#/'&'1&%& )%--/*&3/.$'(%*&+,45& #$%-)'6*$&/&789:&3/.$'&;/?! "#$%&''&!(&!)#*+! $'3)1('9%,(.#:'#+,M%M,%1')#:%N+,7.19)O'.,%P#C%((1.,'-)*#+,7.19)('-)*#Q%%-.9E,'-)O'.,'*#

More information

WIRELESS POWER MANAGEMENT CIRCUITS FOR BIOMEDICAL IMPLANTABLE SYSTEMS. Jianming ZHAO

WIRELESS POWER MANAGEMENT CIRCUITS FOR BIOMEDICAL IMPLANTABLE SYSTEMS. Jianming ZHAO WIRELESS POWER MANAGEMENT CIRCUITS FOR BIOMEDICAL IMPLANTABLE SYSTEMS Jianming ZHAO (B. S., M.S.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

More information

Piezoelectric Generator for Powering Remote Sensing Networks

Piezoelectric Generator for Powering Remote Sensing Networks Piezoelectric Generator for Powering Remote Sensing Networks Moncef Benjamin. Tayahi and Bruce Johnson moncef@ee.unr.edu Contact Details of Author: Moncef Benjamin. Tayahi Phone: 775-784-6103 Fax: 775-784-6627

More information

Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective

Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective Institute of Integrated Sensor Systems Dept. of Electrical Engineering and Information Technology Dynamically Reconfigurable Sensor Electronics Concept, Architecture, First Measurement Results, and Perspective

More information

Switched-Capacitor Converters: Big & Small. Michael Seeman Ph.D. 2009, UC Berkeley SCV-PELS April 21, 2010

Switched-Capacitor Converters: Big & Small. Michael Seeman Ph.D. 2009, UC Berkeley SCV-PELS April 21, 2010 Switched-Capacitor Converters: Big & Small Michael Seeman Ph.D. 2009, UC Berkeley SCV-PELS April 21, 2010 Outline Problem & motivation Applications for SC converters Switched-capacitor fundamentals Power

More information

Design for MOSIS Educational Program (Research) Testing Report for Project Number 89742

Design for MOSIS Educational Program (Research) Testing Report for Project Number 89742 Design for MOSIS Educational Program (Research) Testing Report for Project Number 89742 Prepared By: Kossi Sessou (Graduate Student) and Nathan Neihart (Assistant Professor) Bin Huang (Graduate Student)

More information

Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices

Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices Anand Garg, Lakshmi Sridevi B.Tech, Dept. of Electronics and Instrumentation Engineering, SRM University

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Engineering Acoustics Session 1pEAb: Transduction, Transducers, and Energy

More information

Integration of Supercapacitors into Wirelessly Charged Biomedical Sensors

Integration of Supercapacitors into Wirelessly Charged Biomedical Sensors Integration of s into Wirelessly Charged Biomedical Sensors Amit Pandey, Fadi Allos, Aiguo Patrick Hu, David Budgett The Department of Electrical and Computer Engineering The University of Auckland Auckland,

More information

A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS

A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS A SWITCHED-CAPACITOR POWER AMPLIFIER FOR EER/POLAR TRANSMITTERS Sang-Min Yoo, Jeffrey Walling, Eum Chan Woo, David Allstot University of Washington, Seattle, WA Submission Highlight A fully-integrated

More information

HART Modem DS8500. Features

HART Modem DS8500. Features Rev 1; 2/09 EVALUATION KIT AVAILABLE General Description The is a single-chip modem with Highway Addressable Remote Transducer (HART) capabilities and satisfies the HART physical layer requirements. The

More information

CIRCUITRY FOR A WIRELESS MICROSYSTEM FOR NEURAL RECORDING MICROPROBES

CIRCUITRY FOR A WIRELESS MICROSYSTEM FOR NEURAL RECORDING MICROPROBES CIRCUITRY FOR A WIRELESS MICROSYSTEM FOR NEURAL RECORDING MICROPROBES Hao Yu, Khalil Najafi Center for Wireless Integrated MmicroSystems (WIMS), The University of Michigan, MI, USA AbstractIntegrated circuits

More information

Design of Analog CMOS Circuits for Batteryless Implantable Telemetry Systems

Design of Analog CMOS Circuits for Batteryless Implantable Telemetry Systems Western University Scholarship@Western Electronic Thesis and Dissertation Repository May 2014 Design of Analog CMOS Circuits for Batteryless Implantable Telemetry Systems Kyle G. A. De Gannes The University

More information

E4332: VLSI Design Laboratory. Columbia University Spring 2005: Lectures

E4332: VLSI Design Laboratory. Columbia University Spring 2005: Lectures E4332: VLSI Design Laboratory Nagendra Krishnapura Columbia University Spring 2005: Lectures nkrishna@vitesse.com 1 AM radio receiver AM radio signals: Audio signals on a carrier Intercept the signal Amplify

More information

INVESTIGATION OF ZCS RESONANT-SWITCH DC-DC CONVERTER FOR FULLY MONOLITHIC IC IMPLEMENTATION

INVESTIGATION OF ZCS RESONANT-SWITCH DC-DC CONVERTER FOR FULLY MONOLITHIC IC IMPLEMENTATION INVESTIGATION OF ZCS RESONANT-SWITCH DC-DC CONVERTER FOR FULLY MONOLITHIC IC IMPLEMENTATION Tihomir Sashev Brusev, Petar Trifonov Goranov, Marin Hristov Hristov FETT, Technical University of Sofia, 8,

More information

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 16, 8:00-10:00am. Name: (78 points total)

ECE 3110: Engineering Electronics II Fall Final Exam. Dec. 16, 8:00-10:00am. Name: (78 points total) Final Exam Dec. 16, 8:00-10:00am Name: (78 points total) Problem 1: Consider the emitter follower in Fig. 7, which is being used as an output stage. For Q 1, assume β = and initally assume that V BE =

More information

A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks

A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks Minjoo Yoo / Jaehyuk Choi / Ming hao Wang April. 13 th. 2009 Contents Introduction Circuit Description

More information

A Miniaturized Ultrasonic Power Delivery System Tzu-Chieh Chou, Ramkumar Subramanian, Jiwoong Park, and Patrick P. Mercier

A Miniaturized Ultrasonic Power Delivery System Tzu-Chieh Chou, Ramkumar Subramanian, Jiwoong Park, and Patrick P. Mercier A Miniaturized Ultrasonic Power Delivery System Tzu-Chieh Chou, Ramkumar Subramanian, Jiwoong Park, and Patrick P. Mercier 10/23/2014 Motivation: Powering Medical Implants Medical implants are fundamentally

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell Advanced Analog Circuits Lecture 3 Switched-Capacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 2-4pm) Reference Homework 2017-01-11 1 MOD1 & MOD2 ST 2, 3,

More information

Linearization Method Using Variable Capacitance in Inter-Stage Matching Networks for CMOS Power Amplifier

Linearization Method Using Variable Capacitance in Inter-Stage Matching Networks for CMOS Power Amplifier Linearization Method Using Variable Capacitance in Inter-Stage Matching Networks for CMOS Power Amplifier Jaehyuk Yoon* (corresponding author) School of Electronic Engineering, College of Information Technology,

More information

H4102 EM MICROELECTRONIC-MARIN SA. Read Only Contactless Identification Device H4102. Typical Operating Configuration

H4102 EM MICROELECTRONIC-MARIN SA. Read Only Contactless Identification Device H4102. Typical Operating Configuration Read Only Contactless Identification Device Features 64 bit memory array laser programmable Several options of data rate and coding available On chip resonance capacitor On chip supply buffer capacitor

More information

High-efficiency Rectifier for Passive RF Energy Harvesting Devices. Yuchen Wang, Xiaohong Peng, Ligang Hou, Shuqin Geng

High-efficiency Rectifier for Passive RF Energy Harvesting Devices. Yuchen Wang, Xiaohong Peng, Ligang Hou, Shuqin Geng Advances in Engineering Research (AER), volume 82 2016 International Conference on Engineering and Advanced Technology (ICEAT-16) High-efficiency Rectifier for Passive RF Energy Harvesting Devices Yuchen

More information

A SMART RFID Transponder

A SMART RFID Transponder A SMART RFID Transponder Riad Kanan University of Applied Sciences Rte du Rawyl 47 1950 Sion, Switzerland riad.kanan@hevs.ch Darko Petrovic University of Applied Sciences Rte du Rawyl 47 1950 Sion, Switzerland

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

A Linear CMOS Low Drop-Out Voltage Regulator in a 0.6µm CMOS Technology

A Linear CMOS Low Drop-Out Voltage Regulator in a 0.6µm CMOS Technology International Journal of Electronics and Electrical Engineering Vol. 3, No. 3, June 2015 A Linear CMOS Low DropOut Voltage Regulator in a 0.6µm CMOS Technology Mohammad Maadi Middle East Technical University,

More information

DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP

DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP 1 B. Praveen Kumar, 2 G.Rajarajeshwari, 3 J.Anu Infancia 1, 2, 3 PG students / ECE, SNS College of Technology, Coimbatore, (India)

More information

EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold Circuit Design. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold Circuit Design. Rajeevan Amirtharajah University of California, Davis EEC 216 Lecture #1: Ultra Low Voltage and Subthreshold Circuit Design Rajeevan Amirtharajah University of California, Davis Opportunities for Ultra Low Voltage Battery Operated and Mobile Systems Wireless

More information

Design of a low voltage,low drop-out (LDO) voltage cmos regulator

Design of a low voltage,low drop-out (LDO) voltage cmos regulator Design of a low,low drop-out (LDO) cmos regulator Chaithra T S Ashwini Abstract- In this paper a low, low drop-out (LDO) regulator design procedure is proposed and implemented using 0.25 micron CMOS process.

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

Integrated, Low Voltage, Dynamically Adaptive Buck-Boost Boost Converter A Top-Down Design Approach

Integrated, Low Voltage, Dynamically Adaptive Buck-Boost Boost Converter A Top-Down Design Approach Integrated, Low Voltage, Dynamically Adaptive Buck-Boost Boost Converter A Top-Down Design Approach Georgia Tech Analog Consortium Biranchinath Sahu Advisor: Prof. Gabriel A. Rincón-Mora Analog Integrated

More information

Power Conditioning Electronics Dr. Lynn Fuller Webpage:

Power Conditioning Electronics Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Power Conditioning Electronics Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email:

More information

An RF-Powered Temperature Sensor Designed for Biomedical Applications

An RF-Powered Temperature Sensor Designed for Biomedical Applications An RF-Powered Temperature Sensor Designed for Biomedical Applications Gustavo Campos Martins, Fernando Rangel de Sousa GRF, UFSC September 4, 2013 Gustavo C. Martins (GRF, UFSC) RF-Powered Temperature

More information

High-Speed Serial Interface Circuits and Systems

High-Speed Serial Interface Circuits and Systems High-Speed Serial Interface Circuits and Systems Design Exercise4 Charge Pump Charge Pump PLL ɸ ref up PFD CP LF VCO down ɸ out ɸ div Divider Converts PFD phase error pulse (digital) to charge (analog).

More information

Design and Characterization of a Power Transfer Inductive Link for Wireless Sensor Network Nodes

Design and Characterization of a Power Transfer Inductive Link for Wireless Sensor Network Nodes Design and Characterization of a Power Transfer Inductive ink for Wireless Sensor Network Nodes R. W. Porto,. J. Brusamarello, I. Müller Electrical Engineering Department Universidade Federal do Rio Grande

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

Microwave Power Transmission in a Spacecraft and to a Rover

Microwave Power Transmission in a Spacecraft and to a Rover The 2014 COST Summer School at Aveiro, Portugal Microwave Power Transmission in a Spacecraft to a Rover Shigeo KAWASAKI Astronomical Science, Japan Aerospace Exploration Agency (JAXA) Agenda 1. Green-Eco

More information

Backscatter and Ambient Communication. Yifei Liu

Backscatter and Ambient Communication. Yifei Liu Backscatter and Ambient Communication Yifei Liu Outline 1. Introduction 2. Ambient Backscatter 3. WiFi Backscatter 4. Passive WiFi Backscatter Outline 1. Introduction 2. Ambient Backscatter 3. WiFi Backscatter

More information

A Power-Efficient Wireless Neural Stimulating System with Inductive Power Transmission

A Power-Efficient Wireless Neural Stimulating System with Inductive Power Transmission A Power-Efficient Wireless Neural Stimulating System with Inductive Power Transmission A Dissertation Presented to The Academic Faculty By Hyung-Min Lee In Partial Fulfillment Of the Requirements for the

More information

Chapter 15 Power Supplies (Voltage Regulators)

Chapter 15 Power Supplies (Voltage Regulators) Chapter 15 Power Supplies (oltage Regulators) Power Supply Diagram 2 Filter Circuits The output from the rectifier section is a pulsating DC. The filter circuit reduces the peak-to-peak pulses to a small

More information

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN

NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN NOVEMBER 29, 2017 COURSE PROJECT: CMOS TRANSIMPEDANCE AMPLIFIER ECG 720 ADVANCED ANALOG IC DESIGN ERIC MONAHAN 1.Introduction: CMOS Transimpedance Amplifier Avalanche photodiodes (APDs) are highly sensitive,

More information

Research and Design of Envelope Tracking Amplifier for WLAN g

Research and Design of Envelope Tracking Amplifier for WLAN g Research and Design of Envelope Tracking Amplifier for WLAN 802.11g Wei Wang a, Xiao Mo b, Xiaoyuan Bao c, Feng Hu d, Wenqi Cai e College of Electronics Engineering, Chongqing University of Posts and Telecommunications,

More information

XR FSK Modem Filter FUNCTIONAL BLOCK DIAGRAM GENERAL DESCRIPTION FEATURES ORDERING INFORMATION APPLICATIONS SYSTEM DESCRIPTION

XR FSK Modem Filter FUNCTIONAL BLOCK DIAGRAM GENERAL DESCRIPTION FEATURES ORDERING INFORMATION APPLICATIONS SYSTEM DESCRIPTION FSK Modem Filter GENERAL DESCRIPTION FUNCTIONAL BLOCK DIAGRAM The XR-2103 is a Monolithic Switched-Capacitor Filter designed to perform the complete filtering function necessary for a Bell 103 Compatible

More information

MCU with 315/433/868/915 MHz ISM Band Transmitter Module

MCU with 315/433/868/915 MHz ISM Band Transmitter Module MCU with 315/433/868/915 MHz ISM Band Transmitter Module (The purpose of this RFM60 spec covers mainly for the hardware and RF parameter info of the module, for MCU and software info please refer to RF60

More information

Extending Cell Phone Battery Life with the ISL9109

Extending Cell Phone Battery Life with the ISL9109 Extending Cell Phone Battery Life with the ISL9109 Application Note AN1424.0 In this day and age practically everyone is armed with a cell phone. Some of these smart phones not only work as a cell phone

More information

An LDO Primer. Part III: A Review on PSRR and Output Noise

An LDO Primer. Part III: A Review on PSRR and Output Noise An LDO Primer Part III: A Review on PSRR and Output Noise Qi Deng Senior Product Marketing Engineer, Analog and Interface Products Division Microchip Technology Inc. In Parts I and II of this article series,

More information

RFID Analog Front End Design Tutorial (version 0.0)

RFID Analog Front End Design Tutorial (version 0.0) RFID Analog Front End Design Tutorial (version 0.0) Revision history Version Date Author Contents 0.0 0-08-04 Zheng Zhu Original. Background An RFID system (By RFID, we mean both the HF and UHF RFID) is

More information

Ordering Information Type Number PXXX Package Type: MR:SOT23 M5:SOT23-5 PR:SOT89-3 TB: TO92 Output Voltage: 25:2.5V 26:2.6V 36:3.6V Package Marking CX

Ordering Information Type Number PXXX Package Type: MR:SOT23 M5:SOT23-5 PR:SOT89-3 TB: TO92 Output Voltage: 25:2.5V 26:2.6V 36:3.6V Package Marking CX General Description The Series are synchronous PFM step-up DC-DC converters with very low ripple noise due to the high operating frequency, and the maximum operating frequency is 300KHz. The output voltages

More information

6.101 Introductory Analog Electronics Laboratory

6.101 Introductory Analog Electronics Laboratory 6.101 Introductory Analog Electronics Laboratory Spring 2015, Instructor Gim Hom Project Proposal Transmitting, Receiving, and Interpreting ECG Waveforms Daniel Moon (dhmoon@mit.edu) Thipok (Ben) Rak-amnouykit

More information

An Ultra-Low-Power Power Management IC for Energy-Scavenged Wireless Sensor Nodes

An Ultra-Low-Power Power Management IC for Energy-Scavenged Wireless Sensor Nodes An Ultra-Low-Power Power Management IC for Energy-Scavenged Wireless Sensor Nodes Michael D. Seeman, Seth R. Sanders, Jan M. Rabaey EECS Department, University of California, Berkeley, CA 94720 {mseeman,

More information

Operational Amplifier with Two-Stage Gain-Boost

Operational Amplifier with Two-Stage Gain-Boost Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 482 Operational Amplifier with Two-Stage Gain-Boost FRANZ SCHLÖGL

More information

PWM Controlled, Step-up DC/DC Converter in Tiny Package

PWM Controlled, Step-up DC/DC Converter in Tiny Package PWM Controlled, Step-up DC/DC Converter in Tiny Package Description The is a high efficiency PWM DC/DC step -up converter with internally compensated current mode controller. The output voltage is set

More information

Rf Circuit Design Theory And Applications 2nd Edition Download

Rf Circuit Design Theory And Applications 2nd Edition Download Rf Circuit Design Theory And Applications 2nd Edition Download We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your

More information

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems

Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems Comparison between Analog and Digital Current To PWM Converter for Optical Readout Systems 1 Eun-Jung Yoon, 2 Kangyeob Park, 3* Won-Seok Oh 1, 2, 3 SoC Platform Research Center, Korea Electronics Technology

More information

Highly Efficient Resonant Wireless Power Transfer with Active MEMS Impedance Matching

Highly Efficient Resonant Wireless Power Transfer with Active MEMS Impedance Matching Highly Efficient Resonant Wireless Power Transfer with Active MEMS Impedance Matching Bernard Ryan Solace Power Mount Pearl, NL, Canada bernard.ryan@solace.ca Marten Seth Menlo Microsystems Irvine, CA,

More information

Liteon Semiconductor Corporation LSP MHZ, 600mA Synchronous Step-Up Converter

Liteon Semiconductor Corporation LSP MHZ, 600mA Synchronous Step-Up Converter FEATURES High Efficiency: Up to 96% 1.2MHz Constant Switching Frequency 3.3V Output Voltage at Iout=100mA from a Single AA Cell; 3.3V Output Voltage at Iout=400mA from two AA cells Low Start-up Voltage:

More information

A Dynamically Adaptive, Power Management IC for WCDMA RF Power Amplifiers in Standard CMOS Process. Georgia Tech Analog Consortium.

A Dynamically Adaptive, Power Management IC for WCDMA RF Power Amplifiers in Standard CMOS Process. Georgia Tech Analog Consortium. A Dynamically Adaptive, Power Management IC for WCDMA RF Power Amplifiers in Standard CMOS Process Georgia Tech Analog Consortium Biranchinath Sahu Advisor: Prof. Gabriel A. Rincón-Mora oratory School

More information

Design of Low Power Wake-up Receiver for Wireless Sensor Network

Design of Low Power Wake-up Receiver for Wireless Sensor Network Design of Low Power Wake-up Receiver for Wireless Sensor Network Nikita Patel Dept. of ECE Mody University of Sci. & Tech. Lakshmangarh (Rajasthan), India Satyajit Anand Dept. of ECE Mody University of

More information

To the Graduate Council:

To the Graduate Council: To the Graduate Council: I am submitting herewith a dissertation written by Taeho Oh entitled A LOW POWER INTEGRATED CIRCUIT FOR IMPLANTABLE BIOSENSOR INCORPORATING AN ON-CHIP FSK MODULATOR. I have examined

More information

Digital Proportional Remote Controller. Digital proportional Remote Controller. Application Notes. Page 1

Digital Proportional Remote Controller. Digital proportional Remote Controller. Application Notes. Page 1 查询 PT8A995P 供应商 捷多邦, 专业 PCB 打样工厂,24 小时加急出货 Digital Proportional Remote Controller Digital proportional Remote Controller Application Notes Page 1 Why proportional control Simple action control Proportional

More information

A radiation tolerant, low-power cryogenic capable CCD readout system:

A radiation tolerant, low-power cryogenic capable CCD readout system: A radiation tolerant, low-power cryogenic capable CCD readout system: Enabling focal-plane mounted CCD read-out for ground or space applications with a pair of ASICs. Overview What do we want to read out

More information

Available online at ScienceDirect. Procedia Engineering 120 (2015 ) EUROSENSORS 2015

Available online at   ScienceDirect. Procedia Engineering 120 (2015 ) EUROSENSORS 2015 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 120 (2015 ) 511 515 EUROSENSORS 2015 Inductive micro-tunnel for an efficient power transfer T. Volk*, S. Stöcklin, C. Bentler,

More information

Wireless Power Transmission using Magnetic Resonance

Wireless Power Transmission using Magnetic Resonance Wireless Power Transmission using Magnetic Resonance Pradeep Singh Department Electronics and Telecommunication Engineering K.C College Engineering and Management Studies and Research Thane, India pdeepsingh91@gmail.com

More information

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector Po-Han Peter Wang, Haowei Jiang, Li Gao, Pinar Sen, Young-Han Kim, Gabriel M. Rebeiz, Patrick P.

More information

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency Jamie E. Reinhold December 15, 2011 Abstract The design, simulation and layout of a UMAINE ECE Morse code Read Only Memory and transmitter

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V IR detection Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information

Design of an RF CMOS Power Amplifier for Wireless Sensor Networks

Design of an RF CMOS Power Amplifier for Wireless Sensor Networks University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2012 Design of an RF CMOS Power Amplifier for Wireless Sensor Networks Hua Pan University of Arkansas, Fayetteville Follow

More information

Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2. The Fundamentals of Electronics: A Review Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

More information

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Lecture 16 Complementary metal oxide semiconductor (CMOS) CMOS 1-1 Outline Complementary metal oxide semiconductor (CMOS) Inverting circuit Properties Operating points Propagation delay Power dissipation

More information

Design and power optimization of CMOS RF blocks operating in the moderate inversion region

Design and power optimization of CMOS RF blocks operating in the moderate inversion region Design and power optimization of CMOS RF blocks operating in the moderate inversion region Leonardo Barboni, Rafaella Fiorelli, Fernando Silveira Instituto de Ingeniería Eléctrica Facultad de Ingeniería

More information

Hybrid RFID-Based System Using Active Two- Way Tags

Hybrid RFID-Based System Using Active Two- Way Tags San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2010 Hybrid RFID-Based System Using Active Two- Way Tags Girish N. Jadhav San Jose State University

More information

A 3-10GHz Ultra-Wideband Pulser

A 3-10GHz Ultra-Wideband Pulser A 3-10GHz Ultra-Wideband Pulser Jan M. Rabaey Simone Gambini Davide Guermandi Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-136 http://www.eecs.berkeley.edu/pubs/techrpts/2006/eecs-2006-136.html

More information

Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology

Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology Design of 1.8V, 72MS/s 12 Bit Pipeline ADC in 0.18µm Technology Ravi Kumar 1, Seema Kanathe 2 ¹PG Scholar, Department of Electronics and Communication, Suresh GyanVihar University, Jaipur, India ²Assistant

More information

Lecture 1, Introduction and Background

Lecture 1, Introduction and Background EE 338L CMOS Analog Integrated Circuit Design Lecture 1, Introduction and Background With the advances of VLSI (very large scale integration) technology, digital signal processing is proliferating and

More information

Design of an Integrated OLED Driver for a Modular Large-Area Lighting System

Design of an Integrated OLED Driver for a Modular Large-Area Lighting System Design of an Integrated OLED Driver for a Modular Large-Area Lighting System JAN DOUTRELOIGNE, ANN MONTÉ, JINDRICH WINDELS Center for Microsystems Technology (CMST) Ghent University IMEC Technologiepark

More information

A fully autonomous power management interface for frequency upconverting harvesters using load decoupling and inductor sharing

A fully autonomous power management interface for frequency upconverting harvesters using load decoupling and inductor sharing Journal of Physics: Conference Series PAPER OPEN ACCESS A fully autonomous power management interface for frequency upconverting harvesters using load decoupling and inductor sharing To cite this article:

More information

on-chip Design for LAr Front-end Readout

on-chip Design for LAr Front-end Readout Silicon-on on-sapphire (SOS) Technology and the Link-on on-chip Design for LAr Front-end Readout Ping Gui, Jingbo Ye, Ryszard Stroynowski Department of Electrical Engineering Physics Department Southern

More information

Wavedancer A new ultra low power ISM band transceiver RFIC

Wavedancer A new ultra low power ISM band transceiver RFIC Wavedancer 400 - A new ultra low power ISM band transceiver RFIC R.W.S. Harrison, Dr. M. Hickson Roke Manor Research Ltd, Old Salisbury Lane, Romsey, Hampshire, SO51 0ZN. e-mail: roscoe.harrison@roke.co.uk

More information

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER 1 PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER Prasanna kumar N. & Dileep sagar N. prasukumar@gmail.com & dileepsagar.n@gmail.com RGMCET, NANDYAL CONTENTS I. ABSTRACT -03- II. INTRODUCTION

More information

A HIGH-EFFICIENT LOW-VOLTAGE RECTIFIER FOR CMOS TECHNOLOGY. Waldemar Jendernalik, Jacek Jakusz, Grzegorz Blakiewicz, Miron Kłosowski

A HIGH-EFFICIENT LOW-VOLTAGE RECTIFIER FOR CMOS TECHNOLOGY. Waldemar Jendernalik, Jacek Jakusz, Grzegorz Blakiewicz, Miron Kłosowski Metrol. Meas. Syst., Vol. 23 (2016), No. 2, pp. 261 268. METROLOGY AND MEASUREMENT SYSTEMS Index 330930, ISSN 0860-8229 www.metrology.pg.gda.pl A HIGH-EFFICIENT LOW-VOLTAGE RECTIFIER FOR CMOS TECHNOLOGY

More information