POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope

Size: px
Start display at page:

Download "POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope"

Transcription

1 POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 3 The Oscilloscope Modified for Physics 18, Brooklyn College I. Overview of the Experiment The main objective of this experiment is to become acquainted with the operation of the oscilloscope. This goal will be reached by performing a series of measurements designed to illustrate the basic function of the major oscilloscope controls. The oscilloscope is a voltmeter which is able to display the measured values in graphical form. In an oscilloscope, the image is displayed by means of an electron beam which traces out a pattern on a fluorescent screen (see Wolf). Since there are no mechanical moving parts involved in this display mechanism, the oscilloscope is capable of measuring very high frequency signals. The oscilloscope is an extremely useful laboratory instrument, and it will be used extensively in all future laboratory courses. II. Equipment Required 1 Oscilloscope 1 Signal Generator 1 Isolated, 60Hz, Vrms ± 20% source 1 Silicon Diode KΩ Resistor, 5%, 1/4 W 1 each 10KΩ and 18kΩ resistors III. The Differential Mode of the Oscilloscope There are many applications where the differential mode may make the difference in being able to make a measurement. We will explore two such instances. Figure 6-8b on page 151 of the text shows the configuration of a true differential input oscilloscope. If a true differential input scope is not available, one can use an alternate circuit 15

2 (for dual input scopes) to make differential mode measurements. The following example will serve to illustrate this. Suppose that we wish to measure V 2 in Figure 3-1 below, and we have at our disposal a dual input scope which is not equipped with a true differential mode. If we try to use only channel A to measure V 2 it will not work (why?). We can, however, measure V 2 by connecting channels A and B as shown below, and adding the two channels with B inverted. The oscilloscope will display A-B, which in this case corresponds to ( V 2 + V 3 ) - ( V 3 ) = V 2. Channel A Channel B This technique, (the A-B) mode, allows us to make differential mode measurements even though a true differential scope is not available. Function Generator V 1 10k 18k V 2 V 3 Channel B Channel A Fig. 3-1 One interesting application of the differential mode is the ability to measure a small signal in the presence of a much larger undesired signal. Figure 3-2 shows a situation where we wish to measure a small signal, but interference is present. In certain situations the nature of the interference is known and can be isolated. In Figure 3-2 it is assumed that we can access the signal + interference via terminal 1, and we can access the interference alone via terminal 2. To measure the signal without the interference we can use the differential mode (A - B) as shown below: ( Signal + Interference ) - ( Interference ) = Signal Channel A Channel B 16

3 1 2 Signal + Interference Interference Channel B Channel A Scope Set to A - B Mode Fig. 3-2 IV. Experimental Procedure To familiarize yourself with the instrument, draw a large rectangle representing the front panel of the oscilloscope, and locate the controls mentioned on pages of your text. Review pages Make sure you understand the operation and purpose of each control. (Of course, you will obtain a fuller understanding of these controls upon completion of the experiment.) Note: Not all scopes have an identical set of controls; your scope may not have all of the controls mentioned on pages Oscilloscope Basics We will now connect a function generator directly to the oscilloscope to obtain an image on the scope. The following settings will be used on your instruments: Function Generator: 1000 Hz sine wave; 2V rms output (use DMM on a-c mode); d-c offset set to zero. Oscilloscope: vertical sensitivity 1 V/div (calibrated) time/division 0.2 msec/div (cal.) trigger source INT input coupling DC level adjust to see image focus and intensity mid-range a. Using a coaxial cable, connect the function generator to the oscilloscope, channel A. You are now using the oscilloscope to plot voltage as a function of time. b. How many cycles of the sine wave should the oscilloscope display? Does it? 17

4 c. Change the vertical sensitivity and time/division settings, and observe what happens to the image. d. Depress the control labeled "GROUND" or "GND". What is the purpose of this control? Center the horizontal line by using the vertical position control. e. Measure the peak to peak voltage of the image and convert to rms using V rms = V pp (This equation is true only for sinusoids.) Does this value agree with the DMM reading? f. Set the function generator to 100 khz and change the scope sensitivity to display two cycles. g. Repeat part e. Is there any difference now? 2. The Trigger Group (See pps , 169 bottom and 170) The "sweep" signal is a voltage which is applied to the horizontal deflection plates, causing the electron beam to sweep horizontally across the screen. The sweep signal is made to be proportional to time, so that when one applies a signal v(t) to the vertical deflection plates one obtains a display of v(t) vs. t. To obtain a steady image on the scope, the sweep signal must be initiated (triggered) periodically in synchronism with the periodic input signal v(t). In the oscilloscope there are three sources which can trigger the sweep: INT LINE EXT triggers the sweep based on the input signal to the oscilloscope. triggers the sweep based on the 60 Hz line voltage. triggers the sweep from an external source. In most cases we will use the INT mode. Later on you will learn that there are some applications which require the use of the EXT mode. We now want to take a closer look at the LINE triggering mode. This setting triggers the sweep every 1/60 of a second ±0.1%. If the frequency f ss of the input signal we are measuring is related to the frequency f t of the triggering signal by 18

5 fs = Nft where N is either an integer or a fraction, such as 1 1 2, 1 3, 4, etc., then we will obtain a steady image on the scope. Since in this case f ttt is is 30, 60, 90, 120 Hz etc. CALIBRATION OF SIGNAL GENERATOR 60 Hz, we should obtain steady images whenever the input signal We now wish to test the accuracy of the dial settings of the signal generator. a. Set trigger source to LINE. b. Set generator output to 60 Hz sine wave. c. Set time/div control so that one or two cycles are displayed. d. Adjust the generator dial for minimum or no motion of the display. What can you conclude? e. Some of the frequencies for which one can obtain a stationary image include: 30, 60, 90, 120, 180, Prepare a short table of "actual frequency" vs. dial setting. This represents a frequency calibration for the signal generator. 3. Input Coupling Controls (pps ) To test your understanding of the DC and AC coupling modes perform the following experiment: a. Using the same oscilloscope and function generator settings as in Part 1, display a sine wave on the oscilloscope. b. Vary the dc offset on the function generator. Does the position of the image change? c. Repeat a) and b) using the AC coupling mode. d. Can you think of any reason why it might be more desirable to use the AC coupling mode as opposed to the DC coupling mode? The following set of measurements will help you understand why it may not always be desirable to use the AC coupling mode. 19

6 Figure 6-7 in your text shows the input circuitry corresponding to the AC and DC coupling modes. Copy the figure into your lab notebook. a. Use the same settings as in Part 1. Change the generator output to a square wave. Make sure dc offset is set to 0 (use DMM to check). b. Adjust the vertical sensitivity (uncalibrated) so the square wave is one division from the top and bottom boundaries. c. Decrease the frequency to 250, 100, 50, 25 and 15 Hz. At each frequency compare the AC and DC input coupled images. Adjust the time/div so that approximately one cycle is seen. d. For a frequency of 15 Hz record the values of V 1 and V 2 (in terms of divisions), and t 1, t 2, as shown in Figure 3-3. Calculate the time constant of the exponential decay. Knowing that the input resistance to the oscilloscope is 1 MΩ, calculate the series AC coupling capacitance. V V 1 V 2 t Fig. 3-3: Square wave, distorted by ac input coupling circuit. 4. The x-y Mode of the Oscilloscope Up to now we have been using the oscilloscope to display plots of voltage vs. time. In the x-y mode the oscilloscope can display the variation of one voltage vs. another. Since almost any physical quantity can be represented by a voltage, the scope can be used to display the variation of many useful quantities. In this part of the experiment we will use the oscilloscope to obtain the i-v characteristic of an important electronic circuit element -- the semiconductor diode. Set up the circuit shown in Figure 3-4. (See instructions below figure.) As you increase the a-c voltage from 0 V to 10V, note how the appearance of the pattern on the 20

7 scope changes. For your report include a statement which explains the relationship between voltage and current for a diode Why is it necessary to use an isolated source instead of the function generator? a v s i v b 60 Hz Isolated Source ( Do not use Function Generator ) v R c R Fig. 3-4: Circuit to display i-v characteristic of diode. a. Set oscilloscope to the x-y mode. (channel A corresponds to the x-axis, and channel B to the y-axis.) b. Connect channel A '+' to point a, and channel A '-' to point b. c. Connect channel B '+' to point c and channel B '-' to point b. Note that the grounds of both channels A and B must be connected to the same point (in this case point b). Why? d. Press B INV so that we will plot v R vs. v. Since v R is proportional to i, we are actually plotting i vs. v which is what we desire. 5. The Differential Mode A. Measurement of Voltage between Two Ungrounded Points a. Assemble the circuit in Figure 3-1. For V 1 use a 1000Hz sine wave from the signal generator. Set the output of the generator to 5 Vrms (use DMM in AC mode). b. Measure V 1, V 2, and V 3 with the following meters. i) Electronic a-c voltmeter ii) DMM 21

8 iii) Oscilloscope using channel A only. Convert the peak-to-peak reading to rms for comparison to the other meters. c. Convert your oscilloscope to the differential mode as indicated in the above introduction, and measure V 1, V 2, and V 3. Note: Channel B and channel A must be set to the same sensitivity whenever using the A-B mode. For each of the measurements in parts b) and c), does V 1 = V 2 + V 3? results in the report. Explain your V. The Report For each of the 5 parts of the experiment, briefly discuss the questions that were raised in the manual. Make sure to include all relevant measured values (e.g., the series capacitance of AC coupling mode), and graphs (i-v characteristic of diode). 22

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1 University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L: in charge of the report Test No. Date: Assistant A2: Professor:

More information

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope PAGE 1/14 Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission

More information

Sonoma State University Department of Engineering Science Spring 2017

Sonoma State University Department of Engineering Science Spring 2017 EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

More information

DEPARTMENT OF INFORMATION ENGINEERING. Test No. 1. Introduction to Scope Measurements. 1. Correction. Term Correction. Term...

DEPARTMENT OF INFORMATION ENGINEERING. Test No. 1. Introduction to Scope Measurements. 1. Correction. Term Correction. Term... 2. Correction. Correction Report University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L: in charge of the report Test No.

More information

EE 241 Experiment #7: NETWORK THEOREMS, LINEARITY, AND THE RESPONSE OF 1 ST ORDER RC CIRCUITS 1

EE 241 Experiment #7: NETWORK THEOREMS, LINEARITY, AND THE RESPONSE OF 1 ST ORDER RC CIRCUITS 1 EE 241 Experiment #7: NETWORK THEOREMS, LINEARITY, AND THE RESPONSE OF 1 ST ORDER RC CIRCUITS 1 PURPOSE: To verify the validity of Thevenin and maximum power transfer theorems. To demonstrate the linear

More information

Laboratory Exercise 6 THE OSCILLOSCOPE

Laboratory Exercise 6 THE OSCILLOSCOPE Introduction Laboratory Exercise 6 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

General Construction & Operation of Oscilloscopes

General Construction & Operation of Oscilloscopes Science 14 Lab 2: The Oscilloscope Introduction General Construction & Operation of Oscilloscopes An oscilloscope is a widely used device which uses a beam of high speed electrons (on the order of 10 7

More information

Experiment 5 The Oscilloscope

Experiment 5 The Oscilloscope Experiment 5 The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a cathode ray oscilloscope. THEORY The oscilloscope, or scope for short, is

More information

LAB 7: THE OSCILLOSCOPE

LAB 7: THE OSCILLOSCOPE LAB 7: THE OSCILLOSCOPE Equipment List: Dual Trace Oscilloscope HP function generator HP-DMM 2 BNC-to-BNC 1 cables (one long, one short) 1 BNC-to-banana 1 BNC-probe Hand-held DMM (freq mode) Purpose: To

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

FYSP1110/K1 (FYSP110/K1) USE OF AN OSCILLOSCOPE

FYSP1110/K1 (FYSP110/K1) USE OF AN OSCILLOSCOPE FYSP1110/K1 (FYSP110/K1) USE OF AN OSCILLOSCOPE 1 Introduction In this exercise you will get basic knowledge about how to use an oscilloscope. You ll also measure properties of components, which you are

More information

Department of Electrical and Computer Engineering. Laboratory Experiment 1. Function Generator and Oscilloscope

Department of Electrical and Computer Engineering. Laboratory Experiment 1. Function Generator and Oscilloscope Department of Electrical and Computer Engineering Laboratory Experiment 1 Function Generator and Oscilloscope The purpose of this first laboratory assignment is to acquaint you with the function generator

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

EE 241 Experiment #4: USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS, Part III 1

EE 241 Experiment #4: USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS, Part III 1 EE 241 Experiment #4: USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS, Part III 1 PURPOSE: To become familiar with more of the instruments in the laboratory. To become aware of operating limitations of input

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Test No. 2. Advanced Scope Measurements. History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 2

Test No. 2. Advanced Scope Measurements. History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 2 University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L1: in charge of the report Test No. 2 Date: Assistant A2: Professor:

More information

Electric Circuit II Lab Manual Session #1

Electric Circuit II Lab Manual Session #1 Department of Electrical Engineering Electric Circuit II Lab Manual Session #1 Subject Lecturer Dr. Yasser Hegazy Name:-------------------------------------------------- Group:--------------------------------------------------

More information

USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1

USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1 EE 241 Experiment #3: USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1 PURPOSE: To become familiar with additional the instruments in the laboratory. To become aware

More information

Ahsanullah University of Science and Technology

Ahsanullah University of Science and Technology Ahsanullah University of Science and Technology Department of Electrical and Electronic Engineering AU ST /E EE LABORATORY MANUAL FOR ELECTRICAL AND ELECTRONIC SESSIONAL COURSE Student Name : Student ID

More information

Oscilloscope Measurements

Oscilloscope Measurements PC1143 Physics III Oscilloscope Measurements 1 Purpose Investigate the fundamental principles and practical operation of the oscilloscope using signals from a signal generator. Measure sine and other waveform

More information

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial 1 This is a programmed learning instruction manual. It is written for the Agilent DSO3202A Digital Storage Oscilloscope. The prerequisite

More information

Experiment 2 Determining the Capacitive Reactance of a Capacitor in an AC Circuit

Experiment 2 Determining the Capacitive Reactance of a Capacitor in an AC Circuit Experiment 2 Determining the apacitive eactance of a apacitor in an A ircuit - Objects of the experiments: a- Investigating the voltage and the current at a capacitor in an A circuit b- Observing the phase

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 210 Basic Electrical Engineering Lab INSTRUCTOR

More information

Oscilloscope and Function Generators

Oscilloscope and Function Generators MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 02 Oscilloscope and Function Generators Roll. No: Checked by: Date: Grade: Object: To

More information

LAB 1: Familiarity with Laboratory Equipment (_/10)

LAB 1: Familiarity with Laboratory Equipment (_/10) LAB 1: Familiarity with Laboratory Equipment (_/10) PURPOSE o gain familiarity with basic laboratory equipment oscilloscope, oscillator, multimeter and electronic components. EQUIPMEN (i) Oscilloscope

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment: RUTGERS UNIVERSITY The State University of New Jersey School of Engineering Department Of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title:

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 5 RC Circuits Frequency Response

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 5 RC Circuits Frequency Response POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LORTORY Eperiment 5 RC Circuits Frequency Response Modified for Physics 18, rooklyn College I. Overview of Eperiment In this eperiment

More information

Cornerstone Electronics Technology and Robotics Week 21 Electricity & Electronics Section 10.5, Oscilloscope

Cornerstone Electronics Technology and Robotics Week 21 Electricity & Electronics Section 10.5, Oscilloscope Cornerstone Electronics Technology and Robotics Week 21 Electricity & Electronics Section 10.5, Oscilloscope Field trip to Deerhaven Generation Plant: Administration: o Prayer o Turn in quiz Electricity

More information

EE EXPERIMENT 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP INTRODUCTION

EE EXPERIMENT 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP INTRODUCTION EE 2101 - EXPERIMENT 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP INTRODUCTION A capacitor is a linear circuit element whose voltage and current are related by a differential equation. For a capacitor, the

More information

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits Laboratory Section: Last Revised on September 21, 2016 Partners Names: Grade: EXPERIMENT 10 Electronic Circuits 1. Pre-Laboratory Work [2 pts] 1. How are you going to determine the capacitance of the unknown

More information

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback ECE 214 Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback 20 February 2018 Introduction: The TL082 Operational Amplifier (OpAmp) and the Texas Instruments Analog System Lab Kit Pro evaluation

More information

Brown University PHYS 0060 Physics Department LAB B Circuits with Resistors and Diodes

Brown University PHYS 0060 Physics Department LAB B Circuits with Resistors and Diodes References: Circuits with Resistors and Diodes Edward M. Purcell, Electricity and Magnetism 2 nd ed, Ch. 4, (McGraw Hill, 1985) R.P. Feynman, Lectures on Physics, Vol. 2, Ch. 22, (Addison Wesley, 1963).

More information

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope For students to become more familiar with oscilloscopes and function generators. Pre laboratory Work Read the TDS 210 Oscilloscope

More information

Notes on Experiment #1

Notes on Experiment #1 Notes on Experiment #1 Bring graph paper (cm cm is best) From this week on, be sure to print a copy of each experiment and bring it with you to lab. There will not be any experiment copies available in

More information

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS

APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS APPENDIX D DISCUSSION OF ELECTRONIC INSTRUMENTS DC POWER SUPPLIES We will discuss these instruments one at a time, starting with the DC power supply. The simplest DC power supplies are batteries which

More information

Experiment 1: Instrument Familiarization (8/28/06)

Experiment 1: Instrument Familiarization (8/28/06) Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

More information

PHYS 235: Homework Problems

PHYS 235: Homework Problems PHYS 235: Homework Problems 1. The illustration is a facsimile of an oscilloscope screen like the ones you use in lab. sinusoidal signal from your function generator is the input for Channel 1, and your

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

Using Circuits, Signals and Instruments

Using Circuits, Signals and Instruments Using Circuits, Signals and Instruments To be ignorant of one s ignorance is the malady of the ignorant. A. B. Alcott (1799-1888) Some knowledge of electrical and electronic technology is essential for

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

Experiment 1: Instrument Familiarization

Experiment 1: Instrument Familiarization Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

More information

INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015

INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015 INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015 Saeid Rahimi, Ph.D. Jack Ou, Ph.D. Engineering Science Sonoma State University A SONOMA STATE UNIVERSITY PUBLICATION CONTENTS 1 Electronic

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 1 TITLE : Half-Wave Rectifier & Filter OUTCOME : Upon completion of this unit, the student should be able to: i. Construct

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Physics 323. Experiment # 1 - Oscilloscope and Breadboard

Physics 323. Experiment # 1 - Oscilloscope and Breadboard Physics 323 Experiment # 1 - Oscilloscope and Breadboard Introduction In order to familiarise yourself with the laboratory equipment, a few simple experiments are to be performed. References: XYZ s of

More information

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope)

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope) PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope) If you have not used an oscilloscope before, the web site http://www.upscale.utoronto.ca/generalinterest/harrison/oscilloscope/oscilloscope.html

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to E2.1 Lab E2: B-field of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is

More information

EE 2212 EXPERIMENT 3 3 October 2013 Diode I D -V D Measurements and Half Wave and Full Wave Bridge Rectifiers PURPOSE

EE 2212 EXPERIMENT 3 3 October 2013 Diode I D -V D Measurements and Half Wave and Full Wave Bridge Rectifiers PURPOSE EE 2212 EXPERIMENT 3 3 October 2013 Diode I D -V D Measurements and Half Wave and Full Wave Bridge Rectifiers PURPOSE Use laboratory measurements to extract key diode model parameters including I S,n (also

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

B. Equipment. Advanced Lab

B. Equipment. Advanced Lab Advanced Lab Measuring Periodic Signals Using a Digital Oscilloscope A. Introduction and Background We will use a digital oscilloscope to characterize several different periodic voltage signals. We will

More information

Physics 120 Lab 1 (2018) - Instruments and DC Circuits

Physics 120 Lab 1 (2018) - Instruments and DC Circuits Physics 120 Lab 1 (2018) - Instruments and DC Circuits Welcome to the first laboratory exercise in Physics 120. Your state-of-the art equipment includes: Digital oscilloscope w/usb output for SCREENSHOTS.

More information

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope In this laboratory you will learn to use two additional instruments in the laboratory, namely the function/arbitrary waveform generator, which

More information

Instructions for the final examination:

Instructions for the final examination: School of Information, Computer and Communication Technology Sirindhorn International Institute of Technology Thammasat University Practice Problems for the Final Examination COURSE : ECS304 Basic Electrical

More information

Experiment 9 AC Circuits

Experiment 9 AC Circuits Experiment 9 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

More information

electrical noise and interference, environmental changes, instrument resolution, or uncertainties in the measurement process itself.

electrical noise and interference, environmental changes, instrument resolution, or uncertainties in the measurement process itself. MUST 382 / EELE 491 Spring 2014 Basic Lab Equipment and Measurements Electrical laboratory work depends upon various devices to supply power to a circuit, to generate controlled input signals, and for

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - Electrical Engineering Science Laboratory Manual Table of Contents Safety Rules and Operating Procedures... 3 Troubleshooting Hints... 4 Experiment

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2110: CIRCUIT THEORY LABORATORY Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope,

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING Electrical Engineering Science Laboratory Manual Table of Contents Experiment #1 OHM S LAW... 3 Experiment # 2 SERIES AND PARALLEL CIRCUITS... 8

More information

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Introduction to oscilloscope. and time dependent circuits

Introduction to oscilloscope. and time dependent circuits Physics 9 Intro to oscilloscope, v.1.0 p. 1 NAME: SECTION DAY/TIME: TA: LAB PARTNER: Introduction to oscilloscope and time dependent circuits Introduction In this lab, you ll learn the basics of how to

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

Lab Equipment EECS 311 Fall 2009

Lab Equipment EECS 311 Fall 2009 Lab Equipment EECS 311 Fall 2009 Contents Lab Equipment Overview pg. 1 Lab Components.. pg. 4 Probe Compensation... pg. 8 Finite Instrumentation Impedance. pg.10 Simulation Tools..... pg. 10 1 - Laboratory

More information

Oscilloscope. 1 Introduction

Oscilloscope. 1 Introduction Oscilloscope Equipment: Capstone, BK Precision model 2120B oscilloscope, Wavetek FG3C function generator, 2-3 foot coax cable with male BNC connectors, 2 voltage sensors, 2 BNC banana female adapters,

More information

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1 UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL FATIH GENÇ UCORE ELECTRONICS www.ucore-electronics.com 2017 - REV1 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 3 3.1. Display

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

Lab 0: Orientation. 1 Introduction: Oscilloscope. Refer to Appendix E for photos of the apparatus

Lab 0: Orientation. 1 Introduction: Oscilloscope. Refer to Appendix E for photos of the apparatus Lab 0: Orientation Major Divison 1 Introduction: Oscilloscope Refer to Appendix E for photos of the apparatus Oscilloscopes are used extensively in the laboratory courses Physics 2211 and Physics 2212.

More information

Exercise 4 - THE OSCILLOSCOPE

Exercise 4 - THE OSCILLOSCOPE Exercise 4 - THE OSCILLOSCOPE INTRODUCTION You have been exposed to analogue oscilloscopes in the first year lab. As you are probably aware, the complexity of the instruments, along with their importance

More information

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

More information

Lab 1: Basic Lab Equipment and Measurements

Lab 1: Basic Lab Equipment and Measurements Abstract: Lab 1: Basic Lab Equipment and Measurements This lab exercise introduces the basic measurement instruments that will be used throughout the course. These instruments include multimeters, oscilloscopes,

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Frequency-Modulated CW Radar EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with FM ranging using frequency-modulated continuous-wave (FM-CW) radar. DISCUSSION

More information

EXPERIMENT 1 PRELIMINARY MATERIAL

EXPERIMENT 1 PRELIMINARY MATERIAL EXPERIMENT 1 PRELIMINARY MATERIAL BREADBOARD A solderless breadboard, like the basic model in Figure 1, consists of a series of square holes, and those columns of holes are connected to each other via

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: voltage, current, and power. In the simplest

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: Voltage, current, and power. In the simplest

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

Equipment and materials to be checked out from stockroom: ECE 2210 kit, optional, if available. Analog BK precision multimeter or similar.

Equipment and materials to be checked out from stockroom: ECE 2210 kit, optional, if available. Analog BK precision multimeter or similar. p1 ECE 2210 Capacitors Lab University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 5 Capacitors A. Stolp, 10/4/99 rev 9/23/08 Objectives 1.) Observe charging and discharging of

More information

ECE 231 Laboratory Exercise 3 Oscilloscope/Function-Generator Operation ECE 231 Laboratory Exercise 3 Oscilloscope/Function Generator Operation

ECE 231 Laboratory Exercise 3 Oscilloscope/Function-Generator Operation ECE 231 Laboratory Exercise 3 Oscilloscope/Function Generator Operation ECE 231 Laboratory Exercise 3 Oscilloscope/Function Generator Operation Laboratory Group (Names) OBJECTIVES Gain experience in using an oscilloscope to measure time varying signals. Gain experience in

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

EENG-201 Experiment # 4: Function Generator, Oscilloscope

EENG-201 Experiment # 4: Function Generator, Oscilloscope EENG-201 Experiment # 4: Function Generator, Oscilloscope I. Objectives Upon completion of this experiment, the student should be able to 1. To become familiar with the use of a function generator. 2.

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 5 Oscilloscope Introduction Required Parts, Software and Equipment Parts Figure 1, Figure 2, Figure 3 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance

More information

Press Cursors and use the appropriate X and Y functions to measure period and peak-peak voltage of the square wave.

Press Cursors and use the appropriate X and Y functions to measure period and peak-peak voltage of the square wave. Equipment Review To assure that everyone is up to speed for the hurdles ahead, the first lab of the semester is traditionally an easy review of electrical laboratory fundamentals. There will, however,

More information

THE CATHODE RAY OSCILLOSCOPE

THE CATHODE RAY OSCILLOSCOPE The Department of Engineering SS1.2 THE CATHODE RAY OSCILLOSCOPE Objectives The objective of this laboratory is for you to familiarise yourself with the operation of a cathode ray oscilloscope (CRO). Once

More information

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Name: Date of lab: Section number: M E 345. Lab 1 Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Precalculations Score (for instructor or TA use only):

More information

The oscilloscope and RC filters

The oscilloscope and RC filters (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 4 The oscilloscope and C filters The objective of this experiment is to familiarize the student with the workstation

More information

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces.

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. 1. Basic diode characteristics Build the circuit shown in

More information

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL UCORE ELECTRONICS www.ucore-electronics.com 2017 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 4 3.1. Display Description...

More information

Module 2: AC Measurements. Measurements and instrumentation

Module 2: AC Measurements. Measurements and instrumentation Module 2: AC Measurements Measurements and instrumentation Watch the following video Module objectives Upon successful completion of this module, students should be able to: Familiarise with the definition

More information

Lab #1 Lab Introduction

Lab #1 Lab Introduction Cir cuit s 212 Lab Lab #1 Lab Introduction Special Information for this Lab s Report Because this is a one-week lab, please hand in your lab report for this lab at the beginning of next week s lab. The

More information

Fundamental of Electrical Engineering Lab Manual

Fundamental of Electrical Engineering Lab Manual Fundamental of Electrical Engineering Lab Manual EngE-111/318 Dr.Hidayath Mirza & Dr.Rais Ahmad Sheikh 1/9/19 EngE111 Testing Battery (DC) Testing AC Testing Wire 1 P a g e Resistor measurement Testing

More information

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to Lab 3: RC Circuits Prelab Deriving equations for the output voltage of the voltage dividers you constructed in lab 2 was fairly simple. Now we want to derive an equation for the output voltage of a circuit

More information

Lab #11 Rapid Relaxation Part I... RC and RL Circuits

Lab #11 Rapid Relaxation Part I... RC and RL Circuits Rev. D. Day 10/18/06; 7/15/10 HEFW PH262 Page 1 of 6 Lab #11 Rapid Relaxation Part I... RC and RL Circuits INTRODUCTION Exponential behavior in electrical circuits is frequently referred to as "relaxation",

More information

LAB INSTRUMENTATION. RC CIRCUITS.

LAB INSTRUMENTATION. RC CIRCUITS. LAB INSTRUMENTATION. RC CIRCUITS. I. OBJECTIVE a) Becoming accustomed to using the lab instrumentation (voltage supply, digital multimeter, signal generator, oscilloscope) necessary to the experimental

More information