EXPERIMENT 5 Bioelectric Measurements

Size: px
Start display at page:

Download "EXPERIMENT 5 Bioelectric Measurements"

Transcription

1 Objectives EXPERIMENT 5 Bioelectric Measurements 1) Generate periodic signals with a Signal Generator and display on an Oscilloscope. 2) Investigate a Differential Amplifier to see small signals in a noisy environment. 3) Observe characteristics of the heart muscle potential (EKG) Introduction Many biological systems, ranging from the single cell to the human body, produce electrical signals that can be detected and recorded by sensitive electronic equipment. In recent years, the study of these signals has played an increasingly important role in the biological sciences, particularly in human medicine. Recently, there has been much interest in the electrical characteristics of plants. Even though research in this area is still in its infancy, there seems to be some evidence that plants change their electrical characteristics in response to changes in the environment. While a complete explanation of the origins of electric phenomena in biological systems is not possible here, we will introduce the very basic concept of electricity produced by ionic diffusion. Through this experiment you will gain the basic knowledge of bioelectric measurements. The differential amplifier used in this experiment employs precautions necessary for obtaining meaningful data safely from biological systems. When the heart is at rest, the inside of the heart muscle cells are negatively charged and the exterior of the cells are positively charged. The physics term used to describe this situation states that the cells are polarized. Depolarization and repolarization of the heart muscle cells causes the heart to contract and blood to be pumped throughout your system. Depolarization is accomplished when some of the positively charged ions move through the cell membrane, resulting in a lower potential difference between the exterior and interior of the heart muscle cells. Shortly after depolarization, positive ions move back to their original location and the heart cells are repolarized. The electrical potential displays the following characteristics in time: A small depolarization ("Pwave") of the atrium chambers of the heart is followed by a depolarization (in quick succession, "Q-, R-, and S-wave") of the two ventricle chambers of the heart. Shortly afterward, there is a repolarization ("T-wave") of the two ventricle chambers. The atria are repolarized at the same time as the ventricles are depolarizing and are therefore this electrical signal is obscured by the much larger ventricle depolarization. Heart beat monitors, e.g., in a heart patient hospital room, display these electrical signals (electrocardiogram, EKG) on a screen. Here we use an oscilloscope, a general instrument for displaying electrical signals. To detect the electrical signals, we use adhesive, disposable foam, single use EKG electrodes which contain a hydrogel to reduce the resistance of your skin. To eliminate the possibility of an electrical shock, an optical coupler in the amplifier converts the body potentials to an optical signal, which is then converted back to electrical signals. The optical coupler completely isolates the human from any form of high voltage, such as a problem with the 110V AC power in the oscilloscope. 1

2 Electrical Components used in this Laboratory Signal Generator (Frequency resets if this instrument is turn off) A signal generator can produce a periodic WAVEFORM. The buttons set the waveform to sinusoid, ramp, or square-wave, the AMPLITUDE is set by the MIN - MAX knob, and the FREQUENCY set by the ADJUST knob. In this lab we will use only the sinusoidal and squarewave shapes. We will "calibrate" our understanding of how the oscilloscope and amplifier operate with controlled signals from the signal generator and later from an RC circuit. Oscilloscope (Use Oscilloscope in AC mode, top row button, read in LC Display) The oscilloscope allows one to view an electrical signal that varies in time. A bright spot moves across the screen at a rate determined by the "sweep rate" or time-base (TB) control. With no input signal, the spot can be adjusted to put the sweeping spot halfway up the visible grid creating a bright line at the middle of the screen. During the sweep, any electrical voltage input to the oscilloscope (input connector labeled A or B) will deflect the spot vertically (up +, or down -) in proportion to the voltage, thus tracing out the shape of the voltage signal in time. For a sinusoidal signal varying between ±V 0, the oscilloscope time base can be adjusted to show any number of oscillations of this signal. The parameters of a sine wave signal are 2

3 specified on the left in the figure below. On the right is how the signal appears on the oscilloscope screen. If it is not centered vertically, the amplitude, V 0, can be found taking V pp /2. Consider the vertical scale (rocker labeled A and "V to mv", with LCD display) adjusted to show 1V per division and the Time Base (rocker labeled TB and "S to µs") adjusted to show 1ms per division. Before lab check that you can verify that a sinusoidal signal with Amplitude, V0 = 2.5V and a Period, τ = 6ms, is shown on an oscilloscope screen below on the right. If one were to change the sweep rate (TB) to 2ms/division, a little more than four periods of oscillation would show on the screen. Change the vertical scale (rocker A) to 2V/division, and the signal would reach only 1.25 divisions up and down. Change the vertical scale to 0.5V/division, and the extremes of the signal would be cut off at the top and bottom of the oscilloscope grid. Other helpful oscilloscope controls will be described in the Procedure section. Differential Amplifier An amplifier is an electrical device that typically increases the amplitude of an electrical signal. The amplifiers in your cell-phone amplify tiny digital signals picked up by an antenna. The heart generates somewhat larger analog signals to contract its muscles. However, there are many similar EM signals in our environment that can generate similar signals, such as the 60Hz AC current flowing in wires in the walls, that powers all of our electrical devices or battery chargers. A differential amplifier is designed to amplify only signals that have opposite polarities but with a similar amplitude at two locations, such as generated by the heart. In addition it removes most signals with the same polarity and amplitude at both locations. The amplification factor is known as the differential GAIN and the ability to remove background signals is known as the common-mode rejection. The amplifier used here has a differential gain close to 100. This means any signal that has opposite polarities at the two locations will be amplified by a factor of 100! This amplifier also removes similar (common mode) signals at the two locations and passes only a few % of its amplitude. Procedure (use the attached worksheet to record your measurements) In the experiment, a signal of order 0.5V will be observed and then attenuated by about a factor of 100, down to 5mV, invisible on the oscilloscope without a scale change. This level of signal is comparable to that generated by the heart. Putting this signal into the differential amplifier can return it to close to its original amplitude. The differential amplifier will do this for the small heart muscle signals, as well as remove much of the observed and measured background electrical noise. 3

4 1. Set Signal Generator output voltage via an Oscilloscope Set the signal generator at 60Hz and have it produce a sine wave. Place the red and black plugs into corresponding jacks on the signal generator, and attach the BNC cable end on the input BNC connector for channel-a on the oscilloscope. Using the oscilloscope to view the signal, adjust the signal generator amplitude to 0.5V and leave it at this value throughout the experiment. A sketch and measurement of the period and amplitude of the signal, and the two oscilloscope scales used, are recorded in Question 1a. To get a reasonable view of the signal, set the oscilloscope to these values, V-scale: 0.2V/div, TB: 10ms/div. Adjustment is by the V-scale (rocker labeled A V -- mv ), and Timebase (rocker labeled TB S -- µs ) switches, however, a press of the auto set button may be sufficient. Please do not adjust any other oscilloscope settings without first asking your TA. 2. View an attenuated signal The circuit picture for Steps 2 & 3 is shown on the right. Do not connect the red and black wires to the amplifier just yet. Using two T-splitters (sliver colored connectors), insert the attenuator (blue cylinder) between the signal generator and the cable to the oscilloscope's channel-a BNC connector, as shown in the picture on the right. The attenuator reduces the signal amplitude to a value similar to the heartbeat signal. Try to observe this attenuated signal on the oscilloscope without adjusting any scales. You should find that the signal is too small to see without changing the V-scale (rocker switch labeled V -- mv ). Change the voltage sensitivity to ~10mV/division and observe the signal. Measure and record (Question 1b) the period and amplitude of the attenuated signal by using the cursors on the scope. Check that the attenuated sine wave has a <10mV amplitude. You may want to press the lock button on the scope to freeze the display (don t forget to push the lock button again to unlock the display afterwards). To control the CURSORS use the 4 buttons located and the bottom of the scope screen. Press cursors on, then V ctrl or T ctrl to control the voltage or time base cursors respectively. 3. Observe the Amplifier's Voltage Gain Use only an amplifier that has been recently charged at the front of the room. On the back of the amplifier the switches should be set for low gain and AC coupling. Leaving one end of the BNC cable attached to the oscilloscope, remove the BNC cable end from the attenuator & T, and reconnect it to the BNC output on the front of the amplifier. Using BNC-to-jacks (Red & Black) on the T-splitter, connect the amplifier using the red and black wires as shown in the picture above and on the right. In this configuration, the waveform generator signal is sent through the attenuator, into the amplifier and out to the oscilloscope. Try to place the amplifier away from all power cords, wall outlets, oscilloscope, and signal generator to reduce noise pickup. Adjust the oscilloscope settings and obtain a reasonable displayed signal (see step #2). Measure and record (Question 1c) the amplitude of the signal and the oscilloscope 4

5 settings. What is your estimate for the Gain (Question 1d) G = Output-V 0 / Input-V 0 (Input-V 0 from step #2) of the amplifier? If you can't get a reasonable sine wave signal, ask your TA for help. 4. View electrical noise on your body. The people in the room are exposed to large AC noise from the power wiring in the walls. This noise would overwhelm the heart signals without the differential amplifier. Using the amplifier without the differential feature we can view this noise. To observe the amplified noise signal on your body, remove the red plug from the amplifier (the one from the red side of attenuator jack) and insert a new red plug wire into the amplifier jack and hold the conductor of the plug at the other end. You may want to freeze the trace on the oscilloscope by pressing the lock button. Draw this signal in the box for Question 2, or take a cell phone picture of the noise signal on the oscilloscope display and paste it in the box. What is the amplitude and period of this noise signal (Question 2)? When done remove this extra red wire. 5. View a 1Hz signal powering an RC circuit Oscilloscope Signal Generator Circuit Board Red A TB Red 1.0mF A Black 50Ω Black BNC R/B split BNC to A a) Set the Signal Generator to produce a SQUARE WAVE with a frequency of ~1Hz, but do not change the Amplitude (0.5V) of the signal from steps 1-4. b) Following the circuit schematic above, take one red and one black wire and connect the outputs of the Signal Generator to the circuit board (RED to capacitor, and BLACK to the resistor) to form a circuit. c) Use the connector that splits the coax cable into a ground (Black) and a signal (Red) wire to attach the Black wire to the ground side of the circuit and the Red wire between the resistor and capacitor. Adjust the oscilloscope Time Base (TB ~ 0.2s) to view the 1Hz signal. Measure and record the period and amplitude of this signal (Question 3). After finishing this measurement remove the connecting wires from the RC circuit and TURN OFF the signal generator. 6. View your heartbeat signal If the amplifier has been on for more than 30 minutes, recharge it at the front of the room. Note, the amplifier is powered by a charged capacitor and there is an optical coupling between the inputs and the output thus isolating the oscilloscope power from the "patient". Attach the 3 electrodes (single use sticky contacts) to one lab partner sitting on a stool that is not Coax Cable 5

6 close to the oscilloscope as shown in the figure above. Make sure they are stuck down well, or replace them if loose. The red electrodes should be placed high on the arm (above the elbow) or at the ends of the shoulders (under clothing is OK) and the black electrode to your ankle. Before attaching the wires with red plugs to the amplifier, twist the wires together so that as they leave the amplifier (no more than 5 twists) and stay together until they have to split to attach to the person. The "patient" must remain very still with arms loose at the sides and feet off the floor. From step #5, the oscilloscope should have a time base (TB) appropriate for ~1Hz signals and the amplifier should be producing a visible heartbeat signal. If not, try adjusting the V-scale to view the signal. If you do not have a heartbeat signal, ask your TA for help. Draw the heartbeat signal in the box for Question 4, or take a cell phone picture of the signal on the oscilloscope display and paste it in the box. Record the period and frequency of the first lab partner's heartbeat signal (Question 4). Attach new sticky contacts to the second lab partner (arms loose and feet off the floor) and repeat the display of the heartbeat signal. Draw the heartbeat signal in the box for Question 5, or take a cell phone picture of the signal on the oscilloscope display and paste it in the box. Record the amplitude and frequency of the second lab partner's heartbeat signal (Question 4), or a third lab partner if there is one. 6

7 Name: Worksheet (each student) Lab Partner: BioElectric Measurements Section: Experiment 5 (Spring 2017) Spaces below: Oscilloscope scales or Measurement Value ± Uncertainty & Units 1a. Initial signal Period: Initial signal Amplitude V 0 : Sketch signal (carefully) _ b) Attenuated signal Period: Attenuated signal Amplitude V 0 : Sketch signal (carefully) _ c) Amplified signal Amplitude V 0 : Output V0 (Question 1c) 1d) Amplifier GAIN = = ± Input V0 (Question 1b) _

8 2) Period of the Noise signal: Compare this period to the period of the signal with frequency = 60 Hz in Question 1. Sketch signal (carefully) ) RC-circuit Resistor signal Period RC-circuit Resistor signal Amplitude V 0 Oscilloscope scales used to make these measurements: Heartbeat Measurements (Use the same Time Base scale as in Question 3) Heartbeat Sketch Lab Partner A Heartbeat Sketch Lab Partner B/C A. Heartbeat signal Period Heartbeat Frequency Heartbeat Frequency (new units) ± ± Hz ± beats/min. B/C. Heartbeat signal Period Heartbeat Frequency Heartbeat Frequency (new units) ± ± Hz ± beats/min. 8

EXPERIMENT 8 Bio-Electric Measurements

EXPERIMENT 8 Bio-Electric Measurements EXPERIMENT 8 Bio-Electric Measurements Objectives 1) Determine the amplitude of some electrical signals in the body. 2) Observe and measure the characteristics and amplitudes of muscle potentials due to

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

BIO-ELECTRIC MEASUREMENTS

BIO-ELECTRIC MEASUREMENTS BIO-ELECTRIC MEASUREMENTS OBJECTIVES: 1) Determine the amplitude of the electrical "noise" in the body. 2) Observe and measure the characteristics and amplitudes of muscle potentials due to the biceps.

More information

EXPERIMENT 7 The Amplifier

EXPERIMENT 7 The Amplifier Objectives EXPERIMENT 7 The Amplifier 1) Understand the operation of the differential amplifier. 2) Determine the gain of each side of the differential amplifier. 3) Determine the gain of the differential

More information

THE AMPLIFIER. A-B = C subtractor. INPUTS Figure 1

THE AMPLIFIER. A-B = C subtractor. INPUTS Figure 1 OBJECTIVES: THE AMPLIFIER 1) Explain the operation of the differential amplifier. 2) Determine the gain of each side of the differential amplifier. 3) Determine the gain of the differential amplifier as

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

Oscilloscope Measurements

Oscilloscope Measurements PC1143 Physics III Oscilloscope Measurements 1 Purpose Investigate the fundamental principles and practical operation of the oscilloscope using signals from a signal generator. Measure sine and other waveform

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial 1 This is a programmed learning instruction manual. It is written for the Agilent DSO3202A Digital Storage Oscilloscope. The prerequisite

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

EE 230 Experiment 10 ECG Measurements Spring 2010

EE 230 Experiment 10 ECG Measurements Spring 2010 EE 230 Experiment 10 ECG Measurements Spring 2010 Note: If for any reason the students are uncomfortable with doing this experiment, please talk to the instructor for the course and an alternative experiment

More information

instead we hook it up to a potential difference of 60 V? instead we hook it up to a potential difference of 240 V?

instead we hook it up to a potential difference of 60 V? instead we hook it up to a potential difference of 240 V? Introduction In this lab we will examine the concepts of electric current and potential in a circuit. We first look at devices (like batteries) that are used to generate electrical energy that we can use

More information

Lab: Using filters to build an electrocardiograph (ECG or EKG)

Lab: Using filters to build an electrocardiograph (ECG or EKG) Page 1 /6 Lab: Using filters to build an electrocardiograph (ECG or EKG) Goal: Use filters and amplifiers to build a circuit that will sense and measure a heartbeat. You and your heartbeat Did you know

More information

Optical Pumping Control Unit

Optical Pumping Control Unit (Advanced) Experimental Physics V85.0112/G85.2075 Optical Pumping Control Unit Fall, 2012 10/16/2012 Introduction This document is gives an overview of the optical pumping control unit. Magnetic Fields

More information

EECE Circuits and Signals: Biomedical Applications. Lab ECG I The Instrumentation Amplifier

EECE Circuits and Signals: Biomedical Applications. Lab ECG I The Instrumentation Amplifier EECE 150 - Circuits and Signals: Biomedical Applications Lab ECG I The Instrumentation Amplifier Introduction: As discussed in class, instrumentation amplifiers are often used to reject common-mode signals

More information

ECE 480: SENIOR DESIGN LABORATORY

ECE 480: SENIOR DESIGN LABORATORY ECE 480: SENIOR DESIGN LABORATORY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING MICHIGAN STATE UNIVERSITY I. TITLE: Lab I - Introduction to the Oscilloscope, Function Generator, Digital Multimeter

More information

Oscilloscope. 1 Introduction

Oscilloscope. 1 Introduction Oscilloscope Equipment: Capstone, BK Precision model 2120B oscilloscope, Wavetek FG3C function generator, 2-3 foot coax cable with male BNC connectors, 2 voltage sensors, 2 BNC banana female adapters,

More information

Introduction to oscilloscope. and time dependent circuits

Introduction to oscilloscope. and time dependent circuits Physics 9 Intro to oscilloscope, v.1.0 p. 1 NAME: SECTION DAY/TIME: TA: LAB PARTNER: Introduction to oscilloscope and time dependent circuits Introduction In this lab, you ll learn the basics of how to

More information

Experiment 1: Instrument Familiarization (8/28/06)

Experiment 1: Instrument Familiarization (8/28/06) Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

More information

Introduction to Electronic Equipment

Introduction to Electronic Equipment Introduction to Electronic Equipment INTRODUCTION This semester you will be exploring electricity and magnetism. In order to make your time in here more instructive we ve designed this laboratory exercise

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

Physics 310 Lab 2 Circuit Transients and Oscilloscopes

Physics 310 Lab 2 Circuit Transients and Oscilloscopes Physics 310 Lab 2 Circuit Transients and Oscilloscopes Equipment: function generator, oscilloscope, two BNC cables, BNC T connector, BNC banana adapter, breadboards, wire packs, some banana cables, three

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG)

Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG) Florida Atlantic University Biomedical Signal Processing Lab Experiment 2 Signal Transduction: Building an analog Electrocardiogram (ECG) 1. Introduction: The Electrocardiogram (ECG) is a technique of

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

Name Kyla Jackson, Todd Germeroth, Jake Spooler Date May 5, 2010 Lab 3E Group 3 Experiment Title Project Deliverable 3

Name Kyla Jackson, Todd Germeroth, Jake Spooler Date May 5, 2010 Lab 3E Group 3 Experiment Title Project Deliverable 3 Name Kyla Jackson, Todd Germeroth, Jake Spooler Date May 5, 2010 Lab 3E Group 3 Experiment Title Project Deliverable 3 Objective The objective of this project was to design and construct an ECG measurement

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. Domestic users in the United Kingdom are supplied with mains electricity at a root mean square voltage of 230V. (a) State what is meant by root mean square voltage.......... (1) (b) Calculate the peak

More information

Experiment P50: Transistor Lab 3 Common-Emitter Amplifier (Power Amplifier, Voltage Sensor)

Experiment P50: Transistor Lab 3 Common-Emitter Amplifier (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P50-1 Experiment P50: Transistor Lab 3 Common-Emitter Amplifier (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file semiconductors

More information

The oscilloscope and RC filters

The oscilloscope and RC filters (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 4 The oscilloscope and C filters The objective of this experiment is to familiarize the student with the workstation

More information

Sampling and Reconstruction

Sampling and Reconstruction Experiment 10 Sampling and Reconstruction In this experiment we shall learn how an analog signal can be sampled in the time domain and then how the same samples can be used to reconstruct the original

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

Notes on Experiment #1

Notes on Experiment #1 Notes on Experiment #1 Bring graph paper (cm cm is best) From this week on, be sure to print a copy of each experiment and bring it with you to lab. There will not be any experiment copies available in

More information

Lab 1: Introduction to Electronics Measurement Equipment

Lab 1: Introduction to Electronics Measurement Equipment Lab 1: Introduction to Electronics Measurement Equipment INTRODUCTION: The purpose of this lab exercise is to introduce and give practice with the measurement equipment we will be using this semester.

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

ScopeMeter 190 Series II

ScopeMeter 190 Series II ScopeMeter 190 Series II Fluke 190-062, -102, -104, -202, - 204, -502 Service Manual PN 4822 872 05405 July 2011, Rev. 2, March 2012 2011, 2011, 2012 Fluke Corporation, All rights reserved. Printed in

More information

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope PAGE 1/14 Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission

More information

Ph 3455 The Franck-Hertz Experiment

Ph 3455 The Franck-Hertz Experiment Ph 3455 The Franck-Hertz Experiment Required background reading Tipler, Llewellyn, section 4-5 Prelab Questions 1. In this experiment, we will be using neon rather than mercury as described in the textbook.

More information

Experiment 1: Instrument Familiarization

Experiment 1: Instrument Familiarization Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

More information

Experiment 5 The Oscilloscope

Experiment 5 The Oscilloscope Experiment 5 The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a cathode ray oscilloscope. THEORY The oscilloscope, or scope for short, is

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Agilent 33220A Function Generator Tutorial

Agilent 33220A Function Generator Tutorial Contents UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Agilent 33220A Function Generator Tutorial 1 Introduction

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

electrical noise and interference, environmental changes, instrument resolution, or uncertainties in the measurement process itself.

electrical noise and interference, environmental changes, instrument resolution, or uncertainties in the measurement process itself. MUST 382 / EELE 491 Spring 2014 Basic Lab Equipment and Measurements Electrical laboratory work depends upon various devices to supply power to a circuit, to generate controlled input signals, and for

More information

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Sonoma State University Department of Engineering Science Spring 2017

Sonoma State University Department of Engineering Science Spring 2017 EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

More information

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope In this laboratory you will learn to use two additional instruments in the laboratory, namely the function/arbitrary waveform generator, which

More information

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope)

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope) PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope) If you have not used an oscilloscope before, the web site http://www.upscale.utoronto.ca/generalinterest/harrison/oscilloscope/oscilloscope.html

More information

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P45-1 Experiment P45: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P45 P45_LRCC.SWS EQUIPMENT NEEDED

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

User s Manual for Integrator Short Pulse ISP16 10JUN2016

User s Manual for Integrator Short Pulse ISP16 10JUN2016 User s Manual for Integrator Short Pulse ISP16 10JUN2016 Specifications Exceeding any of the Maximum Ratings and/or failing to follow any of the Warnings and/or Operating Instructions may result in damage

More information

The Digital Oscilloscope and the Breadboard

The Digital Oscilloscope and the Breadboard The Digital Oscilloscope and the Breadboard Will Johns, and Med Webster Aug. 26,2003, Revised by Julia Velkovska, September 6, 2010 1 Oscilloscope - General Introduction An oscilloscope is a very powerful

More information

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS 1. OBJECTIVES 1.1 To demonstrate the operation of a diode limiter. 1.2 To demonstrate the operation of a diode clamper. 2. INTRODUCTION PART A: Limiter Circuit

More information

Activity P57: Transistor Lab 3 Common-Emitter Amplifier (Voltage Sensor)

Activity P57: Transistor Lab 3 Common-Emitter Amplifier (Voltage Sensor) Activity P57: Transistor Lab 3 Common-Emitter Amplifier (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductors P57 Common Emitter.DS (See end of activity) (See end

More information

Exercise 2. The Buck Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE. The buck chopper DISCUSSION

Exercise 2. The Buck Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE. The buck chopper DISCUSSION Exercise 2 The Buck Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the buck chopper. DISCUSSION OUTLINE The Discussion of this exercise covers

More information

DEPARTMENT OF INFORMATION ENGINEERING. Test No. 1. Introduction to Scope Measurements. 1. Correction. Term Correction. Term...

DEPARTMENT OF INFORMATION ENGINEERING. Test No. 1. Introduction to Scope Measurements. 1. Correction. Term Correction. Term... 2. Correction. Correction Report University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L: in charge of the report Test No.

More information

Sapphire Instruments Co., Ltd. Calibration Procedure of SI-9101

Sapphire Instruments Co., Ltd. Calibration Procedure of SI-9101 Sapphire Instruments Co., Ltd. Calibration Procedure of SI-9101 1. How to open the case, please follow the steps. 1.1 Remove the battery lid. 1.2 You will see the two screws and loosen them. Fig. 1 1.3

More information

LAB 1: Familiarity with Laboratory Equipment (_/10)

LAB 1: Familiarity with Laboratory Equipment (_/10) LAB 1: Familiarity with Laboratory Equipment (_/10) PURPOSE o gain familiarity with basic laboratory equipment oscilloscope, oscillator, multimeter and electronic components. EQUIPMEN (i) Oscilloscope

More information

ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS

ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS Version 1.1 1 of 8 ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS BEFORE YOU BEGIN PREREQUISITE LABS Introduction to MATLAB Introduction to Lab Equipment Introduction to Oscilloscope Capacitors,

More information

Electrocardiogram (ECG)

Electrocardiogram (ECG) Vectors and ECG s Vectors and ECG s 2 Electrocardiogram (ECG) Depolarization wave passes through the heart and the electrical currents pass into surrounding tissues. Small part of the extracellular current

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

CONNECTING THE PROBE TO THE TEST INSTRUMENT

CONNECTING THE PROBE TO THE TEST INSTRUMENT 2SHUDWLRQ 2SHUDWLRQ Caution The input circuits in the AP034 Active Differential Probe incorporate components that protect the probe from damage resulting from electrostatic discharge (ESD). Keep in mind

More information

Department of Electrical and Computer Engineering. Laboratory Experiment 1. Function Generator and Oscilloscope

Department of Electrical and Computer Engineering. Laboratory Experiment 1. Function Generator and Oscilloscope Department of Electrical and Computer Engineering Laboratory Experiment 1 Function Generator and Oscilloscope The purpose of this first laboratory assignment is to acquaint you with the function generator

More information

Exercise 6. The Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The boost chopper

Exercise 6. The Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The boost chopper Exercise 6 The Boost Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the boost chopper. DISCUSSION OUTLINE The Discussion of this exercise covers

More information

3.003 Lab 3 Part A. Measurement of Speed of Light

3.003 Lab 3 Part A. Measurement of Speed of Light 3.003 Lab 3 Part A. Measurement of Speed of Light Objective: To measure the speed of light in free space Experimental Apparatus: Feb. 18, 2010 Due Mar. 2, 2010 Components: 1 Laser, 4 mirrors, 1 beam splitter

More information

ENGR 40M Project 4: Electrocardiogram. Prelab due 24 hours before your section, August Lab due 11:59pm, Saturday, August 19

ENGR 40M Project 4: Electrocardiogram. Prelab due 24 hours before your section, August Lab due 11:59pm, Saturday, August 19 ENGR 40M Project 4: Electrocardiogram Prelab due 24 hours before your section, August 14 15 Lab due 11:59pm, Saturday, August 19 1 Introduction In this project, we will build an electrocardiogram (ECG

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope Objectives 1 Introduce the Oscilloscope and learn some uses. 2 Observe Audio signals. 3 Introduce the Signal

More information

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 1 TITLE : Half-Wave Rectifier & Filter OUTCOME : Upon completion of this unit, the student should be able to: i. Construct

More information

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor University of Utah Electrical & Computer Engineering Department ECE 1250 Lab 3 Electronic Speed Control and Pulse Width Modulation A. Stolp, 12/31/12 Rev. Objectives 1 Introduce the Oscilloscope and learn

More information

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM)

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) Supplies Needed Motor control board, Transmitter (with good batteries), Receiver Equipment Used Oscilloscope, Function Generator,

More information

Lab #1 Lab Introduction

Lab #1 Lab Introduction Cir cuit s 212 Lab Lab #1 Lab Introduction Special Information for this Lab s Report Because this is a one-week lab, please hand in your lab report for this lab at the beginning of next week s lab. The

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

2 Oscilloscope Familiarization

2 Oscilloscope Familiarization Lab 2 Oscilloscope Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout the course you will investigate

More information

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits Laboratory Section: Last Revised on September 21, 2016 Partners Names: Grade: EXPERIMENT 10 Electronic Circuits 1. Pre-Laboratory Work [2 pts] 1. How are you going to determine the capacitance of the unknown

More information

Frequency and Time Domain Representation of Sinusoidal Signals

Frequency and Time Domain Representation of Sinusoidal Signals Frequency and Time Domain Representation of Sinusoidal Signals By: Larry Dunleavy Wireless and Microwave Instruments University of South Florida Objectives 1. To review representations of sinusoidal signals

More information

TA MHz ±700 V Differential Probe User s Manual. This probe complies with IEC , IEC CAT III, Pollution Degree 2.

TA MHz ±700 V Differential Probe User s Manual. This probe complies with IEC , IEC CAT III, Pollution Degree 2. TA041 25 MHz ±700 V Differential Probe User s Manual This probe complies with IEC-1010.1, IEC-1010.2-031 CAT III, Pollution Degree 2. 1. Safety terms and symbols Terms appearing in this manual: WARNING

More information

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1 University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L: in charge of the report Test No. Date: Assistant A2: Professor:

More information

LABORATORY 3 v1 CIRCUIT ELEMENTS

LABORATORY 3 v1 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 3 v1 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

Lab 1 - Analogue and Digital Signals

Lab 1 - Analogue and Digital Signals Lab 1 - Analogue and Digital Signals Objective 1. To reintroduce the equipment used in the lab. 2. To get practical experience assembling and analyzing circuits. 3. To examine physical analogue and digital

More information

Ballistocardiograph 1

Ballistocardiograph 1 3 Lab 9: Ballistocardiograph Goal: Build and test a ballistocardiograph from strain gauges, op-amps and second-order filters. Deliverables: A short lab report that includes 1. The Bode plots of the filter

More information

Oscilloscope Fundamentals and Joystick Interfacing

Oscilloscope Fundamentals and Joystick Interfacing EE223 Laboratory #2 Oscilloscope Fundamentals and Joystick Interfacing Objectives 1) Learn the fundamentals of how all oscilloscopes (analog and digital) work: Vertical amplification subsystem (Volts/Division)

More information

Appendix A: Laboratory Equipment Manual

Appendix A: Laboratory Equipment Manual Appendix A: Laboratory Equipment Manual 1. Introduction: This appendix is a manual for equipment used in experiments 1-8. As a part of this series of laboratory exercises, students must acquire a minimum

More information

ECE 2274 Lab 2 (Network Theorems)

ECE 2274 Lab 2 (Network Theorems) ECE 2274 Lab 2 (Network Theorems) Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three

More information

Reactance and Impedance

Reactance and Impedance eactance and Impedance Theory esistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum value (in

More information

Class #7: Experiment L & C Circuits: Filters and Energy Revisited

Class #7: Experiment L & C Circuits: Filters and Energy Revisited Class #7: Experiment L & C Circuits: Filters and Energy Revisited In this experiment you will revisit the voltage oscillations of a simple LC circuit. Then you will address circuits made by combining resistors

More information

Test No. 2. Advanced Scope Measurements. History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 2

Test No. 2. Advanced Scope Measurements. History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 2 University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L1: in charge of the report Test No. 2 Date: Assistant A2: Professor:

More information

Experiment P42: Transformer (Power Amplifier, Voltage Sensor)

Experiment P42: Transformer (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P42-1 Experiment P42: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh File Windows File basic electricity 30 m 700 P42 P42_XTRN.SWS EQUIPMENT

More information

INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015

INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015 INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015 Saeid Rahimi, Ph.D. Jack Ou, Ph.D. Engineering Science Sonoma State University A SONOMA STATE UNIVERSITY PUBLICATION CONTENTS 1 Electronic

More information

Laboratory Project 1B: Electromyogram Circuit

Laboratory Project 1B: Electromyogram Circuit 2240 Laboratory Project 1B: Electromyogram Circuit N. E. Cotter, D. Christensen, and K. Furse Electrical and Computer Engineering Department University of Utah Salt Lake City, UT 84112 Abstract-You will

More information

Digital Applications of the Operational Amplifier

Digital Applications of the Operational Amplifier Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

More information

1 Lock-in Amplifier Introduction

1 Lock-in Amplifier Introduction 1 Lock-in Amplifier Introduction The purpose of this laboratory is to introduce the student to the lock-in amplifier. A lock-in amplifier is a nearly ubiquitous piece of laboratory equipment, and can serve

More information

Introduction to Basic Laboratory Instruments

Introduction to Basic Laboratory Instruments Introduction to Contents: 1. Objectives... 2 2. Laboratory Safety... 2 3.... 2 4. Using a DC Power Supply... 2 5. Using a Function Generator... 3 5.1 Turn on the Instrument... 3 5.2 Setting Signal Type...

More information

Oscilloscope and Function Generators

Oscilloscope and Function Generators MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 02 Oscilloscope and Function Generators Roll. No: Checked by: Date: Grade: Object: To

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information