Study of 1-phase AC to DC controlled converter (both fully controlled And half controlled)

Size: px
Start display at page:

Download "Study of 1-phase AC to DC controlled converter (both fully controlled And half controlled)"

Transcription

1 Study of 1-phase AC to DC controlled converter (both fully controlled And half controlled) Object: To study the performances of single phase half-controlled bridge Rectifier. A. In configuration A. B. In configuration B. Apparatus: 1. Experimental set up. 2. Dual Trace Oscilloscope. 3. M.C. Voltmeter (0-300 v),ammeter (0-3 amp.) 4. M.I. Voltmeter (0-300 v) ohm rheostat, Inductive coil ohm std. resistance. Procedure: A. Study of configuration A 1. Check the trigger- circuit. Refer to the last experiment. Fig. P.E Connect up the power circuit as in configuration A. Switch on the trigger Circuit. 3. Connect probe to one of the oscilloscope channel for observing voltage waveform across the secondary terminals of the step down(230-6v.) transformer in the triggering circuit. Synchronize the oscilloscope onto this signal(reference).adjust level control and time base control to get one complete cycle of the input A.C voltage commencing from its zero crossing, displayed. 4. With the 185 ohm rheostat connected between L1 and L2 and the variac set to 80% position. Switch on the power circuit supply.(in case of mal operation refer to B2 of experiment P.E.-4). 5. Observe the voltage waveform across the load, the std. resistance (current), each of the thyristors and the diodes. Connect the std. resistance in series with each of the semiconductors and observe the current waveform in the A.C line. Read off α from the oscilloscope display. Sketch the above waveform in time phase relationship with the reference for α = 10, 30, 90, 120, 150 and 170. Plot VDC( calculated ) vs α and VDC(measured) vs α on the same graph paper. VAC VDC measured VDC calculated

2 6. Switch off supply to power circuit. Connect the inductance between terminals L1 and L2.Set the variac to zero output position and switch on the supply again. 7. With α set at the minimum, gradually increase the variac output till the ammeter reads 3 amps. 8. Repeat A-3 and A Connect a F.W.D. across the inductance and observe the waveform again. Observe also the current through the F.W.D. Plot them in time phase relation to the reference. 10. Remove the F.W.D. with α set low, get a steady display on the oscilloscope of the output voltage of the rectifier. Switch off the trigger circuit and observe how the output voltage decays.(a strong oscilloscope might be used here to observe this fast phenomenon. But it can also be viewed on an ordinary C.R.O. if keenly observed. For repeated displays, switch on and off the trigger circuit power several times-allowing for the load current to build up to its steady state value.) B. Study of configuration B. 1. Repeat all the steps in part A of the experiment. Questions: 1. Explain the difference in the performance of the two circuits in step Can the pulse transformers be done away with in any of the above circuits? 3. Compare the performances of a single phase fully controlled and a half controlled bridge converter?

3 STUDY OF 1-PHASE FULLY CONTROLLED BRIDGE CONVERTER Object : Study of A. The triggering circuit of a single phase fully controlled converter. B. Single phase fully controlled converter. Apparatus : Procedure : 1. Experimental set up. 2. Dual trace oscilloscope. 3. M.C. voltmeter( 0-300v), ammeter. 4. M.I. voltmeter( 0-300v) ohm rheostat, Inductive coil ohm std. resistance. A. Study of triggering circuit. Fig. P.E.-4.1 Triggering circuit. 1. Study the triggering circuit. Identify all the components given in the diagram. 2. Switch on power to the trigger circuit only. 3. Connect both the GND. Probes of the oscilloscope to any two cathodes of the S.C.R.s.The line leads are to be clipped on to the respective gates. On CHOP mode synchronize the oscilloscope on any one of the inputs. Set Time base control to 5 m.sec.(select line Trigger for oscilloscope if available). 4. Observe the pulse width and the phase relation of the trigger pulses for the two thyristors. Observe the details of the pulses to the gate of any one of the thyristors. Change time - base position, if necessary. Trace all the pulses on a graph paper. Remove all the probes.

4 B. Fully controlled single phase converter. Fig. P.E Fully controlled converter. 1. Connect up the power circuit as in (Fig. P.E.-4.2.). Between L1 and L2 connect the 185 ohm rheostat. Switch on all power supplies. FWD not to be connected. 2. Observe the load voltage waveform and the current waveform by observing the drop across the STD. resistance. Read off α from the oscilloscope display. Note the meter readings. Calculate VDC from the measured value of VAC and α. Tabulate: Fig. P. E. 4.3 VAC V DC measured V DC calculated Plot VDC vs α for both measured and calculated VDC. (The circuit will malfunction if the trigger circuit power supply(a.c. line 230v)is out of phase with that fed to the power circuit. Reverse trigger circuit supply, at the plug if necessary ). 3. With the STD. resistance in series with the A.C. line observe the current waveform on the oscilloscope. Connect the second probe to the secondary of the step-down transformer in the triggering circuit to observe the time phase relation of the former to those already observed.

5 4. With the STD. resistance in series with the thyristors, observe the current waveform through them. Observe also the voltage waveform across the thyristors. Plot all the observed waveforms in time phase relationship with the A.C. supply Voltage(display in the second trace). 5. Connect a transformer coil in series with the rheostat. Set rheostat at about 100 ohms. Repeat B-2, B-3 and B-4 with and without the FWD. Questions: 1. Comment on the effect on Power Factor of the FWD. 2. Explain how the fully controlled converter can be made to operate as an inverter. Draw the necessary power circuit and sketch a typical voltage and current waveform.

FAMILIARISATION WITH P.E. COMPONENTS

FAMILIARISATION WITH P.E. COMPONENTS FAMILIARISATION WITH P.E. COMPONENTS A. SINGLE PHASE PAC USING TRIAC. Object : To study a) The triggering circuit of an A.C. phase angle controller using a triac. b) The performance with a resistive load.

More information

SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I)

SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I) Power Electronics Laboratory SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I) OBJECT: To study the gate firing pulses. To observe and measure the voltages across the Thyristors and across the Load for a current

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. ISSUE NO. : ISSUE DATE: REV. NO. : REV. DATE : PAGE:

More information

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY (Approved by A.I.C.T.E & Affiliated to JNTU,Kakinada) Jonnada (Village), Denkada (Mandal), Vizianagaram Dist 535 005 Phone No. 08922-241111, 241112 E-Mail: lendi_2008@yahoo.com

More information

Experiment No. 1 Half Wave Rectifier using R-Triggering

Experiment No. 1 Half Wave Rectifier using R-Triggering Experiment No. 1 Half Wave Rectifier using R-Triggering Pre-Lab Reading: Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. Objectives: To analyze resistive firing/triggering of

More information

Experiment 2 IM drive with slip power recovery

Experiment 2 IM drive with slip power recovery University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIE SYSTEMS Experiment 2 IM drive with slip power recovery 1. Introduction This experiment introduces

More information

Experiment No. 2 Half Wave Rectifier using RC-Triggering

Experiment No. 2 Half Wave Rectifier using RC-Triggering Experiment No. 2 Half Wave Rectifier using RC-Triggering Pre-Lab Reading: 1. Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. (See page 790 to get help for this experiment).

More information

POWER ELECTRONICS LAB MANUAL

POWER ELECTRONICS LAB MANUAL JIS College of Engineering (An Autonomous Institution) Department of Electrical Engineering POWER ELECTRONICS LAB MANUAL Exp-1. Study of characteristics of an SCR AIM: To obtain the V-I characteristics

More information

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006)

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006) LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2005/2006) EXPERIMENT 1 : Introduction to Diode Name Matric No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ UNIVERSITI KEJURUTERAAN UTARA

More information

CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO).

CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO). 1. 1 To study CRO. CRO AIM:- To study the use of Cathode Ray Oscilloscope (CRO). Apparatus: - C.R.O, Connecting probe (BNC cable). Theory:An CRO is easily the most useful instrument available for testing

More information

3Ph_FW_Converter_R-L-E_Load -- Overview

3Ph_FW_Converter_R-L-E_Load -- Overview 3Ph_FW_Converter_R-L-E_Load -- Overview 3-PHASE FULL WAVE CONTROLLED CONVERTER WITH R-L-E LOAD Objective: After performing this lab exercise, learner will be able to: Understand the concept of Line and

More information

A 11/89. Instruction Manual and Experiment Guide for the PASCO scientific Model SF-8616 and 8617 COILS SET. Copyright November 1989 $15.

A 11/89. Instruction Manual and Experiment Guide for the PASCO scientific Model SF-8616 and 8617 COILS SET. Copyright November 1989 $15. Instruction Manual and Experiment Guide for the PASCO scientific Model SF-8616 and 8617 012-03800A 11/89 COILS SET Copyright November 1989 $15.00 How to Use This Manual The best way to learn to use the

More information

STEADY STATE REACTANCE

STEADY STATE REACTANCE INDEX NO. : M-53 TECHNICAL MANUAL FOR STEADY STATE REACTANCE Manufactured by : PREMIER TRADING CORPORATION (An ISO 9001:2008 Certified Company) 212/1, Mansarover Civil Lines, MEERUT. Phone : 0121-2645457,

More information

POWER ELECTRONICS LAB

POWER ELECTRONICS LAB MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY Banjara Hills Road No 3, Hyderabad 34 www.mjcollege.ac.in DEPARTMENT OF ELECTRICAL ENGINEERING LABORATORY MANUAL POWER ELECTRONICS LAB For B.E. III/IV

More information

Contents. Acknowledgments. About the Author

Contents. Acknowledgments. About the Author Contents Figures Tables Preface xi vii xiii Acknowledgments About the Author xv xvii Chapter 1. Basic Mathematics 1 Addition 1 Subtraction 2 Multiplication 2 Division 3 Exponents 3 Equations 5 Subscripts

More information

Learning Material Ver 1.1

Learning Material Ver 1.1 SCR Triggering Circuits Scientech 2702 Learning Material Ver 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731 4211100,

More information

UNIVERSITY QUESTIONS. Unit-1 Introduction to Power Electronics

UNIVERSITY QUESTIONS. Unit-1 Introduction to Power Electronics UNIVERSITY QUESTIONS Unit-1 Introduction to Power Electronics 1. Give the symbol and characteristic features of the following devices. (i) SCR (ii) GTO (iii) TRIAC (iv) IGBT (v) SIT (June 2012) 2. What

More information

SKEU 3741 BASIC ELECTRONICS LAB

SKEU 3741 BASIC ELECTRONICS LAB Faculty: Subject Subject Code : SKEU 3741 FACULTY OF ELECTRICAL ENGINEERING : 2 ND YEAR ELECTRONIC DESIGN LABORATORY Review Release Date Last Amendment Procedure Number : 1 : 2013 : 2013 : PK-UTM-FKE-(0)-10

More information

Power Electronics Laboratory-2 Uncontrolled Rectifiers

Power Electronics Laboratory-2 Uncontrolled Rectifiers Roll. No: Checked By: Date: Grade: Power Electronics Laboratory-2 and Uncontrolled Rectifiers Objectives: 1. To analyze the working and performance of a and half wave uncontrolled rectifier. 2. To analyze

More information

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points)

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points) Exam 1 Name: Score /60 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier.

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS 2.16 EXPERIMENT 2.2 NONLINEAR OPAMP CIRCUITS 2.2.1 OBJECTIVE a. To study the operation of 741 opamp as comparator. b. To study the operation of active diode circuits (precisions circuits) using opamps,

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS TESTING OF HALF WAVE, FULL WAVE AND BRIDGE RECTIFIERS WITH AND WITHOUT CAPACITOR

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS TESTING OF HALF WAVE, FULL WAVE AND BRIDGE RECTIFIERS WITH AND WITHOUT CAPACITOR TESTING OF HALF WAVE, FULL WAVE AND BRIDGE RECTIFIERS WITH AND WITHOUT CAPACITOR Aim: To determine the ripple factor, efficiency and regulation of the half wave, full wave and bridge rectifier circuits

More information

Basic DC Power Supply

Basic DC Power Supply Basic DC Power Supply Equipment: 1. Analog Oscilloscope 2. Digital multimeter 3. Experimental board and connectors. Objectives: 1. To understand the basic DC power supply both half wave and full wave rectifier.

More information

Industrial Electricity. Answer questions and/or record measurements in the spaces provided.

Industrial Electricity. Answer questions and/or record measurements in the spaces provided. Industrial Electricity Lab 10: Building a Basic Power Supply ame Due Friday, 3/16/18 Answer questions and/or record measurements in the spaces provided. Measure resistance (impedance actually) on each

More information

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16]

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16] Code No: 07A50204 R07 Set No. 2 1. A single phase fully controlled bridge converter is operated from 230 v, 50 Hz source. The load consists of 10Ω and a large inductance so as to reach the load current

More information

Logic Gates & Training Boards

Logic Gates & Training Boards Logic Gates & Training Boards ANALOG TO DIGITAL (A/D) CONVERTOR (ELP.112.140) Objective : To study Analog to Digital & Digital to Analog convertors using R-2R network & Successive Approximation Method.

More information

Basic Electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Basic Electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 39 Silicon Controlled Rectifier (SCR) (Construction, characteristics (Dc & Ac), Applications,

More information

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

More information

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER

CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER 61 CHAPTER 4 PI CONTROLLER BASED LCL RESONANT CONVERTER This Chapter deals with the procedure of embedding PI controller in the ARM processor LPC2148. The error signal which is generated from the reference

More information

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state.

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state. 1991 1.12 The operating state that distinguishes a silicon controlled rectifier (SCR) from a diode is (a) forward conduction state (b) forward blocking state (c) reverse conduction state (d) reverse blocking

More information

EXPERIMENT 5 : DIODES AND RECTIFICATION

EXPERIMENT 5 : DIODES AND RECTIFICATION EXPERIMENT 5 : DIODES AND RECTIFICATION Component List Resistors, one of each o 2 1010W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic

More information

Acknowledgments Introduction

Acknowledgments Introduction Acknowledgments Introduction xiii xi 1 Electronic meters 1 1.1 Digital meters 2 1.2 Nondigital (analog) meters 6 1.3 Differential meters 14 1.4 Digital meter displays and ranges 16 1.5 Nondigital meter

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 1 TITLE : Half-Wave Rectifier & Filter OUTCOME : Upon completion of this unit, the student should be able to: i. Construct

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

Entry Level Assessment Blueprint Electronics Technology

Entry Level Assessment Blueprint Electronics Technology Blueprint Test Code: 4135 / Version: 01 Specific Competencies and Skills Tested in this Assessment: Safety Practices Demonstrate safe working procedures Explain the purpose of OSHA and how it promotes

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I

Dr.Arkan A.Hussein Power Electronics Fourth Class. Commutation of Thyristor-Based Circuits Part-I Commutation of Thyristor-Based Circuits Part-I ١ This lesson provides the reader the following: (i) (ii) (iii) (iv) Requirements to be satisfied for the successful turn-off of a SCR The turn-off groups

More information

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS OBJECTIVES : 1. To interpret data sheets supplied by the manufacturers

More information

STATIC POWER INVERTERS

STATIC POWER INVERTERS STATIC POWER INVERTERS A. PREPARATION 1. Introduction 2. Variable Speed AC Drive 3. High Efficiency DC Supplies 4. Induction Heating 5. Conversion of DC Power to AC Power at the Terminus of a High Voltage

More information

Experiment 6. Electromagnetic Induction and transformers

Experiment 6. Electromagnetic Induction and transformers Experiment 6. Electromagnetic Induction and transformers 1. Purpose Confirm the principle of electromagnetic induction and transformers. 2. Principle The PASCO scientific SF-8616 Basic Coils Set and SF-8617

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE8261-ELECTRIC CIRCUITS LABORATORY LABORATORY MANUAL 1 ST YEAR EEE (REGULATION 2017)

More information

DEPARTMENT OF ELECTRICAL ENGINEERING BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR

DEPARTMENT OF ELECTRICAL ENGINEERING BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR DEPARTMENT OF ELECTRICAL ENGINEERING BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR Power system protection Laboratory (EE 852) 8 th Semester Electrical Expt. No. 852/1 BIFFI S METHOD FOR TESTING CURRENT

More information

ANALOG AND DIGITAL INSTRUMENTS

ANALOG AND DIGITAL INSTRUMENTS ANALOG AND DIGITAL INSTRUMENTS Digital Voltmeter (DVM) Used to measure the ac and dc voltages and displays the result in digital form. Types: Ramp type DVM Integrating type DVM Potentiometric type DVM

More information

Errata to IEEE Standard Test Specification for Thyristor Diode Surge Protective Devices

Errata to IEEE Standard Test Specification for Thyristor Diode Surge Protective Devices Errata to IEEE Standard Test Specification for Thyristor Diode Surge Protective Devices Sponsor Surge Protective Devices Committee of the IEEE Power & Energy Society Correction Sheet Issued October 9 Copyright

More information

S.J.P.N Trust's. Hirasugar Institute of Technology, Nidasoshi

S.J.P.N Trust's. Hirasugar Institute of Technology, Nidasoshi S.J.P.N Trust's Hirasugar Institute of Technology, Nidasoshi Inculcating Values, Promoting Prosperity Approved by AICTE New Delhi, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi Tq: Hukkeri

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad I INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-000 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name : POWER ELECTRONICS Course Code : AEE0

More information

AC LAB ECE-D ecestudy.wordpress.com

AC LAB ECE-D ecestudy.wordpress.com PART B EXPERIMENT NO: 1 AIM: PULSE AMPLITUDE MODULATION (PAM) & DEMODULATION DATE: To study Pulse Amplitude modulation and demodulation process with relevant waveforms. APPARATUS: 1. Pulse amplitude modulation

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING Electrical Engineering Science Laboratory Manual Table of Contents Experiment #1 OHM S LAW... 3 Experiment # 2 SERIES AND PARALLEL CIRCUITS... 8

More information

Bhoj Reddy Engineering College for Women, Hyderabad Department of Electronics and Communication Engineering Electrical and Electronics Instrumentation

Bhoj Reddy Engineering College for Women, Hyderabad Department of Electronics and Communication Engineering Electrical and Electronics Instrumentation Bhoj Reddy Engineering College for Women, Hyderabad Department of Electronics and Communication Engineering Electrical and Electronics Instrumentation Academic Year: 2016-17 III B Tech II Semester Branch:

More information

Questions from the same exercise can be combined together to increase difficulty. Which one of the following properties of the diode is NOT true:

Questions from the same exercise can be combined together to increase difficulty. Which one of the following properties of the diode is NOT true: Questions from the same exercise can be combined together to increase difficulty. 21 1 Which one of the following properties of the diode is NOT true: a) When no voltage is applied across the diode, it

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING POWER ELECTRONICS LABORATORY LAB MANUAL 10ECL VII SEMESTER

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING POWER ELECTRONICS LABORATORY LAB MANUAL 10ECL VII SEMESTER APPROVED BY AICTE NEW DELHI, AFFILIATED TO VTU BELGAUM DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING & POWER ELECTRONICS LABORATORY LAB MANUAL 10ECL78 2016-2017 VII SEMESTER Prepared by: Reviewed

More information

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers.

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers. University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIVE SYSTEMS Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented

More information

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Course Title: BASIC ELECTRONICS LAB Course Code : 15EC02P Semester : I Course Group : Core Teaching

More information

SSM INSTITUTE OF ENGINEERING AND TECHNOLOGY DINDIGUL PALANI HIGH WAY, SINTHALAGUNDU POST DINDIGUL

SSM INSTITUTE OF ENGINEERING AND TECHNOLOGY DINDIGUL PALANI HIGH WAY, SINTHALAGUNDU POST DINDIGUL SSM INSTITUTE OF ENGINEERING AND TECHNOLOGY DINDIGUL PALANI HIGH WAY, SINTHALAGUNDU POST DINDIGUL 624002 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY MANUAL CLASS : III rd YEAR EEE SEMESTER

More information

Electron Spin Resonance v2.0

Electron Spin Resonance v2.0 Electron Spin Resonance v2.0 Background. This experiment measures the dimensionless g-factor (g s ) of an unpaired electron using the technique of Electron Spin Resonance, also known as Electron Paramagnetic

More information

Physics 120 Lab 1 (2018) - Instruments and DC Circuits

Physics 120 Lab 1 (2018) - Instruments and DC Circuits Physics 120 Lab 1 (2018) - Instruments and DC Circuits Welcome to the first laboratory exercise in Physics 120. Your state-of-the art equipment includes: Digital oscilloscope w/usb output for SCREENSHOTS.

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - Electrical Engineering Science Laboratory Manual Table of Contents Safety Rules and Operating Procedures... 3 Troubleshooting Hints... 4 Experiment

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic Capacitor

More information

Principle Of Step-up Chopper

Principle Of Step-up Chopper Principle Of Step-up Chopper L + D + V Chopper C L O A D V O 1 Step-up chopper is used to obtain a load voltage higher than the input voltage V. The values of L and C are chosen depending upon the requirement

More information

Experiment DC-DC converter

Experiment DC-DC converter POWER ELECTRONIC LAB Experiment-7-8-9 DC-DC converter Power Electronics Lab Ali Shafique, Ijhar Khan, Dr. Syed Abdul Rahman Kashif 10/11/2015 This manual needs to be completed before the mid-term examination.

More information

Entry Level Assessment Blueprint Electronics

Entry Level Assessment Blueprint Electronics Entry Level Assessment Blueprint Electronics Test Code: 3034 / Version: 01 Specific Competencies and Skills Tested in this Assessment: Safety Demonstrate understanding of SDS Exhibit understanding of ESD

More information

Exercise 1: EXERCISE OBJECTIVE DISCUSSION. a. circuit A. b. circuit B. Festo Didactic P0 75

Exercise 1: EXERCISE OBJECTIVE DISCUSSION. a. circuit A. b. circuit B. Festo Didactic P0 75 Exercise 1: EXERCISE OBJECTIVE DISCUSSION a. circuit A. b. circuit B. Festo Didactic 91564-P0 75 individual diodes are designated D instead of CR, with the diode circle symbol omitted.) The input terminals

More information

Applications of diodes

Applications of diodes Applications of diodes Learners should be able to: (a) describe the I V characteristics of a silicon diode (b) describe the use of diodes for component protection in DC circuits and half-wave rectification

More information

GATE SOLVED PAPER - IN

GATE SOLVED PAPER - IN YEAR 202 ONE MARK Q. The i-v characteristics of the diode in the circuit given below are : v -. A v 0.7 V i 500 07 $ = * 0 A, v < 0.7 V The current in the circuit is (A) 0 ma (C) 6.67 ma (B) 9.3 ma (D)

More information

Designing and Implementing of 72V/150V Closed loop Boost Converter for Electoral Vehicle

Designing and Implementing of 72V/150V Closed loop Boost Converter for Electoral Vehicle International Journal of Current Engineering and Technology E-ISSN 77 4106, P-ISSN 347 5161 017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Designing

More information

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1 Module 4 AC to AC Voltage Converters Version EE IIT, Kharagpur 1 Lesson 9 Introduction to Cycloconverters Version EE IIT, Kharagpur Instructional Objectives Study of the following: The cyclo-converter

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope Modified for Physics 18, Brooklyn College I. Overview of the Experiment The main objective

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

Topic 4 Exam Questions Resistance

Topic 4 Exam Questions Resistance IGCSE Physics Topic 4 Exam Questions Resistance Name: 44 marks Q2.A light meter is used to check the light levels during a cricket match. Figure shows a cricket umpire using a light meter. Figure (a) Some

More information

DLVP A OPERATOR S MANUAL

DLVP A OPERATOR S MANUAL DLVP-50-300-3000A OPERATOR S MANUAL DYNALOAD DIVISION 36 NEWBURGH RD. HACKETTSTOWN, NJ 07840 PHONE (908) 850-5088 FAX (908) 908-0679 TABLE OF CONTENTS INTRODUCTION...3 SPECIFICATIONS...5 MODE SELECTOR

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION Sem / Branch : V /EIE Subject code /Title: EI2301/Industrial Electronics UNIT-1 POWER DEVICES 1. What are the different methods

More information

ECE 3160 DIGITAL SYSTEMS LABORATORY

ECE 3160 DIGITAL SYSTEMS LABORATORY ECE 3160 DIGITAL SYSTEMS LABORATORY Experiment 2 Voltage and Current Characteristics of HC Device Electronics Reference: Wakerly chapter 3. Objectives: 1. To measure certain performance and voltage/current

More information

Experiment 9 AC Circuits

Experiment 9 AC Circuits Experiment 9 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

More information

Experiment 1. Speed control of a DC motor with an inner current loop

Experiment 1. Speed control of a DC motor with an inner current loop he University of New South Wales School of Electrical Engineering & elecommunications ELEC463 - ELECRIC RIVE SYSEMS Experiment. Speed control of a C motor with an inner current loop. Introduction In this

More information

Power Electronics Laboratory

Power Electronics Laboratory THE UNERSTY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunications ELEC4614 Experiment : C-C Step-up (Boost) Converter 1.0 Objectives This experiment introuces you to a step-up C-C converter

More information

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics Calhoon MEBA Engineering School Study Guide for Proficiency Testing Industrial Electronics January 0. Which factors affect the end-to-end resistance of a metallic conductor?. A waveform shows three complete

More information

Electromagnetic Induction - A

Electromagnetic Induction - A Electromagnetic Induction - A APPARATUS 1. Two 225-turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil

More information

Q2. Figure 1 shows the oscilloscope trace an alternating current (a.c.) electricity supply produces.

Q2. Figure 1 shows the oscilloscope trace an alternating current (a.c.) electricity supply produces. SERIES AND PARALEL CIRCUITS Q1. A student set up the electrical circuit shown in the figure below. (a) The ammeter displays a reading of 0.10 A. Calculate the potential difference across the 45 Ω resistor.

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad - 500 043 CIVIL ENGINEERING ASSIGNMENT Name : Electrical and Electronics Engineering Code : A30203 Class : II B. Tech I Semester Branch

More information

1Ph_FW_AC-Controller_R-L_Load -- Overview

1Ph_FW_AC-Controller_R-L_Load -- Overview 1Ph_FW_AC-Controller_R-L_Load -- Overview 1-PHASE FULL-WAVE AC CONTROLLER WITH R-L LOAD Objective: After performing this lab exercise, learner will be able to: Understand the working of AC-AC converter

More information

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid Secondary Task List 100 SAFETY 101 Describe OSHA safety regulations. 102 Identify, select, and demonstrate proper hand tool use for electronics work. 103 Recognize the types and usages of fire extinguishers.

More information

List of Experiments. 1. Steady state characteristics of SCR, IGBT and MOSFET. (Single phase half wave rectifier). (Simulation and hardware).

List of Experiments. 1. Steady state characteristics of SCR, IGBT and MOSFET. (Single phase half wave rectifier). (Simulation and hardware). (Scheme-2013) List of Experiments 1. Steady state characteristics of SCR, IGBT and MOSFET 2. nalog and digital firing methods for SCR (Single phase half wave rectifier). (Simulation and hardware). 3. Full

More information

Topic Rectification. Draw and understand the use of diodes in half wave and full wave

Topic Rectification. Draw and understand the use of diodes in half wave and full wave Topic 2.4.2 Learning Objectives: At the end of this topic you will be able to; Draw and understand the use of diodes in half wave and full wave bridge rectifiers; Calculate the peak value of the output

More information

+ 24V 3.3K - 1.5M. figure 01

+ 24V 3.3K - 1.5M. figure 01 ELECTRICITY ASSESSMENT 35 questions Revised: 08 Jul 2013 1. Which of the wire sizes listed below results in the least voltage drop in a circuit carrying 10 amps: a. 16 AWG b. 14 AWG c. 18 AWG d. 250 kcmil

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (I max = 1A, PIV = 400V) Diodes Center tap transformer (35.6V pp, 12.6 V RMS ) 100 F Electrolytic Capacitor

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

Lesson 1 of Chapter Three Single Phase Half and Fully Controlled Rectifier

Lesson 1 of Chapter Three Single Phase Half and Fully Controlled Rectifier Lesson of Chapter hree Single Phase Half and Fully Controlled Rectifier. Single phase fully controlled half wave rectifier. Resistive load Fig. :Single phase fully controlled half wave rectifier supplying

More information

Experiment No.5 Single-Phase half wave Voltage Multiplier

Experiment No.5 Single-Phase half wave Voltage Multiplier Experiment No.5 Single-Phase half wave Voltage Multiplier Experiment aim The aim of this experiment is to design and analysis of a single phase voltage multiplier. Apparatus Make the circuit for voltage

More information

Experiment 2 Electric Circuit Fundamentals

Experiment 2 Electric Circuit Fundamentals Experiment 2 Electric Circuit Fundamentals Introduction This experiment has two parts. Each part will have to be carried out using the Multisim Electronics Workbench software. The experiment will then

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 2013 EXAMINATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 2013 EXAMINATION MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC 27001 2005 Certified) SUMMER 2013 EXAMINATION Subject Code: 12117 Model Answer Page No: 1 Important Instructions to examiners: 1) The

More information

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law DC Circuits and Ohm s Law Contents Part I: Objective Part II: Introduction Part III: Apparatus and Setup Part IV: Measurements Part V: Analysis Part VI: Summary and Conclusions Part I: Objective In this

More information

Half-wave Rectifier AC Meters

Half-wave Rectifier AC Meters Note-4 1 Half-wave Rectifier AC Meters Disadvantages: 1. In negative half-cycle, reverse current flows through the circuit reduces average value of current meter reads lower than actual. 2. High peak inverse

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan SECOND SEMESTER ELECTRONICS - I

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan SECOND SEMESTER ELECTRONICS - I SECOND SEMESTER ELECTRONICS - I BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Yousaf Hameed Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

Experiment 5 The Oscilloscope

Experiment 5 The Oscilloscope Experiment 5 The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a cathode ray oscilloscope. THEORY The oscilloscope, or scope for short, is

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters Straightforward questions are marked! Tripos standard questions are marked * Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits dc to ac converters! 1. A three-phase bridge converter using

More information

Unit/Standard Number. LEA Task # Alignment

Unit/Standard Number. LEA Task # Alignment 1 Secondary Competency Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding

More information

POWER ELECTRONICSAND SIMULATION LAB 3 rd YEAR-II SEMESTER

POWER ELECTRONICSAND SIMULATION LAB 3 rd YEAR-II SEMESTER POWER ELECTRONICSAND SIMULATION LAB 3 rd YEAR-II SEMESTER NAME OF THE STUDENT : REGISTERNUMBER : YEAR/ SEMESTER : STAFF INCHARGE : Mr. G.SRIDHAR BABU Assoc.Prof/EEE 1 General Instructions to students for

More information

Power Electronics (BEG335EC )

Power Electronics (BEG335EC ) 1 Power Electronics (BEG335EC ) 2 PURWANCHAL UNIVERSITY V SEMESTER FINAL EXAMINATION - 2003 The figures in margin indicate full marks. Attempt any FIVE questions. Q. [1] [a] A single phase full converter

More information

10ECL78-Power Electronics Lab

10ECL78-Power Electronics Lab Circuit Diagram-1: Circuit Diagram-2: To find the Latching Current: Dept. of ECE, CIT, Gubbi Page No. 1 Experiment No. 1 a) Static Characteristics of SCR Static Characteristics of SCR and DIAC Date: /

More information