Topic Rectification. Draw and understand the use of diodes in half wave and full wave

Size: px
Start display at page:

Download "Topic Rectification. Draw and understand the use of diodes in half wave and full wave"

Transcription

1 Topic Learning Objectives: At the end of this topic you will be able to; Draw and understand the use of diodes in half wave and full wave bridge rectifiers; Calculate the peak value of the output voltage of half wave and full wave rectifiers given the rms input voltage. 1

2 Current (ma) Module ET2 Electronic Circuits and Components. In the previous section we discussed the use of alternating current to form the basis of a power supply for electronic components. In that section we learnt the difference between peak and rms voltage. At the end of the section we posed an interesting problem which was that if an alternating current supply is to be used to power modern electronic circuits then we must have a way of changing a.c. into d.c. There are a couple of stages in the conversion process, and we will consider the first of these in this topic the process of rectification. To achieve this we will need to use one of the components we met in Topic 2.3, and this is the silicon diode. You should remember from our previous work that the diode has the following characteristic, i.e. only allows current to flow in one direction. Silicon Diode Characteristic Applied (V) 2

3 Topic Now we will consider what happens when an a.c. source is applied to a silicon diode. The graph from the oscilloscope below shows the effect of diode on the a.c. voltage. The red trace, shows the output from the a.c. voltage source, and the green trace shows the output after the diode. ii iii i There are a couple of things to notice from the graph: i. The negative part of the a.c. graph has been removed. ii. The voltage across the resistor is now a variable voltage d.c. signal. iii. The peak voltage across the resistor is 0.7V less than peak of the input signal due to the voltage drop across the diode. 3

4 Module ET2 Electronic Circuits and Components. The process of changing a.c. into d.c. is called rectification. The graph shows that we have created a variable voltage d.c. output from an a.c. source. Unfortunately this method of rectification wastes 50% of the energy from the a.c. source because the negative half cycle is completely block from the load, in this case a resistor by the diode. This particular circuit is called a half-wave rectifier. An improved version involves 3 extra diodes arranged in an unusual pattern called a bridge rectifier as shown below. Input Output Consider the flow of current during each half cycle of an a.c. input using the diagrams below: + + First Half Cycle Second Half Cycle A careful examination of the current flowing through the resistor, shows that current flows in both half cycles of the a.c. input. The current also flows in the same direction, i.e. we have achieved a variable voltage d.c. output once again. 4

5 Topic If we now consider the bridge rectifier in a circuit, and monitor the output across the resistor as before then the circuit and oscilloscope trace will look like those shown below. The red trace shows the output of the a.c. source, and the green trace shows the voltage across the resistor. There are a couple of things to notice from the graph: i. The negative part of the a.c. graph has been flipped to provide a second positive pulse within the same cycle, called full-wave rectification. ii. The voltage across the resistor is now a variable voltage d.c. signal. iii. The peak voltage across the resistor is 1.4V less than peak of the input signal due to the voltage drop across the two conducting diodes in the bridge rectifier. 5

6 Module ET2 Electronic Circuits and Components. The process of rectification is the first stage of converting an a.c. source into a d.c. source suitable for operating electronic circuits. The output produced by the half-wave rectifier and full-wave rectifier are both unsuitable for electronic circuits because of the pulsing nature of the output. We can use the work from our previous topic to determine the peak value of any rms a.c. input voltage. The peak output voltage will then depend on whether the rectification method is half-wave or full-wave. i. If half-wave rectification is used then the peak output voltage value will be 0.7V less than the peak a.c. voltage due to a single diode being used. ii. If full-wave rectification is used then the peak output voltage value will be 1.4V less than the peak a.c. voltage due to two 0.7V diode drops in the bridge rectifier. Clearly we have not reached a suitable d.c. supply for electronic circuits yet, but we have completed everything needed for this particular section let s look at a couple of examples before moving on. Example: A 6V rms a.c. source is half wave rectified, and connected to a 1kΩ resistor. i) Calculate the peak value of the output voltage. ii) Draw a sketch graph of the input voltage and output voltage: Label all important values. 6

7 Solution: i) Input = 6V rms Topic Peak voltage = 2 V rms V 8. 5V Peak Output voltage = V 7. 8V ii) Draw a sketch graph of the input voltage and output voltage on the grid below: 8.5V 7.8V time -8.5V Now here s a couple for you to do. Student Exercise A 10V rms a.c. source is half-wave rectified, and connected to a 2.2kΩ resistor. i) Draw a circuit diagram of this arrangement. 7

8 Module ET2 Electronic Circuits and Components. ii) Calculate the peak value of the output voltage. iii) Draw a sketch graph of the input voltage and output voltage on the grid below, label all important values: time 2. A 12.75V rms a.c. source is full-wave rectified, and connected to a 3.9kΩ resistor. i) Draw a circuit diagram of this arrangement. 8

9 Topic ii) Calculate the peak value of the output voltage. iii) Draw a sketch graph of the input voltage and output voltage on the grid below, label all important values: time No examination style questions have been set in this topic as they are integral to longer questions on power supplies, which we are not yet in a position to answer, so time to move on to topic Capacitive Smoothing. 9

10 Solutions to Student Exercise 1. Module ET2 Electronic Circuits and Components. 1. i) ii) Input = 10V rms Peak voltage = 2 V rms V 14. 1V Peak Output voltage = V 13. 4V iii) 14.1V 13.4V time -14.1V 10

11 Topic i) ii) Input = 12.75V rms Peak voltage = 2 V rms V 18V Peak Output voltage = V iii) 18V 16.6V time -18V 11

12 Self Evaluation Review Module ET2 Electronic Circuits and Components. Learning Objectives Draw and understand the use of My personal review of these objectives: diodes in half wave and full wave bridge rectifiers; Calculate the peak value of the output voltage of half wave and full wave rectifiers given the rms input voltage. Targets:

Applications of diodes

Applications of diodes Applications of diodes Learners should be able to: (a) describe the I V characteristics of a silicon diode (b) describe the use of diodes for component protection in DC circuits and half-wave rectification

More information

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces.

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. 1. Basic diode characteristics Build the circuit shown in

More information

Electronic Circuits I Laboratory 03 Rectifiers

Electronic Circuits I Laboratory 03 Rectifiers Electronic Circuits I Laboratory 03 Rectifiers # Student ID Student Name Grade (10) 1 Instructor signature 2 3 4 5 Delivery Date -1 / 18 - Objectives In this experiment, you will get to know a group of

More information

EXPERIMENT 5 : DIODES AND RECTIFICATION

EXPERIMENT 5 : DIODES AND RECTIFICATION EXPERIMENT 5 : DIODES AND RECTIFICATION Component List Resistors, one of each o 2 1010W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic

More information

EXPERIMENT 3 Half-Wave and Full-Wave Rectification

EXPERIMENT 3 Half-Wave and Full-Wave Rectification Name & Surname: ID: Date: EXPERIMENT 3 Half-Wave and Full-Wave Rectification Objective To calculate, compare, draw, and measure the DC output voltages of half-wave and full-wave rectifier circuits. Tools

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan SECOND SEMESTER ELECTRONICS - I

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan SECOND SEMESTER ELECTRONICS - I SECOND SEMESTER ELECTRONICS - I BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Yousaf Hameed Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

Experiment #2 Half Wave Rectifier

Experiment #2 Half Wave Rectifier PURPOSE: ELECTRONICS 224 ETR620S Experiment #2 Half Wave Rectifier This laboratory session acquaints you with the operation of a diode power supply. You will study the operation of half-wave and the effect

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS TESTING OF HALF WAVE, FULL WAVE AND BRIDGE RECTIFIERS WITH AND WITHOUT CAPACITOR

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS TESTING OF HALF WAVE, FULL WAVE AND BRIDGE RECTIFIERS WITH AND WITHOUT CAPACITOR TESTING OF HALF WAVE, FULL WAVE AND BRIDGE RECTIFIERS WITH AND WITHOUT CAPACITOR Aim: To determine the ripple factor, efficiency and regulation of the half wave, full wave and bridge rectifier circuits

More information

Industrial Electricity. Answer questions and/or record measurements in the spaces provided.

Industrial Electricity. Answer questions and/or record measurements in the spaces provided. Industrial Electricity Lab 10: Building a Basic Power Supply ame Due Friday, 3/16/18 Answer questions and/or record measurements in the spaces provided. Measure resistance (impedance actually) on each

More information

In-Class Exercises for Lab 2: Input and Output Impedance

In-Class Exercises for Lab 2: Input and Output Impedance In-Class Exercises for Lab 2: Input and Output Impedance. What is the output resistance of the output device below? Suppose that you want to select an input device with which to measure the voltage produced

More information

transformer rectifiers

transformer rectifiers Power supply mini-project This week, we finish up 201 lab with a short mini-project. We will build a bipolar power supply and use it to power a simple amplifier circuit. 1. power supply block diagram Figure

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 1 TITLE : Half-Wave Rectifier & Filter OUTCOME : Upon completion of this unit, the student should be able to: i. Construct

More information

Power supply circuits

Power supply circuits Power supply circuits Practical exercise in Analog Electronics Abstract In this lab some different power supply circuits should be characterized. 1. Introduction The four basic constituents of a power

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic Capacitor

More information

Diode Bridges. Book page

Diode Bridges. Book page Diode Bridges Book page 450-454 Rectification The process of converting an ac supply into dc is called rectification The device that carries this out is called a rectifier Half wave rectifier only half

More information

CHAPTER SEMI-CONDUCTING DEVICES QUESTION & PROBLEM SOLUTIONS

CHAPTER SEMI-CONDUCTING DEVICES QUESTION & PROBLEM SOLUTIONS Solutions--Ch. 15 (Semi-conducting Devices) CHAPTER 15 -- SEMI-CONDUCTING DEVICES QUESTION & PROBLEM SOLUTIONS 15.1) What is the difference between a conductor and a semi-conductor? Solution: A conductor

More information

1 Diodes. 1.1 Diode Models Ideal Diode. ELEN 236 Diodes

1 Diodes. 1.1 Diode Models Ideal Diode. ELEN 236 Diodes ELEN 236 Diodes 1 Diodes 1.1 Diode Models 1.1.1 Ideal Diode Current through diode is zero for any voltage less than zero i.e. reverse biased case Current through diode is not limited by diode if voltage

More information

Experiment No. 2 Half Wave Rectifier using RC-Triggering

Experiment No. 2 Half Wave Rectifier using RC-Triggering Experiment No. 2 Half Wave Rectifier using RC-Triggering Pre-Lab Reading: 1. Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. (See page 790 to get help for this experiment).

More information

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS 1. OBJECTIVES 1.1 To demonstrate the operation of a diode limiter. 1.2 To demonstrate the operation of a diode clamper. 2. INTRODUCTION PART A: Limiter Circuit

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. Domestic users in the United Kingdom are supplied with mains electricity at a root mean square voltage of 230V. (a) State what is meant by root mean square voltage.......... (1) (b) Calculate the peak

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (I max = 1A, PIV = 400V) Diodes Center tap transformer (35.6V pp, 12.6 V RMS ) 100 F Electrolytic Capacitor

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Equipment List Dual Channel Oscilloscope R, 330, 1k, 10k resistors P, Tri-Power Supply V, 2x Multimeters D, 4x 1N4004: I max = 1A, PIV = 400V Silicon Diode P 2 35.6V pp (12.6 V

More information

Power supply circuits

Power supply circuits Power supply circuits Practical exercise in Analog Electronics Abstract In this lab some different power supply circuits should be characterized. 1 Introduction he four basic constituents of a power supply

More information

AC Theory and Electronics

AC Theory and Electronics AC Theory and Electronics An Alternating Current (AC) or Voltage is one whose amplitude is not constant, but varies with time about some mean position (value). Some examples of AC variation are shown below:

More information

EXPERIMENT 7: DIODE CHARACTERISTICS AND CIRCUITS 10/24/10

EXPERIMENT 7: DIODE CHARACTERISTICS AND CIRCUITS 10/24/10 DIODE CHARACTERISTICS AND CIRCUITS EXPERIMENT 7: DIODE CHARACTERISTICS AND CIRCUITS 10/24/10 In this experiment we will measure the I vs V characteristics of Si, Ge, and Zener p-n junction diodes, and

More information

Sheet 2 Diodes. ECE335: Electronic Engineering Fall Ain Shams University Faculty of Engineering. Problem (1) Draw the

Sheet 2 Diodes. ECE335: Electronic Engineering Fall Ain Shams University Faculty of Engineering. Problem (1) Draw the Ain Shams University Faculty of Engineering ECE335: Electronic Engineering Fall 2014 Sheet 2 Diodes Problem (1) Draw the i) Charge density distribution, ii) Electric field distribution iii) Potential distribution,

More information

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006)

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006) LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2005/2006) EXPERIMENT 1 : Introduction to Diode Name Matric No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ UNIVERSITI KEJURUTERAAN UTARA

More information

Experiment No. 1 Half Wave Rectifier using R-Triggering

Experiment No. 1 Half Wave Rectifier using R-Triggering Experiment No. 1 Half Wave Rectifier using R-Triggering Pre-Lab Reading: Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. Objectives: To analyze resistive firing/triggering of

More information

2) The larger the ripple voltage, the better the filter. 2) 3) Clamping circuits use capacitors and diodes to add a dc level to a waveform.

2) The larger the ripple voltage, the better the filter. 2) 3) Clamping circuits use capacitors and diodes to add a dc level to a waveform. TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) A diode conducts current when forward-biased and blocks current when reverse-biased. 1) 2) The larger the ripple voltage,

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

Lab Report 2 Half, Full and clipping Circuits of Diodes

Lab Report 2 Half, Full and clipping Circuits of Diodes Abu Dhabi University Electronic Devices and Circuits Lab Report 2 Half, Full and clipping Circuits of Diodes Author: Muhammad Obaidullah 1030313 Hezam Salem 1014191 Salem Mohammad 1012824 Supervisor: Dr.

More information

Exercise 6 AC voltage measurements average responding voltmeters

Exercise 6 AC voltage measurements average responding voltmeters Exercise 6 AC voltage measurements average responding voltmeters 1. Aim of the exercise The aim of the exercise is to familiarize students with the AC voltage measurements by means of rectified average

More information

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points)

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points) Exam 1 Name: Score /60 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier.

More information

Exercise 1: EXERCISE OBJECTIVE DISCUSSION. a. circuit A. b. circuit B. Festo Didactic P0 75

Exercise 1: EXERCISE OBJECTIVE DISCUSSION. a. circuit A. b. circuit B. Festo Didactic P0 75 Exercise 1: EXERCISE OBJECTIVE DISCUSSION a. circuit A. b. circuit B. Festo Didactic 91564-P0 75 individual diodes are designated D instead of CR, with the diode circle symbol omitted.) The input terminals

More information

Chapter 5: Diodes. I. Theory. Chapter 5: Diodes

Chapter 5: Diodes. I. Theory. Chapter 5: Diodes Chapter 5: Diodes This week we will explore another new passive circuit element, the diode. We will also explore some diode applications including conversion of an AC signal into a signal that never changes

More information

Basic DC Power Supply

Basic DC Power Supply Basic DC Power Supply Equipment: 1. Analog Oscilloscope 2. Digital multimeter 3. Experimental board and connectors. Objectives: 1. To understand the basic DC power supply both half wave and full wave rectifier.

More information

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers BME/ISE 3512 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - Electrical Engineering Science Laboratory Manual Table of Contents Safety Rules and Operating Procedures... 3 Troubleshooting Hints... 4 Experiment

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 204 Basic Electrical Engineering Lab INSTRUCTOR

More information

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Dr. A.V. Radun Dr. K.D. Donohue (9/18/03) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Laboratory

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING Electrical Engineering Science Laboratory Manual Table of Contents Experiment #1 OHM S LAW... 3 Experiment # 2 SERIES AND PARALLEL CIRCUITS... 8

More information

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers BME 351 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and real

More information

Engineering Communications DV9N-34 LO-2. Simulation Exercises. MjD

Engineering Communications DV9N-34 LO-2. Simulation Exercises. MjD Engineering Communications DV9N-34 LO-2 Exercises MjD September 2010 Mike Doyle September 2010 Page - 2 of 19 Part-1 d.c. simulation Mike Doyle September 2010 Page - 3 of 19 Engineering Communications

More information

3. Diode, Rectifiers, and Power Supplies

3. Diode, Rectifiers, and Power Supplies 3. Diode, Rectifiers, and Power Supplies Semiconductor diodes are active devices which are extremely important for various electrical and electronic circuits. Diodes are active non-linear circuit elements

More information

The Tuned Circuit. Aim of the experiment. Circuit. Equipment and components. Display of a decaying oscillation. Dependence of L, C and R.

The Tuned Circuit. Aim of the experiment. Circuit. Equipment and components. Display of a decaying oscillation. Dependence of L, C and R. The Tuned Circuit Aim of the experiment Display of a decaying oscillation. Dependence of L, C and R. Circuit Equipment and components 1 Rastered socket panel 1 Resistor R 1 = 10 Ω, 1 Resistor R 2 = 1 kω

More information

GCSE Electronics. Scheme of Work

GCSE Electronics. Scheme of Work GCSE Electronics Scheme of Work Week Topic Detail Notes 1 Practical skills assemble a circuit using a diagram recognize a component from its physical appearance (This is a confidence building/motivating

More information

Experiment 9 : Pulse Width Modulation

Experiment 9 : Pulse Width Modulation Name/NetID: Experiment 9 : Pulse Width Modulation Laboratory Outline In experiment 5 we learned how to control the speed of a DC motor using a variable resistor. This week, we will learn an alternative

More information

Electronics 1 Lab (CME 2410)

Electronics 1 Lab (CME 2410) Electronics 1 Lab (CME 410) School of Informatics & Computing German Jordanian University Laboratory Experiment () 1. Objective: Half-Wave, Full-Wave Rectifiers o be familiar with the half-wave rectifier,

More information

LABORATORY 3 v1 CIRCUIT ELEMENTS

LABORATORY 3 v1 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 3 v1 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

EE351 Laboratory Exercise 1 Diode Circuits

EE351 Laboratory Exercise 1 Diode Circuits revised July 19, 2009 The purpose of this laboratory exercise is to gain experience and understanding working with diodes. Focus on taking good data so that the plots and calculations you will do later

More information

OBJECTIVE The purpose of this exercise is to design and build a pulse generator.

OBJECTIVE The purpose of this exercise is to design and build a pulse generator. ELEC 4 Experiment 8 Pulse Generators OBJECTIVE The purpose of this exercise is to design and build a pulse generator. EQUIPMENT AND PARTS REQUIRED Protoboard LM555 Timer, AR resistors, rated 5%, /4 W,

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

LABORATORY 3 v3 CIRCUIT ELEMENTS

LABORATORY 3 v3 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Leon Chua LABORATORY 3 v3 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

Electronics EECE2412 Spring 2016 Exam #1

Electronics EECE2412 Spring 2016 Exam #1 Electronics EECE2412 Spring 2016 Exam #1 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 18 February 2016 File:12140/exams/exam1 Name: : Row # : Seat

More information

Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath

Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 3. Measurement: Diodes and rectifiers 2017.02.27. In this session we are going to measure forward and reverse characteristics of

More information

Class #8: Experiment Diodes Part I

Class #8: Experiment Diodes Part I Class #8: Experiment Diodes Part I Purpose: The objective of this experiment is to become familiar with the properties and uses of diodes. We used a 1N914 diode in two previous experiments, but now we

More information

AVO CT 160 Meter Protection

AVO CT 160 Meter Protection AVO CT 160 Meter Protection The following oscillograms show that with a real valve the voltage across the standard CT 160 meter (3250 Ohm, 30 ua f.s.) does not become flat zero when the Anode current is

More information

Unless otherwise specified, assume room temperature (T = 300 K).

Unless otherwise specified, assume room temperature (T = 300 K). ECE 3040 Dr. Doolittle Homework 4 Unless otherwise specified, assume room temperature (T = 300 K). 1) Purpose: Understanding p-n junction band diagrams. Consider a p-n junction with N A = 5x10 14 cm -3

More information

EE 2212 EXPERIMENT 3 3 October 2013 Diode I D -V D Measurements and Half Wave and Full Wave Bridge Rectifiers PURPOSE

EE 2212 EXPERIMENT 3 3 October 2013 Diode I D -V D Measurements and Half Wave and Full Wave Bridge Rectifiers PURPOSE EE 2212 EXPERIMENT 3 3 October 2013 Diode I D -V D Measurements and Half Wave and Full Wave Bridge Rectifiers PURPOSE Use laboratory measurements to extract key diode model parameters including I S,n (also

More information

EE3301 Experiment 5 A BRIDGE RECTIFIER POWER SUPPLY

EE3301 Experiment 5 A BRIDGE RECTIFIER POWER SUPPLY Fall 2000 Releant sections of textbook: Chapter 10 Output Stages and Power Supplies 10.5 inear oltage regulators 10.6 inear-power-supply design EE3301 Experiment 5 A BRIDGE RECTIFIER POWER SUPPY 1 Introduction

More information

Homework No. 2 Diodes Electronics I. Reading Assignment: Chapters 1 through 4 in Microelectronic Circuits, by Adel S. Sedra and Kenneth C. Smith.

Homework No. 2 Diodes Electronics I. Reading Assignment: Chapters 1 through 4 in Microelectronic Circuits, by Adel S. Sedra and Kenneth C. Smith. Homework No. 2 Diodes Electronics I Homework Quiz: See website for quiz date. Reading Assignment: Chapters 1 through 4 in Microelectronic Circuits, by Adel S. Sedra and Kenneth C. Smith. 1. Exercises 4.1

More information

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab Part I I-V Characteristic Curve ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab 1. Construct the circuit shown in figure 4-1. Using a DC Sweep, simulate

More information

Circuit operation Let s look at the operation of this single diode rectifier when connected across an alternating voltage source v s.

Circuit operation Let s look at the operation of this single diode rectifier when connected across an alternating voltage source v s. Diode Rectifier Circuits One of the important applications of a semiconductor diode is in rectification of AC signals to DC. Diodes are very commonly used for obtaining DC voltage supplies from the readily

More information

VCE VET ELECTRONICS. Written examination. Friday 1 November 2002

VCE VET ELECTRONICS. Written examination. Friday 1 November 2002 Victorian Certificate of Education 2002 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Figures Words STUDENT NUMBER Letter VCE VET ELECTRONICS Written examination Friday 1 November 2002 Reading time: 3.00

More information

Electrical and Electronic Principles in Engineering

Electrical and Electronic Principles in Engineering Unit 56: Electrical and Electronic Principles in Engineering Level: 3 Unit type: Optional Assessment type: Internal Guided learning: 60 Unit introduction The modern world relies on electrical and electronic

More information

After performing this experiment, you should be able to:

After performing this experiment, you should be able to: Objectives: After performing this experiment, you should be able to: Demonstrate the strengths and weaknesses of the two basic rectifier circuits. Draw the output waveforms for the two basic rectifier

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #4. Diode Rectifiers and Power Supply Circuits. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #4. Diode Rectifiers and Power Supply Circuits. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #4 Diode Rectifiers and Power Supply Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective:

More information

Purpose: 1) to investigate the electrical properties of a diode; and 2) to use a diode to construct an AC to DC converter.

Purpose: 1) to investigate the electrical properties of a diode; and 2) to use a diode to construct an AC to DC converter. Name: Partner: Partner: Partner: Purpose: 1) to investigate the electrical properties of a diode; and 2) to use a diode to construct an AC to DC converter. The Diode A diode is an electrical device which

More information

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET SEMICONDUCT ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS Class XII : PHYSICS WKSHEET 1. How is a n-p-n transistor represented symbolically? (1) 2. How does conductivity of a semiconductor change

More information

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting AC to DC

EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting AC to DC EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 6 Diodes: Half-Wave and Full-Wave Rectifiers Converting C to DC The process of converting a sinusoidal C voltage to a

More information

ELEC2 (JUN15ELEC201) General Certificate of Education Advanced Subsidiary Examination June Further Electronics TOTAL. Time allowed 1 hour

ELEC2 (JUN15ELEC201) General Certificate of Education Advanced Subsidiary Examination June Further Electronics TOTAL. Time allowed 1 hour Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Electronics General Certificate of Education Advanced Subsidiary Examination

More information

BME/ISE 3512 Laboratory - Three Diode (1N4001)

BME/ISE 3512 Laboratory - Three Diode (1N4001) BME/ISE 3512 Laboratory Three Diode (1N4001) Learning Objectives: Understand the concept of PN junction diodes, their application as rectifiers, the nature and application of halfwave and fullwave rectifiers,

More information

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Rectifying diodes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Rectifying diodes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

(A) im (B) im (C)0.5 im (D) im.

(A) im (B) im (C)0.5 im (D) im. Dr. Mahalingam College of Engineering and Technology, Pollachi. (An Autonomous Institution affiliated to Anna University) Regulation 2014 Fourth Semester Electrical and Electronics Engineering 141EE0404

More information

Page 2 A 42% B 50% C 84% D 100% (Total 1 mark)

Page 2 A 42% B 50% C 84% D 100% (Total 1 mark) Q1.A transformer has 1150 turns on the primary coil and 500 turns on the secondary coil. The primary coil draws a current of 0.26 A from a 230 V ac supply. The current in the secondary coil is 0.50 A.

More information

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Exam Question Booklet

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Exam Question Booklet Farr High School HIGHER PHYSICS Unit 3 Electricity Exam Question Booklet 1 2 MULTIPLE CHOICE QUESTIONS 1. 3. 2. 4. 3 5. 6. 7. 4 8. 9. 5 10. 11. 6 12. 13. 14. 7 15. 16. 17. 8 18. 20. 21. 19. 9 MONITORING

More information

Semiconductor theory predicts that the current through a diode is given by

Semiconductor theory predicts that the current through a diode is given by 3 DIODES 3 Diodes A diode is perhaps the simplest non-linear circuit element. To first order, it acts as a one-way valve. It is important, however, for a wide variety of applications, and will also form

More information

Transformers. Question Paper. Save My Exams! The Home of Revision. Subject Physics (4403) Exam Board. Keeping Things Moving. Page 1.

Transformers. Question Paper. Save My Exams! The Home of Revision. Subject Physics (4403) Exam Board. Keeping Things Moving. Page 1. Transformers Question Paper Level IGCSE Subject Physics (4403) Exam Board AQA Unit P3 Topic Keeping Things Moving Sub-Topic Transformers Booklet Question Paper Time Allowed: 58 minutes Score: /58 Percentage:

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope Modified for Physics 18, Brooklyn College I. Overview of the Experiment The main objective

More information

Experiment #3: Solid State Diodes Applications II

Experiment #3: Solid State Diodes Applications II SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #3: Solid State Diodes Applications II COMPONENTS Type

More information

DECEMBER 2014 Level 2 Certificate/Diploma in Engineering (IVQ) Principles of electrical and electronics technology

DECEMBER 2014 Level 2 Certificate/Diploma in Engineering (IVQ) Principles of electrical and electronics technology *28502561214* 2850-256 DECEMBER 2014 Level 2 Certificate/Diploma in Engineering (IVQ) Principles of electrical and electronics technology Tuesday 11 December 2014 09:30 11:30 You should have the following

More information

Chemistry Hour Exam 1

Chemistry Hour Exam 1 Chemistry 838 - Hour Exam 1 Fall 23 Department of Chemistry Michigan State University East Lansing, MI 48824 Name Student Number Question Points Score 1 15 2 15 3 15 4 15 5 15 6 15 7 15 8 15 9 15 Total

More information

DIGITAL COMMUNICATIONS (INTRODUCTION TO MULTISIM SOFTWARE)

DIGITAL COMMUNICATIONS (INTRODUCTION TO MULTISIM SOFTWARE) PROJECT 1B DIGITAL COMMUNICATIONS (INTRODUCTION TO MULTISIM SOFTWARE) (i) FSK SYSTEM (MODULATOR / DEMODULATOR) Abstract: In this project, students are required to design a complete circuit of FSK SYSTEM.

More information

ZIZTEL LIMITED web: tel: +44 (0) mail: 96 Rolleston Drive, Arnold, Nottingham, NG5 7JP United

ZIZTEL LIMITED   web:  tel: +44 (0) mail: 96 Rolleston Drive, Arnold, Nottingham, NG5 7JP United POWER FACTOR TDS-023 Issue 01 Ziztel Technical Bulletin Thank you for your interest in Ziztel - we are a UK based manufacturer of PAGA / MBS and Intercom products. Our systems are mainly designed for use

More information

EXPERIMENT 6: THE ZENER DIODE AND REGULATION

EXPERIMENT 6: THE ZENER DIODE AND REGULATION EXPERIMENT 6: THE ZENER DIODE AND REGULATION Equipment List P 3 Full Wave Bridge OR 4x 1N4004 Diodes. OS BK 2120B Dual Channel Oscilloscope 100 F Electrolytic capacitor I Watt 8.2V Zener Diode R 5 Cenco

More information

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 2. Diode Rectifier Circuits

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 2. Diode Rectifier Circuits Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 2 Diode Rectifier Circuits Aim: The purpose of this experiment is to become familiar with the use

More information

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide

Electric Circuit Fall 2017 Lab3 LABORATORY 3. Diode. Guide LABORATORY 3 Diode Guide Diodes Overview Diodes are mostly used in practice for emitting light (as Light Emitting Diodes, LEDs) or controlling voltages in various circuits. Typical diode packages in same

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

29:128 Homework Problems

29:128 Homework Problems 29:128 Homework Problems Revised 22 Feb 2012 29:128 Homework 1 (15 points) references: Sections 1.6-1.7 & 4.8, Meyer Chapter 1 of Horowitz and Hill, 2nd Edition (1) In the circuit shown below, V in = 9

More information

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

More information

Figure 1 Diode schematic symbol (left) and physical representation (right)

Figure 1 Diode schematic symbol (left) and physical representation (right) Page 1/7 Revision 1 20-Jul-10 OBJECTIVES To reinforce the concepts behind diode circuit analysis Verification of diode theory and operation To understand certain diode applications, such as rectification

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 2 - Semiconductor Diodes Overview: In this lab session students will investigate I-V characteristics

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Electricity and Electronics Constructor Kits

Electricity and Electronics Constructor Kits EEC470 Series The Electricity and Electronics Constructor EEC470 series is a structured practical training programme comprising an unpowered construction deck (EEC470) and a set of educational kits. Each

More information

ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) ENGR4300 Fall 2005 Test 4A Name Section Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points) Total (100 points): Please do not write on the crib sheets. On all questions:

More information

ECE 3455: Electronics Section Spring Final Exam

ECE 3455: Electronics Section Spring Final Exam : Electronics Section 12071 Spring 2011 Version B May 7, 2011 Do not open the exam until instructed to do so. Answer the questions in the spaces provided on the question sheets. If you run out of room

More information

Design and Technology

Design and Technology E.M.F, Voltage and P.D E.M F This stands for Electromotive Force (e.m.f) A battery provides Electromotive Force An e.m.f can make an electric current flow around a circuit E.m.f is measured in volts (v).

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 204 Basic Electrical Engineering Lab INSTRUCTOR

More information

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H. Chapter 2. Diodes and Applications

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H. Chapter 2. Diodes and Applications Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 2 Diodes and Applications 1 Diodes A diode is a semiconductor device with a single

More information