# Lab E5: Filters and Complex Impedance

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known experimental fact, states that the current through a circuit is related to the overall voltage drop and the resistance of the components by the relation (1) I = This can be further generalized to become (2) I = where Z represents the complex impedance, which has both real and imaginary components. Impedance is analogous to direct current (DC) resistance, but in addition to the real resistance also includes an imaginary reactance term due to the oscillatory effects of, for instance, charging and discharging a capacitor that come into play when we switch to using an oscillating alternating current (AC) source to power our circuit. (Recall that the simplest form of a capacitor is two parallel plates with a gap in-between them, creating time dependence as observed in the E4: Capacitors lab. In that lab we looked at a single discharging cycle of the capacitor to determine the time constant of the circuit. Here we apply an oscillating voltage that causes the capacitor to constantly charge and discharge.) The imaginary nature of the reactance gives phase to the impedance, indicating that the current is out of phase with the voltage across that component. Another common passive component, the inductor, creates a time dependence of its own. An inductor is essentially just a coil of wire; when current flows through, a magnetic field is created in the coil. If the input voltage changes, the inductor creates a voltage across itself opposing that change (you may remember Faraday s Law of Inductance and Lenz Law from Physics 1120). The voltage drop across the inductor is given by (3) V = L( "() " ) where L, known as the inductance, is determined by the geometry and number of coils in the loop, and i(t) is the time dependent current through the inductor. We have switched to the lower case i in order to indicate time dependence, a common convention. However, from this point forward in the lab i will denote the imaginary number, i = 1. Notice that there must be a time dependence in the current for any voltage drop to occur for this reason inductors don t factor into DC circuit analysis, where the input voltage is constant in time. The same is true for capacitors. The complex impedances of the capacitor and inductor are given by (4) Z = = "# " (impedance of a capacitor)

2 E5.2 and (5) Z = iωl. (impedance of an inductor) where (6) ω = 2πf The impedances are purely imaginary and depend on frequency, indicating that they are only relevant when the voltage changes with time. In contrast, the impedance of a resistor is purely real, where (7) Z = R. (impedance of a resistor) This is to be expected, since the resistor creates a voltage drop even in a DC circuit with a time independent voltage. These complex impedances add in the same way the resistances add; recall that in series this means that (8) Z = Z + Z + Z + while in parallel: (9) Z = A common method of decreasing the voltage sent to a given part of your circuit is to create a voltage divider (pictured below). We can analyze the divider by using Ohm s law: Figure 1: Voltage Divider (10) I = " "#\$ (Think about it: where is I measured? Does it matter?) (11) Z "#\$ = Z + Z

3 E5.3 V out, the voltage we re trying to find, is the voltage dropped across the second impedance, so we use Ohm s law once again to find that (12) V "# = IZ = V ". When we use resistors for Z 1 and Z 2, the divider simply reduces the voltage output independent of the signal frequency, even if we are using an alternating current (AC) input. Figure 2: CR high-pass filter When we use an inductor or a capacitor, however, we find (through a little algebra) interesting frequency dependence. Given the circuit above, we see that: (13) I = " = " "#\$ = " " " (14) V "# = IZ = IR = " " R (15) "# " = "# " "# " = Note: the * indicates the complex conjugate. (16) V "# = "#\$ "#\$ V " This circuit is called a CR high-pass filter. You can see that, for large frequencies f, Equation (15) approaches unity, whereas for small f it approaches 0. If we switch the positions of the resistor and capacitor above we get a similar result, (17) V "# = "#\$ V " which is known as an RC low-pass filter. For these circuits we define the cutoff frequency to be the point at which the ratio

4 E5.4 (18) "# " =.707 The cutoff frequency in either case is therefore (19) f c = If we were to construct a log-log scale plot for this ratio as a function of frequency (using R = 4700 Ω and C = 33 nf for example) we would get " for the first circuit and for the second. The cutoff frequency (~1026 Hz) is marked for each case. As we can see the two circuits block out low and high frequency inputs respectively.

5 E5.5 Similar filters can be constructed using resistors and inductors, although with slightly different time dependence (see prelab questions). Procedure Part 1. CR High Pass Filter In this part we will analyze a simple high pass filter and plot attenuation (the ratio of V in to V out ) vs. frequency over a broad range. The circuit is built for you at the lab station and the components are labeled with their actual values. Determine the cutoff frequency f c for the CR circuit (figure 2) at your table. You will use this calculated cutoff frequency in your measurements. The values should be about 33 nf and 4.7 kω, but the actual values can vary so use the values labeled on the circuit box. To connect the signal generator to your circuit you will use a BNC cable. These cables carry your signal internally but also have a grounded shell (not connected to the inner wire). Connect a BNC cable to the Input terminal on the circuit box. Connect the other end to the function generator using a BNC T-splitter. Use another BNC cable to connect the other end of the T-splitter and Channel 1 on the Oscilloscope. Take another BNC cable and attach it from the output TTL on the function generator to the EXT Trig slot on your scope. This will be used to trigger the measurement. Triggering tells the scope when to take measurements in order to get a consistent signal, as opposed to taking a different signal with each sweep which shows up as a signal that appears to move across your screen. Turn on the function generator making sure channel 1 is onscreen on your oscilloscope and that the oscilloscope is set to trigger off of the channel connected to Output TTL on the function generator.

6 E5.6 Figure 3: Wiring Setup (Figure 2 gives the circuit diagram) Connect another BNC to the circuit Output and into channel 2 on the oscilloscope. Write down the input voltage, with error, as measured on your scope, using the vertical scale divisions knob to make sure the entire signal is on screen while also filling it as much as possible. This allows you to take the most accurate measurements possible- when collecting data for the remainder of the lab always be sure to use this technique. Any time you adjust the input frequency you will need to check your waveforms so that they fill the screen on the oscilloscope again. Make voltage measurements at values of.001*(f c ),.01*(f c ),.1*(f c ),.5*(f c ), f c, 2*(f c ), 10*(f c ), 100*(f c ), and 1000*(f c ). Where f c is the cutoff frequency that you calculated earlier. Record the exact frequency off of your function generator. For very low frequencies, such as.001 and.01 f c, you may not be able to trigger your signal. If this is the case, use the Run/Stop button on your oscilloscope, allowing you to look at just a single measurement. Divide your measurements by V in, and create a data table including error for each result. Plot your data and the theory curve on a log-log scale plot in Mathematica, and comment on any discrepancy. Part 2. Integrator and Differentiator Circuits Using the high pass filter you constructed in the previous part of this lab, look at the input and output signals for various input waveforms (i.e. square wave, triangle wave, sine wave, etc.) found on the right side of the function generator. Keep the frequency of the signals well below your calculated f c (in the 0.01 f c f c range). What do you notice about the waveform of the output signal as compared to the input (Hint: see section title)? Switch the resistor and capacitor to create a low pass filter, and change your input frequency to well above the circuit s f c. What do you notice now? Which of these two circuits

7 E5.7 would you call an integrator? Which a differentiator? Explain. State what the integral and derivative waveforms of each of the three inputs mentioned above are. Do the circuits make a good approximation of differentiation and integration? Hint: think carefully about what the integral of a triangle waveform should look like. It is NOT a sine wave. Part 3. Signal Processing and the ECG One of the most important applications of filters is to reduce electronic noise in signals from measurement devices. When measuring a signal of a certain frequency you are nearly certain to have your measurement distorted by a multitude of other signals over a range of other frequencies. If your signal amplitude is low enough your measurement can be drowned out completely The goal of signal processing is to reduce this noise as much as possible so that you only look at the data you are interested in. By attenuating signals far from the cutoff frequency in one direction while allowing signals on the opposite side to pass through, RC and RL low and high pass filters used in combination are good candidates for this task. The electrocardiogram (ECG) is commonly used in hospitals to monitor patients heart beats and detect heart problems as a diagnostic tool. It works by amplifying tiny voltages present in the skin caused by polarization and depolarization of the heart. The human heart has four chambers: two atria, where blood enters the heart, and two ventricles, which pump the blood out. During the heart s cycle the atria and then the ventricles contract then relax in succession, pushing blood through the body. These contractions are caused by an electrical signal proliferated by the sinoatrial node, otherwise known as the pacemaker due to the fact that the cells spontaneously and rhythmically depolarize of their own accord. This electrical signal creates a very small net voltage difference across the body due to the asymmetric positioning of the transduction cells on the heart. This tiny signal can be read off the skin on opposite sides of the body and amplified to give doctors an idea of how a heart is functioning. The largest peak in an ECG readout, known as the QRS complex, represents ventricular contraction. Depending on the heart of the person in question, the conductivity of their skin, and the positions at which the signals are measured, the voltage difference across the body at this point will be around 1-3 mv. This presents a challenge, since the largest source of noise in most of these circuits, which comes from power lines, is large enough to completely obscure the signal and will be amplified during the amplification phase of the circuits. Luckily, power lines operate at 60 Hz, whereas the human heart (which beats only around 100 times per minute) operates at a frequency between 1 and 2 Hz. Almost all of the circuitry that goes into an ECG is aimed at eliminating this noise by applying various filters to allow visualization of the heart cycle. In this part of the lab you will compute the actual maximum voltage difference created at your hands by your heart. ECG circuits first amplify the signal before filtering it, since otherwise peaks would be too small to resolve. To determine your heart voltage you will thus need to know the degree to which the ECG you are using amplifies the signal. Make sure the power cord on the ECG box is plugged in, then connect the OUTPUT jack to channel 1 of your oscilloscope using a BNC cable. Turn on the circuit, set the mode to CALIBRATE, and switch three to Vin. Using a DMM (digital multimeter) with a BNC cable attachment, measure the input voltage to the calibration pulse and it s error by connecting the DMM to the LEFT/Vin socket. Pressing the CALIBRATING PULSE button will send a signal into the circuit at this voltage. Remove the

8 E5.8 DMM and flip switch three to OPERATE. On the oscilloscope, adjust the time scale to around 250 ms/division and, using the calibrate button, adjust the voltage divisions until the pulses take up most of the oscilloscope screen. Measure the output calibration voltage on the oscilloscope with error (the error on any oscilloscope measurement is + one small division- note that making the large divisions as small as possible minimizes error, which is why it is best to take up as much of the screen with the pulses as you can without clipping the signal). Use the input and output calibration voltages to determine the amplification factor of the circuit and its error. Next attach the handle bar BNC cables to the LEFT/Vin and RIGHT sockets on the box, and switch the mode to OPERATE. In this mode the box will pick up signals from the handlebars, amplify and filter the signal, then output what remains. To get an accurate reading, rest your hands gently on the bars and stay as still and relaxed as you can- muscle contractions also create transient voltages that will distort your signal. If you don t see your heartbeat right off the bat don t worry- sometimes it can take seconds to resolve to a steady pattern. When you see your heartbeat, pick a typical cycle and measure the peak to peak voltage of the QRS complex with error. Using the amplification factor and the measured output voltage for your heartbeat, calculate the voltage running across your hands whenever your ventricles contract. Neat Guiding Questions 1) What is the function in Mathematica used to create a log-log scale plot of discrete data points? (1 point) 2) When plotting the theory curve on a log-log scale, be careful not to begin your plot range at 0. Why is this necessary? (1 point) 3) For an EKG monitor, one problem in signal amplification is power line noise which comes in at around 60 Hz (the human heart beats at around 1 Hz). If you wanted to eliminate this noise using an RC filter with a 1 µf capacitor, what valued resistor would you choose? Draw a schematic of the filter. (2 points) 4) Derive the ratio "# " for the RL filter shown below, and determine the cutoff frequency. Hint: see equations Your final answer should be "# " = /"#. (3 points) Figure 4: RL low-pass filter 5) Show that the units on the right hand side of the ratio above cancel to give a unit-less quantity. (1 point) 6) Filters have many real world applications. Write down a couple ideas you have for possible uses. (1 point) 7) By combining a resistor, an inductor, and a capacitor all into one RLC circuit, as shown below, it is possible to filter out signals above and below a certain frequency. This is

9 E5.9 known as a band-pass filter, since only a narrow band of signals is allowed through. The width of the band is determined by the Q (for quality) factor of the circuit, which we won t discuss in depth. Give the values for Z 1 and Z 2 in the circuit below. (1 point) Figure 5: RLC band-pass filter

10 E5.10 Pre-lab assignment for E5: Filters and Complex Impedance. This prelab is designed to focus your attention on what is important in the lab before you start the experiment and give you a leg up on writing your report. Use this template when you write your report. 1. Carefully read the lab instructions for E5 2. Using Mathematica, set up a template for your lab report. This will include: I. Header information such as title, author, lab partner, and lab section: (to do this, In Mathematica, go to File, Print Settings, Header and Footer from this dialog box you can enter all of the required information.) Mathematica automatically enters the file name in the right side of the header. Leave this alone. II. Section Headings including Title, Summary of Experiment, Data and Calculations, Discussion of Uncertainty, and specific section headings for each part of the experiment. (All of the Physics 1140 lab manuals include multiple parts.) 3. Write a Summary of the experiment. What are you going to measure and what data will you collect to make the measurement? (For example, in part one of M1, you will measure the length of a pendulum along with the period of the pendulum to determine the acceleration due to gravity.) 4. For each part of the lab do the following: A.) For part one: Suppose you place a 3600 Ohm resistor and a 23nF capacitor in the High Pass circuit as described above. Calculate the cutoff frequency and create a theory plot of the output voltage (V out ) versus the frequency. Use equation (16) for inspiration and assume a 5V input voltage. B.) For Part two: you are asked to determine whether the high pass filter is an integrator or differentiator, and then again determine the same thing for the low pass filter. For this part, draw what you would expect to see as a graph for the differentiator of the triangle wave. Draw the same for the square wave. Don t worry about doing this in Mathematica, just draw it by hand. C.) For Part three: our ECG uses electrodes that you place your hands on. In two or three sentences describe how the ECG can detect your heartbeat. Also, how do high and low pass filters hone in on your heart beat?

11 E5.11 Remember, all plots you make in a prelab or lab report should include the following: I. Plot your theory or expectation as a line. (In Mathematica, you should define a function and plot it using the command Plot ) Reference the Mathematica tutorial to do this. II. Label your axes, in English (not just symbols) and with units. III. Include a brief caption (namely, a text statement of what the plot shows.) IV. Set the x and y range of the plot to be close to what you expect for your data. For example: in M1 your longest length pendulum should be no more than 130 cm in length. 5. Write a Discussion of Uncertainty. What are the major sources of uncertainty in the experiment and how will you account for them? 6. Turn in a printout of your Mathematica document that includes 2-5 above. This document should be no more than 2 pages long.

### Lab E5: Filters and Complex Impedance

E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

### EXPERIMENT 5 Bioelectric Measurements

Objectives EXPERIMENT 5 Bioelectric Measurements 1) Generate periodic signals with a Signal Generator and display on an Oscilloscope. 2) Investigate a Differential Amplifier to see small signals in a noisy

### Experiment 1: Instrument Familiarization (8/28/06)

Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

### Lab 4: Analysis of the Stereo Amplifier

ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

### Experiment 1: Instrument Familiarization

Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

### Experiment 9: AC circuits

Experiment 9: AC circuits Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction Last week (RC circuit): This week:

### Laboratory Exercise 6 THE OSCILLOSCOPE

Introduction Laboratory Exercise 6 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

### EXPERIMENT 8 Bio-Electric Measurements

EXPERIMENT 8 Bio-Electric Measurements Objectives 1) Determine the amplitude of some electrical signals in the body. 2) Observe and measure the characteristics and amplitudes of muscle potentials due to

### OPERATIONAL AMPLIFIERS (OP-AMPS) II

OPERATIONAL AMPLIFIERS (OP-AMPS) II LAB 5 INTRO: INTRODUCTION TO INVERTING AMPLIFIERS AND OTHER OP-AMP CIRCUITS GOALS In this lab, you will characterize the gain and frequency dependence of inverting op-amp

### EXPERIMENT 7 The Amplifier

Objectives EXPERIMENT 7 The Amplifier 1) Understand the operation of the differential amplifier. 2) Determine the gain of each side of the differential amplifier. 3) Determine the gain of the differential

### AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

### EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

### INTRODUCTION TO AC FILTERS AND RESONANCE

AC Filters & Resonance 167 Name Date Partners INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven

### Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

### Lab #11 Rapid Relaxation Part I... RC and RL Circuits

Rev. D. Day 10/18/06; 7/15/10 HEFW PH262 Page 1 of 6 Lab #11 Rapid Relaxation Part I... RC and RL Circuits INTRODUCTION Exponential behavior in electrical circuits is frequently referred to as "relaxation",

### 11. AC-resistances of capacitor and inductors: Reactances.

11. AC-resistances of capacitor and inductors: Reactances. Purpose: To study the behavior of the AC voltage signals across elements in a simple series connection of a resistor with an inductor and with

### Physics 310 Lab 2 Circuit Transients and Oscilloscopes

Physics 310 Lab 2 Circuit Transients and Oscilloscopes Equipment: function generator, oscilloscope, two BNC cables, BNC T connector, BNC banana adapter, breadboards, wire packs, some banana cables, three

### Lab 1: Basic RL and RC DC Circuits

Name- Surname: ID: Department: Lab 1: Basic RL and RC DC Circuits Objective In this exercise, the DC steady state response of simple RL and RC circuits is examined. The transient behavior of RC circuits

### Electronics and Instrumentation ENGR-4300 Spring 2004 Section Experiment 5 Introduction to AC Steady State

Experiment 5 Introduction to C Steady State Purpose: This experiment addresses combinations of resistors, capacitors and inductors driven by sinusoidal voltage sources. In addition to the usual simulation

### LAB 8: Activity P52: LRC Circuit

LAB 8: Activity P52: LRC Circuit Equipment: Voltage Sensor 1 Multimeter 1 Patch Cords 2 AC/DC Electronics Lab (100 μf capacitor; 10 Ω resistor; Inductor Coil; Iron core; 5 inch wire lead) The purpose of

### BME 3512 Bioelectronics Laboratory Two - Passive Filters

BME 35 Bioelectronics Laboratory Two - Passive Filters Learning Objectives: Understand the basic principles of passive filters. Laboratory Equipment: Agilent Oscilloscope Model 546A Agilent Function Generator

### Resonance in Circuits

Resonance in Circuits Purpose: To map out the analogy between mechanical and electronic resonant systems To discover how relative phase depends on driving frequency To gain experience setting up circuits

### Lab 10 - INTRODUCTION TO AC FILTERS AND RESONANCE

159 Name Date Partners Lab 10 - INTRODUCTION TO AC FILTERS AND RESONANCE OBJECTIVES To understand the design of capacitive and inductive filters To understand resonance in circuits driven by AC signals

### University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 4 TRANSIENT ANALYSIS Prepared by: Dr. Mohammed Hawa EXPERIMENT 4 TRANSIENT ANALYSIS

### EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

### Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

E2.1 Lab E2: B-field of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is

### AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

AC Circuits INTRODUCTION The study of alternating current 1 (AC) in physics is very important as it has practical applications in our daily lives. As the name implies, the current and voltage change directions

### ET1210: Module 5 Inductance and Resonance

Part 1 Inductors Theory: When current flows through a coil of wire, a magnetic field is created around the wire. This electromagnetic field accompanies any moving electric charge and is proportional to

### EECS40 RLC Lab guide

EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

### The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

### Oscilloscope Measurements

PC1143 Physics III Oscilloscope Measurements 1 Purpose Investigate the fundamental principles and practical operation of the oscilloscope using signals from a signal generator. Measure sine and other waveform

### Lab 2: Linear and Nonlinear Circuit Elements and Networks

OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

### Lab 3: AC Low pass filters (version 1.3)

Lab 3: AC Low pass filters (version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

### RC and RL Circuits Prelab

RC and RL Circuits Prelab by Dr. Christine P. Cheney, Department of Physics and Astronomy, 401 Nielsen Physics Building, The University of Tennessee, Knoxville, Tennessee 37996-1200 2018 by Christine P.

### total j = BA, [1] = j [2] total

Name: S.N.: Experiment 2 INDUCTANCE AND LR CIRCUITS SECTION: PARTNER: DATE: Objectives Estimate the inductance of the solenoid used for this experiment from the formula for a very long, thin, tightly wound

### Integrators, differentiators, and simple filters

BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

### Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

### 10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction

10: AMPLIFIERS Circuit Connections in the Laboratory From now on you will construct electrical circuits and test them. The usual way of constructing circuits would be to solder each electrical connection

### Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments

Name: Date of lab: Section number: M E 345. Lab 1 Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Precalculations Score (for instructor or TA use only):

### EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

### EE 230 Experiment 10 ECG Measurements Spring 2010

EE 230 Experiment 10 ECG Measurements Spring 2010 Note: If for any reason the students are uncomfortable with doing this experiment, please talk to the instructor for the course and an alternative experiment

### University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 7 RESONANCE Prepared by: Dr. Mohammed Hawa EXPERIMENT 7 RESONANCE OBJECTIVE This experiment

### Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

### Study of Inductive and Capacitive Reactance and RLC Resonance

Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

### University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS Issued 10/5/2008 Pre Lab Completed 10/12/2008 Lab Due in Lecture 10/21/2008 Introduction In this lab you will characterize

### DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

[International Campus Lab] Objective Determine the behavior of resistors, capacitors, and inductors in DC and AC circuits. Theory ----------------------------- Reference -------------------------- Young

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 2 BASIC CIRCUIT ELEMENTS OBJECTIVES The purpose of this experiment is to familiarize the student with

### Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope

PAGE 1/14 Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission

### Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG)

Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG) 1. Introduction: The Electrocardiogram (ECG) is a technique of

### Sampling and Reconstruction

Experiment 10 Sampling and Reconstruction In this experiment we shall learn how an analog signal can be sampled in the time domain and then how the same samples can be used to reconstruct the original

### Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor)

72 Resonant Frequency of the LRC Circuit (Power Output, Voltage Sensor) Equipment List Qty Items Part Numbers 1 PASCO 750 Interface 1 Voltage Sensor CI-6503 1 AC/DC Electronics Laboratory EM-8656 2 Banana

### PHASES IN A SERIES LRC CIRCUIT

PHASES IN A SERIES LRC CIRCUIT Introduction: In this lab, we will use a computer interface to analyze a series circuit consisting of an inductor (L), a resistor (R), a capacitor (C), and an AC power supply.

### Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

### Filters And Waveform Shaping

Physics 3330 Experiment #3 Fall 2001 Purpose Filters And Waveform Shaping The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and

### Lab #7: Transient Response of a 1 st Order RC Circuit

Lab #7: Transient Response of a 1 st Order RC Circuit Theory & Introduction Goals for Lab #7 The goal of this lab is to explore the transient response of a 1 st Order circuit. In order to explore the 1

### ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

### Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers

SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB

### Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

08-1 Name Date Partners ab 8 - INTRODUCTION TO AC CURRENTS AND VOTAGES OBJECTIVES To understand the meanings of amplitude, frequency, phase, reactance, and impedance in AC circuits. To observe the behavior

### EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab Prelab Part I: RC Circuit 1. Design a high pass filter (Fig. 1) which has a break point f b = 1 khz at 3dB below the midband level (the -3dB

### Lab #5 Steady State Power Analysis

Lab #5 Steady State Power Analysis Steady state power analysis refers to the power analysis of circuits that have one or more sinusoid stimuli. This lab covers the concepts of RMS voltage, maximum power

### Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to

Lab 3: RC Circuits Prelab Deriving equations for the output voltage of the voltage dividers you constructed in lab 2 was fairly simple. Now we want to derive an equation for the output voltage of a circuit

### LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

### STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

Lab 6: Filters YOUR EE43/100 NAME: Spring 2013 YOUR PARTNER S NAME: YOUR SID: YOUR PARTNER S SID: STATION NUMBER: LAB SECTION: Filters LAB 6: Filters Pre- Lab GSI Sign- Off: Pre- Lab: /40 Lab: /60 Total:

### University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER Issued 10/27/2008 Report due in Lecture 11/10/2008 Introduction In this lab you will characterize a 2N3904 NPN

### Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

### LABORATORY 7 v2 BOOST CONVERTER

University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 7 v2 BOOST CONVERTER In many situations circuits require a different

### Experiment Guide: RC/RLC Filters and LabVIEW

Description and ackground Experiment Guide: RC/RLC Filters and LabIEW In this lab you will (a) manipulate instruments manually to determine the input-output characteristics of an RC filter, and then (b)

### Lab 2: Capacitors. Integrator and Differentiator Circuits

Lab 2: Capacitors Topics: Differentiator Integrator Low-Pass Filter High-Pass Filter Band-Pass Filter Integrator and Differentiator Circuits The simple RC circuits that you built in a previous section

### Voltage Current and Resistance II

Voltage Current and Resistance II Equipment: Capstone with 850 interface, analog DC voltmeter, analog DC ammeter, voltage sensor, RLC circuit board, 8 male to male banana leads 1 Purpose This is a continuation

### Activity P52: LRC Circuit (Voltage Sensor)

Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) AC circuits P52 LRC Circuit.DS (See end of activity) (See end of activity) Equipment Needed Qty

### Optical Pumping Control Unit

(Advanced) Experimental Physics V85.0112/G85.2075 Optical Pumping Control Unit Fall, 2012 10/16/2012 Introduction This document is gives an overview of the optical pumping control unit. Magnetic Fields

### Digital Applications of the Operational Amplifier

Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

### Laboratory 4. Bandwidth, Filters, and Diodes

Laboratory 4 Bandwidth, Filters, and Diodes Required Components: k resistor 0. F capacitor N94 small-signal diode LED 4. Objectives In the previous laboratory exercise you examined the effects of input

### AC Circuits. "Look for knowledge not in books but in things themselves." W. Gilbert ( )

AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits use varying

### Experiment 1 Alternating Current with Coil and Ohmic Resistors

Experiment Alternating Current with Coil and Ohmic esistors - Objects of the experiment - Determining the total impedance and the phase shift in a series connection of a coil and a resistor. - Determining

### instead we hook it up to a potential difference of 60 V? instead we hook it up to a potential difference of 240 V?

Introduction In this lab we will examine the concepts of electric current and potential in a circuit. We first look at devices (like batteries) that are used to generate electrical energy that we can use

### PHYS 3322 Modern Laboratory Methods I AC R, RC, and RL Circuits

Purpose PHYS 3322 Modern Laboratory Methods I AC, C, and L Circuits For a given frequency, doubling of the applied voltage to resistors, capacitors, and inductors doubles the current. Hence, each of these

### Introduction to oscilloscope. and time dependent circuits

Physics 9 Intro to oscilloscope, v.1.0 p. 1 NAME: SECTION DAY/TIME: TA: LAB PARTNER: Introduction to oscilloscope and time dependent circuits Introduction In this lab, you ll learn the basics of how to

### Experiment #7: Designing and Measuring a Common-Emitter Amplifier

SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #7: Designing and Measuring a Common-Emitter Amplifier

### THE AMPLIFIER. A-B = C subtractor. INPUTS Figure 1

OBJECTIVES: THE AMPLIFIER 1) Explain the operation of the differential amplifier. 2) Determine the gain of each side of the differential amplifier. 3) Determine the gain of the differential amplifier as

### PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS

Name: Partners: PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS The electricity produced for use in homes and industry is made by rotating coils of wire in a magnetic field, which results in alternating

### Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 9: Wheatstone Bridge and Filters Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of

### Experiment 8: An AC Circuit

Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

### ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS

Version 1.1 1 of 8 ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS BEFORE YOU BEGIN PREREQUISITE LABS Introduction to MATLAB Introduction to Lab Equipment Introduction to Oscilloscope Capacitors,

### Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

145 Name Date Partners Lab 9 INTRODUCTION TO AC CURRENTS AND VOLTAGES V(volts) t(s) OBJECTIVES To learn the meanings of peak voltage and frequency for AC signals. To observe the behavior of resistors in

### Using Circuits, Signals and Instruments

Using Circuits, Signals and Instruments To be ignorant of one s ignorance is the malady of the ignorant. A. B. Alcott (1799-1888) Some knowledge of electrical and electronic technology is essential for

### Uncovering a Hidden RCL Series Circuit

Purpose Uncovering a Hidden RCL Series Circuit a. To use the equipment and techniques developed in the previous experiment to uncover a hidden series RCL circuit in a box and b. To measure the values of

### University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

### EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

### STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2

EXPERIMENT #1 STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2 I. INTRODUCTION This laboratory is about verifying the transient behavior of RC and RL circuits. You need to revise

### The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

### Experiment 2 Determining the Capacitive Reactance of a Capacitor in an AC Circuit

Experiment 2 Determining the apacitive eactance of a apacitor in an A ircuit - Objects of the experiments: a- Investigating the voltage and the current at a capacitor in an A circuit b- Observing the phase

### EE 3305 Lab I Revised July 18, 2003

Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

### RLC Frequency Response

1. Introduction RLC Frequency Response The student will analyze the frequency response of an RLC circuit excited by a sinusoid. Amplitude and phase shift of circuit components will be analyzed at different