Lab #1 Lab Introduction

Size: px
Start display at page:

Download "Lab #1 Lab Introduction"

Transcription

1 Cir cuit s 212 Lab Lab #1 Lab Introduction Special Information for this Lab s Report Because this is a one-week lab, please hand in your lab report for this lab at the beginning of next week s lab. The purpose of this lab is to allow you to become familiar with the laboratory equipment and processes. Labs will be performed in groups of two or three students. Each person will turn in his or her own copy of the required work for the lab. For this lab, one person from your group will need to check out the following from the EECS Shop. An analog probe kit with a breadboard (metal toolbox) Figure 1. A typical breadboard. The arrows indicate the direction of conduction. The 64 inner columns conduct vertically with an open break in the middle. The outer 2 rows on the top and bottom conduct horizontally (with an open break in the middle for some types of breadboards). Parts List 1-2 k Resistor 1-3 k Resistor 1-10 k Resistor Date Last Modified: 2/5/2018 5:57 PM 1

2 Definitions Voltmeter A device for measuring voltage between two points. A perfect voltmeter behaves like an open (infinite resistance) circuit. Voltage is measured by connecting the two voltmeter terminals to the two points of the circuit where the voltage (potential difference) is to be measured (see Fig. 4 below). Therefore, the voltmeter has no effect on the circuit because placing an (ideally) infinite resistance across any two points in the circuit will not affect its operation. Figure 2. Using a voltmeter for voltage measurement. Notice that no any change to the original circuit connections need to be done. We simply connect the terminals of the voltmeter across the component where the voltage is to be measured (resistor 4 in this case). Ammeter A device for measuring the electric current through a circuit path. A perfect ammeter behaves like a short (zero resistance) circuit like a wire. Current is measured by inserting the ammeter in series within the electric current flow path and, therefore, the ammeter has no effect on the circuit because it looks like a perfectly conducting wire (see Fig. 3 below). Figure 3. Using an ammeter for current measurement. Notice that we need to make a break in the circuit and connect this break by the two terminals of the ammeter, i.e., to interpolate the ammeter in the current path so that the electric current flows through the ammeter. Ohmmeter A device that measures the electric resistance between two terminals of a component or a circuit. If the resistance of a resistor is to be measured, the resistor should NOT be connected to an external circuit from both terminals. Date Last Modified: 2/5/2018 5:57 PM 2

3 Multi-meter A device that can function as an ammeter, voltmeter, or an ohmmeter. Most of modern multi-meters are digital multimeters (DMM s). There are generally two types of DMM s: hand-held DMM s and bench-top (or bench-attached) DMM s (like the ones attached to your benches in the lab). Function Generator (FG) A device that produces voltage signals as functions of time. Common signals that a FG can produce are sine waves, square waves, triangle waves, ramp waves, and noise. Common controls that a FG has include amplitude, frequency, and DC offset. Arbitrary Waveform Generator (AWG) A device that is like a function generator in that it produces voltage signals. However, an arbitrary waveform generator can produce any waveform (audio, television, digital data, sinusoids, etc.). AWG s have interfaces like FG s. They can generate analog signals from saved digital files (like signals generated by MATLAB or any other computer tool, or files of signals acquired from real analog signals by an oscilloscope) Digital Storage Oscilloscope (DSO) A DSO measures voltage signals as a function of time. The time-varying voltage can be recorded and saved as a data file (containing the voltage value at each sampling time) to be used for computer processing or regeneration when loaded to an AWG. Experiment 1. Using Multi-meters to Measure Voltage and Current Figure 4. Using your breadboard and provided circuit components, build the circuit shown in Fig. 4. The Hewlett-Packard power supply has three adjustable outputs. Use the +20V connection to supply 12V for V2 and the +6V connection to supply the 5V for V1. Select the appropriate meter and adjust the voltages before you connect power to the circuit. Use the COM terminal to provide the 0V potentials (this will be the ground point to your circuit). The green terminal is a connection Date Last Modified: 2/5/2018 5:57 PM 3

4 to common ground and is not necessary for this experiment. It will not be connected in most of our experiments. You will be using the bench-attached DMM to measure the voltage across R1 and the current through R1. When you use a meter to measure a parameter of a circuit, the meter becomes part of the circuit! When using the multi-meter as a voltmeter, it has a huge internal resistance on the order of 50M Ohms. When using the multi-meter as an ammeter (current meter) it offers almost zero internal resistance. Therefore, when measuring different parameters, you will connect the meter differently! To measure the voltage across R1, get a red cord and a blue cord from your probe kit. Insert the red cord in the jack designated for Volt readings. Insert the blue cord in the common (black) jack in the middle. Attach a red clip and black clip to the other ends of the respective cords. Clip the red clip to the side of R1 that you expect to have the highest potential. Clip the black clip to the opposite side. Make sure that the V button is depressed on your meter when measuring voltage. Your meter should now display the voltage across R1. If the reading is negative, the side with the red clip is at a lower potential than the side with the black clip. Record this reading in your lab notebooks. Because the voltmeter has such a huge internal resistance, almost no current was diverted through the meter when taking the above reading. However, when we are taking current readings this will not be the case! Because the ammeter has almost no resistance, if you connect it in the same fashion as above, almost all of the current will be diverted through the ammeter and it will not pass through R1. You will have then made a huge change to your circuit! The ammeter must be connected in series with R1 to determine the current flowing through it. To do this, first shut the power off to your circuit. Then remove the high side lead of R1 from the breadboard. Connect it to the black lead of the ammeter. Now connect the red lead to the portion of the circuit where the high side of R1 was. Now on the meter, move the red cord from the voltmeter jack to the ammeter jack. Also, depress the ma button on the meter when measuring current. When you are sure you have made the correct connections go ahead and turn on the power to your circuit. Your meter should now display the current flowing through R1 in milliamps. If there is a negative sign in front of the reading, the current is flowing the opposite direction of what you expected. Record this measurement in your lab notebooks. Note. The current through R1 can be measured anywhere in its current path. For example, the ammeter can be inserted with the upper or lower terminal of the resistor. Either way the same current flowing through the resistor will be flowing through the ammeter. Date Last Modified: 2/5/2018 5:57 PM 4

5 Experiment 2. Using the Function Generator and Oscilloscope In this experiment you will generate three different waveforms using the function generator (FG) and display these waveforms using the oscilloscope. These waveforms are: Signals to be generated and screen captured 1. A 1 V amplitude square wave with a 1ms period 2. 2sin(ωt), where ω=2 f, with f = 1.5 khz. 3. A 0.5 V amplitude triangle wave with a 20ms period and a DC offset of +2V Experiment 2 Deliverables The deliverables for Experiment 2 are labeled images of the three different waveforms screen-captured from the oscilloscope to the computer. The parts of the image that should be labeled are: 1. The major waveform characteristics: amplitude (Peak-Peak), period (Period), frequency (Frequency) and DC offset (Average N Cycles). 2. The Trigger Position indicator. 3. The Trigger Level. 4. The Ground Position Indicator. 5. The Volts/Div reading corresponding to the amplitude and Time/Div corresponding to the period The instructions that follow will show you how to set the FG and oscilloscope to display these waveforms, and then screen-capture the images of the waveforms to the computer. Using the BNC-to-BNC cable from your probe kit, connect the function generator (FG) output directly to the oscilloscope (use Channel 1) input as shown in Fig. 5 below. BNC-to-BNC Cable Figure 5. Date Last Modified: 2/5/2018 5:57 PM 5

6 Set the Frequency on the FG Press the Freq key on the FG to display the current frequency setting. To adjust this, you may do one of three things; you can use the arrows soft keys to adjust the frequency to the required number. Alternatively, you can turn the knob to increase or decrease the frequency. Or you can press the Enter Number key, then key in the desired frequency value following the green numbering beside the keypad and press the desired unit that is listed adjacent to the arrow keys. Set the Amplitude on the FG Now press the Ampl key on the FG to display its current value. Notice that is has the units of Vpp (voltage peak to peak). Therefore, if you want a sine wave with a ±1 Volt amplitude, you must enter 2 Vpp! Adjustments to this value are made the same methods as described above. Set the Type of wave on the FG The type (square wave, triangle wave or sinusoidal wave) of wave is set by pressing the key with the appropriate symbol. Set the Type of wave and the DC offset on the FG Finally, the DC offset is set by pressing the Offset key and adjusting the offset. If no offset is given, assume it is zero. Date Last Modified: 2/5/2018 5:57 PM 6

7 Steps to Manually Trigger and Display the Waveform on the Lab Oscilloscopes Waveform Measurements Channel Display Horizontal Control Run Control Green => Running Sampling Data Red => Stopped on current Sampled Frame Waveform Triggering Control General Selection Knob Vertical Control Power Key Softkeys Used to select options on the bottom of the digital display. Channel Inputs Where probes and other BNC input signal connectors are connected. Figure Turn on the oscilloscope, and check the Channel Display as shown in Fig If the Channel Display for channel 1 is not 1.00:1 change the input channel attenuation to 1.00:1. a. In the Vertical Control section of the oscilloscope, push the 1 key. b. Push the Probe softkey. c. Push the Probe X:1 softkey (X will be a number from 0.1 to 1000). d. Adjust the General Selection Knob until the attenuation for Channel 1 is 1.00:1. 3. If the Channel Display for channel 1 is not DC change the input channel coupling to DC. a. In the Vertical Control section of the oscilloscope, push the 1 key. b. Push the X Coupling softkey (X will be either AC or DC ). c. Adjust the General Selection Knob until Channel 1 is using DC coupling. 4. The 1 key in the Vertical Control section should be green, indicating that the channel 1 input data is being displayed. If it is not green, push the 1 key. Date Last Modified: 2/5/2018 5:57 PM 7

8 5. The Run/Stop key in the Run Control section should be green, indicating that the oscilloscope is sampling, and not frozen. If it is not green, push the Run/Stop key. 6. You will now configure the oscilloscope to trigger off the Channel 1 input. a. Push the Trigger key. b. Push the Source softkey. c. Select Source 1 using the General Selection Knob. 7. Next, think about the waveform you are trying to find. What is the wave amplitude, period and DC offset? 8. Now that the scope is triggering off of Channel 1, adjust the trigger Level knob in the Waveform Triggering Control section until a waveform appears. Notice the Trigger Position Indicator and the Trigger Level positions on the oscilloscope screen as shown in Fig. 7. The waveform should appear once the trigger level is in the range of the waveform signal swing (between the maximum and minimum values of the waveform). A good place for the trigger level to start is at the DC offset value of the waveform because this guarantees that your trigger level will be somewhere in the middle of the waveform you are trying to find. You may need to zoom out by increasing the Volts/Div in the Vertical Control section to be able to move the trigger level to the proper position. 9. Adjust the Volts/Div knob and the Position knob in the Vertical Control section to nicely fit the amplitude of the expected waveform. 10. Adjust the Time/Div knob and the Position knob in the Horizontal Control section to fit a full period or two of the expected waveform in the display. Trigger Position Indicator Time = 0 y-axis Y-Intercept at the Trigger Level Trigger Level Figure 7. Note: The Default Setup key will be used in future labs. This key returns the oscilloscope to its default settings, but it does not adjust the input attenuation. Date Last Modified: 2/5/2018 5:57 PM 8

9 This key is very useful, since you do not know what the person before did with the oscilloscope. Measuring Waveform Characteristics with the Oscilloscope Next, measure the waveform characteristics by pressing the Meas key, and then use the softkeys to select the following measurements: amplitude (Peak- Peak), period (Period), frequency (Frequency) and DC offset (Average N Cycles). Experiment 2 Deliverables The deliverables for Experiment 2 are labeled images of the three different waveforms screen-captured from the oscilloscope to the computer. The parts of the image that should be labeled are: 1. The major waveform characteristics: amplitude (Peak-Peak), period (Period), frequency (Frequency) and DC offset (Average N Cycles). 2. The Trigger Position indicator. 3. The Trigger Level. 4. The Ground Position Indicator. 5. The Volts/Div reading corresponding to the amplitude and Time/Div corresponding to the period Screen-Capture the Images from the Oscilloscope to the Computer 1.Go to All Programs on the computer and start the Keysight BenchVue. 2. Make sure your oscilloscope is detected and its icon is shown in the Instrument Panel at the bottom of the main window. 3. Start the bench Oscilloscope App by double-clicking the oscilloscope icon. 4. Go to the Screen Image tab from the top of the window and click on Get Current Screen button. The oscilloscope screen will be loaded and displayed in the current window. 5. Select the Save icon from the right bottom of the screen and then select Save Image. The saving dialog box will open; here s where you can write the file name and select the file format and directory for the image to be saved. Note: The Run/Stop key may become red while the images are being captured. Make certain the Run/Stop key is green again before performing more measurements. Date Last Modified: 2/5/2018 5:57 PM 9

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE In this lab you will learn how to properly operate the basic bench equipment used for characterizing active devices: 1. Oscilloscope (Keysight DSOX 1102A),

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment Objectives: The purpose of this laboratory is to acquaint you with the electronic sources and measuring equipment you will be using throughout

More information

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope Objectives 1 Introduce the Oscilloscope and learn some uses. 2 Observe Audio signals. 3 Introduce the Signal

More information

EENG-201 Experiment # 4: Function Generator, Oscilloscope

EENG-201 Experiment # 4: Function Generator, Oscilloscope EENG-201 Experiment # 4: Function Generator, Oscilloscope I. Objectives Upon completion of this experiment, the student should be able to 1. To become familiar with the use of a function generator. 2.

More information

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering ECE 2A & 2B Laboratory Equipment Information Table of Contents Digital Multi-Meter (DMM)... 1 Features... 1 Using

More information

Notes on Experiment #1

Notes on Experiment #1 Notes on Experiment #1 Bring graph paper (cm cm is best) From this week on, be sure to print a copy of each experiment and bring it with you to lab. There will not be any experiment copies available in

More information

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1 Digital Multimeters ON / OFF power switch Continuity / Diode Test Function Resistance Function Ranges from 200Ω to 200MΩ Transistor Test Function DC Current Function Ranges from 2mA to 20A. AC Current

More information

EE 1210 Op Amps, Gain, and Signal Integrity Laboratory Project 6

EE 1210 Op Amps, Gain, and Signal Integrity Laboratory Project 6 Objective Information The purposes of this laboratory project are for the student to observe an inverting operational amplifier circuit, to demonstrate how the resistors in an operational amplifier circuit

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

Lab #5 Steady State Power Analysis

Lab #5 Steady State Power Analysis Lab #5 Steady State Power Analysis Steady state power analysis refers to the power analysis of circuits that have one or more sinusoid stimuli. This lab covers the concepts of RMS voltage, maximum power

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

Faculty of Engineering, Thammasat University

Faculty of Engineering, Thammasat University Faculty of Engineering, Thammasat University Experiment 6: Oscilloscope (For room 506) Objectives: 1. To familiarize you with the Oscilloscope and Function Generator User Manual: Oscilloscope 1 5 9 4 7

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments Introduction to basic laboratory instruments 1. OBJECTIVES... 2 2. LABORATORY SAFETY... 2 3. BASIC LABORATORY INSTRUMENTS... 2 4. USING A DC POWER SUPPLY... 2 5. USING A FUNCTION GENERATOR... 3 5.1 TURN

More information

Time-Varying Signals

Time-Varying Signals Time-Varying Signals Objective This lab gives a practical introduction to signals that varies with time using the components such as: 1. Arbitrary Function Generator 2. Oscilloscopes The grounding issues

More information

Sonoma State University Department of Engineering Science Spring 2017

Sonoma State University Department of Engineering Science Spring 2017 EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

More information

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

Introduction to Basic Laboratory Instruments

Introduction to Basic Laboratory Instruments Introduction to Contents: 1. Objectives... 2 2. Laboratory Safety... 2 3.... 2 4. Using a DC Power Supply... 2 5. Using a Function Generator... 3 5.1 Turn on the Instrument... 3 5.2 Setting Signal Type...

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015

INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015 INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015 Saeid Rahimi, Ph.D. Jack Ou, Ph.D. Engineering Science Sonoma State University A SONOMA STATE UNIVERSITY PUBLICATION CONTENTS 1 Electronic

More information

ECE 2274 Lab 1 (Intro)

ECE 2274 Lab 1 (Intro) ECE 2274 Lab 1 (Intro) Richard Dumene: Spring 2018 Revised: Richard Cooper: Spring 2018 Forward (DO NOT TURN IN) The purpose of this lab course is to familiarize you with high-end lab equipment, and train

More information

Velleman Arbitrary Function Generator: Windows 7 by Mr. David Fritz

Velleman Arbitrary Function Generator: Windows 7 by Mr. David Fritz Velleman Arbitrary Function Generator: Windows 7 by Mr. David Fritz You should already have the drivers installed Launch the scope control software. Start > Programs > Velleman > PcLab2000LT What if the

More information

Voltage Current and Resistance II

Voltage Current and Resistance II Voltage Current and Resistance II Equipment: Capstone with 850 interface, analog DC voltmeter, analog DC ammeter, voltage sensor, RLC circuit board, 8 male to male banana leads 1 Purpose This is a continuation

More information

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope Agilent 33522A Function/Arbitrary Waveform Generator and Tektronix TDS 3012B Oscilloscope Agilent 33522A Function Arbitrary Waveform Generator The signal source for this lab is the Agilent 33522A Function

More information

EE 201 Lab! Tektronix 3021B function generator

EE 201 Lab! Tektronix 3021B function generator EE 201 Lab Tektronix 3021B function generator The function generator produces a time-varying voltage signal at its output terminal. The Tektronix 3021B is capable of producing several standard waveforms

More information

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007)

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007) ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007) I. Getting Started with the Function Generator OUTPUT Red Clip Small Black Clip 1) Turn on

More information

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M 2.4 Laboratory Procedure / Summary Sheet Group: Names: (1) Select five separate resistors whose nominal values are listed below. Record the band colors for each resistor in the table below. Then connect

More information

A semester of Experiments for ECE 225

A semester of Experiments for ECE 225 A semester of Experiments for ECE 225 Contents General Lab Instructions... 3 Notes on Experiment #1... 4 ECE 225 Experiment #1 Introduction to the function generator and the oscilloscope... 5 Notes on

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 5 Oscilloscope Introduction Required Parts, Software and Equipment Parts Figure 1, Figure 2, Figure 3 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor University of Utah Electrical & Computer Engineering Department ECE 1250 Lab 3 Electronic Speed Control and Pulse Width Modulation A. Stolp, 12/31/12 Rev. Objectives 1 Introduce the Oscilloscope and learn

More information

Equipment: You will use the bench power supply, function generator and oscilloscope.

Equipment: You will use the bench power supply, function generator and oscilloscope. EE203 Lab #0 Laboratory Equipment and Measurement Techniques Purpose Your objective in this lab is to gain familiarity with the properties and effective use of the lab power supply, function generator

More information

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope In this laboratory you will learn to use two additional instruments in the laboratory, namely the function/arbitrary waveform generator, which

More information

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax Revision: Jan 29, 2011 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The purpose of this lab assignment is to provide users with an introduction to some of the equipment which

More information

Name: Resistors and Basic Resistive Circuits. Objective: To gain experience with data acquisition proto-boards physical resistors. Table of Contents:

Name: Resistors and Basic Resistive Circuits. Objective: To gain experience with data acquisition proto-boards physical resistors. Table of Contents: Objective: To gain experience with data acquisition proto-boards physical resistors Table of Contents: Name: Resistors and Basic Resistive Circuits Pre-Lab Assignment 1 Background 2 National Instruments

More information

Physics 120 Lab 1 (2018) - Instruments and DC Circuits

Physics 120 Lab 1 (2018) - Instruments and DC Circuits Physics 120 Lab 1 (2018) - Instruments and DC Circuits Welcome to the first laboratory exercise in Physics 120. Your state-of-the art equipment includes: Digital oscilloscope w/usb output for SCREENSHOTS.

More information

Exercise 1: AC Waveform Generator Familiarization

Exercise 1: AC Waveform Generator Familiarization Exercise 1: AC Waveform Generator Familiarization EXERCISE OBJECTIVE When you have completed this exercise, you will be able to operate an ac waveform generator by using equipment provided. You will verify

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 8 Function Generator Introduction Required Parts, Software and Equipment Parts Figure 1 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance 1 Resistor

More information

EGRE 101 DC Motor II

EGRE 101 DC Motor II EGRE 101 DC Motor II Preamble In this week s laboratory exercise you will become familiar with: Converting a circuit schematic to a physical circuit implementation Measuring physical quantities relevant

More information

Waveform Generators and Oscilloscopes. Lab 6

Waveform Generators and Oscilloscopes. Lab 6 Waveform Generators and Oscilloscopes Lab 6 1 Equipment List WFG TEK DPO 4032A (or MDO3012) Resistors: 10kΩ, 1kΩ Capacitors: 0.01uF 2 Waveform Generators (WFG) The WFG supplies a variety of timevarying

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009 Lab 0: Introduction to basic laboratory instruments Revised by Dan Hoang & Tai-Chang Chen 03/30/2009 1. Objectives 1. To learn safety procedures in the laboratory. 2. To learn how to use basic laboratory

More information

The oscilloscope and RC filters

The oscilloscope and RC filters (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 4 The oscilloscope and C filters The objective of this experiment is to familiarize the student with the workstation

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2110: CIRCUIT THEORY LABORATORY Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope,

More information

LAB 2 Circuit Tools and Voltage Waveforms

LAB 2 Circuit Tools and Voltage Waveforms LAB 2 Circuit Tools and Voltage Waveforms OBJECTIVES 1. Become familiar with a DC power supply and setting the output voltage. 2. Learn how to measure voltages & currents using a Digital Multimeter. 3.

More information

Lab 6 Instrument Familiarization

Lab 6 Instrument Familiarization Lab 6 Instrument Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout todays lab you will investigate

More information

EECE 2413 Electronics Laboratory

EECE 2413 Electronics Laboratory EECE 2413 Electronics Laboratory Lab #1: Operational Amplifiers (Op Amps) Goals The goals of this lab are to review the use of DC power supplies, function generators and oscilloscopes. Then you will build

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

Appendix A: Laboratory Equipment Manual

Appendix A: Laboratory Equipment Manual Appendix A: Laboratory Equipment Manual 1. Introduction: This appendix is a manual for equipment used in experiments 1-8. As a part of this series of laboratory exercises, students must acquire a minimum

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Financial support to develop this tutorial was provided by the Bradley Department of Electrical and

More information

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial 1 This is a programmed learning instruction manual. It is written for the Agilent DSO3202A Digital Storage Oscilloscope. The prerequisite

More information

Instrument Usage in Circuits Lab

Instrument Usage in Circuits Lab Instrument Usage in Circuits Lab This document contains descriptions of the various components and instruments that will be used in Circuit Analysis laboratory. Descriptions currently exist for the following

More information

Using Circuits, Signals and Instruments

Using Circuits, Signals and Instruments Using Circuits, Signals and Instruments To be ignorant of one s ignorance is the malady of the ignorant. A. B. Alcott (1799-1888) Some knowledge of electrical and electronic technology is essential for

More information

Laboratory 2 (drawn from lab text by Alciatore)

Laboratory 2 (drawn from lab text by Alciatore) Laboratory 2 (drawn from lab text by Alciatore) Instrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Objectives This exercise is designed

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.091 Hands-On Introduction to EE Lab Skills Laboratory No. 1 Oscilloscopes, Multimeter, Function Generator IAP 2008 1 Objective In this laboratory, you will

More information

Getting started with Mobile Studio.

Getting started with Mobile Studio. Getting started with Mobile Studio. IMPORTANT!!! DO NOT PLUG THE MOBILE STUDIO BOARD INTO THE USB PORT YET. First Lab: For the first lab experiment you will essentially play with the Mobile Studio Board

More information

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1 EE 2101 - EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects Real Analog - Circuits 1 Chapter 1: Lab Projects 1.2.2: Dependent Sources and MOSFETs Overview: In this lab assignment, a qualitative discussion of dependent sources is presented in the context of MOSFETs

More information

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Laboratory 2 nstrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor 2.1 Objectives This exercise is designed to acquaint you with the

More information

University of California, San Diego Department of Electrical and Computer Engineering

University of California, San Diego Department of Electrical and Computer Engineering University of California, San Diego Department of Electrical and Computer Engineering Part One: Introduction of Lab TAs ECE65, Spring 2007 Lab 0, ECE 65 Lab Orientation 1) James Liao, geniojames@yahoo.com

More information

MULT SWP X1K K VERN START FREQ DURATION AMPLITUDE 0 TTL OUT RAMP

MULT SWP X1K K VERN START FREQ DURATION AMPLITUDE 0 TTL OUT RAMP Signal Generators This document is a quick reference guide to the operation of the signal generators available in the laboratories. Major functions will be covered, but some features such as their sweep

More information

FLORIDA INTERNATIONAL UNIVERSITY ELECTRICAL & COMPUTER ENGINEERING LAB INSTRUMENTS USER MANUAL

FLORIDA INTERNATIONAL UNIVERSITY ELECTRICAL & COMPUTER ENGINEERING LAB INSTRUMENTS USER MANUAL FLORIDA INTERNATIONAL UNIVERSITY ELECTRICAL & COMPUTER ENGINEERING LAB INSTRUMENTS USER MANUAL Contents 1. Digital Multimeter-HP34401A.... 6 Quick Start... 6 o Introduction... 7 o Resistance Measurement...

More information

Week 7: Design a Logarithmic Voltmeter. A variation on Experiment 19 Validation by 8pm on October 14

Week 7: Design a Logarithmic Voltmeter. A variation on Experiment 19 Validation by 8pm on October 14 Week 7: Design a Logarithmic Voltmeter A variation on Experiment 19 Validation by 8pm on October 14 Op Amps Will not work if V+ and V- are not connected to +9V and -9V, respectively. Will get extremely

More information

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit.

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit. Experiment 0: Review I. References The 174 and 275 Lab Manuals Any standard text on error analysis (for example, Introduction to Error Analysis, J. Taylor, University Science Books, 1997) The manual for

More information

How to Setup and Use an Oscilloscope

How to Setup and Use an Oscilloscope How to Setup and Use an Oscilloscope An oscilloscope is a device that is used to measure voltage with respect to time. Oscilloscopes are essential pieces of test equipment used in the development and testing

More information

Introduction to Lab Instruments

Introduction to Lab Instruments ECE316, Experiment 00, 2017 Communications Lab, University of Toronto Introduction to Lab Instruments Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will review the use of three lab instruments

More information

Press Cursors and use the appropriate X and Y functions to measure period and peak-peak voltage of the square wave.

Press Cursors and use the appropriate X and Y functions to measure period and peak-peak voltage of the square wave. Equipment Review To assure that everyone is up to speed for the hurdles ahead, the first lab of the semester is traditionally an easy review of electrical laboratory fundamentals. There will, however,

More information

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1 UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL FATIH GENÇ UCORE ELECTRONICS www.ucore-electronics.com 2017 - REV1 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 3 3.1. Display

More information

LABORATORY 3 v1 CIRCUIT ELEMENTS

LABORATORY 3 v1 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 3 v1 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

EXPERIMENT 2 DIGITAL STORAGE OSCILLOSCOPE

EXPERIMENT 2 DIGITAL STORAGE OSCILLOSCOPE EXPERIMENT 2 DIGITAL STORAGE OSCILLOSCOPE 2.1 Objective: In this experiment, you will learn the basic usage of digital storage oscilloscope (DSO) of GW Instek Technologies. More specifically you will learn,

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

Lab Reference Manual. ECEN 326 Electronic Circuits. Texas A&M University Department of Electrical and Computer Engineering

Lab Reference Manual. ECEN 326 Electronic Circuits. Texas A&M University Department of Electrical and Computer Engineering Lab Reference Manual ECEN 326 Electronic Circuits Texas A&M University Department of Electrical and Computer Engineering Contents 1. Circuit Analysis in PSpice 3 1.1 Transient and DC Analysis 3 1.2 Measuring

More information

Introduction to Electronic Equipment

Introduction to Electronic Equipment Introduction to Electronic Equipment INTRODUCTION This semester you will be exploring electricity and magnetism. In order to make your time in here more instructive we ve designed this laboratory exercise

More information

Lab 13 AC Circuit Measurements

Lab 13 AC Circuit Measurements Lab 13 AC Circuit Measurements Objectives concepts 1. what is impedance, really? 2. function generator and oscilloscope 3. RMS vs magnitude vs Peak-to-Peak voltage 4. phase between sinusoids skills 1.

More information

Virtual Lab 1: Introduction to Instrumentation

Virtual Lab 1: Introduction to Instrumentation Virtual Lab 1: Introduction to Instrumentation By: Steve Badelt and Daniel D. Stancil Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, PA Purpose: Measurements and

More information

2 AC and RMS. To pass this lab you must solve tasks 1-2. Tasks 3 and 4 are included in the grading of the course.

2 AC and RMS. To pass this lab you must solve tasks 1-2. Tasks 3 and 4 are included in the grading of the course. 2 AC and RMS Purpose of the lab: to familiarize yourself with the oscilloscope to familiarize yourself with AC voltages and different waveforms to study RMS and average values In this lab, you have the

More information

A semester of Experiments for ECE 225

A semester of Experiments for ECE 225 A semester of Experiments for ECE 225 Contents General Lab Instructions... 3 Notes on Experiment #1... 4 ECE 225 Experiment #1 Introduction to the function generator and the oscilloscope... 5 Notes on

More information

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools MAE106 Laboratory Exercises Lab # 1 - Laboratory tools University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To learn how to use the oscilloscope, function generator,

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 1 REPORT MEASUREMENT DEVICES Group # 1. 2. 3. 4. Student Name ID EXPERIMENT 1 MEASUREMENT

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: voltage, current, and power. In the simplest

More information

Notes on Experiment #3

Notes on Experiment #3 Notes on Experiment #3 This week you learn to measure voltage, current, and resistance with the digital multimeter (DMM) You must practice measuring each of these quantities (especially current) as much

More information

UNIVERSITY OF CALIFORNIA, BERKELEY. EE40: Introduction to Microelectronic Circuits Lab 1. Introduction to Circuits and Instruments Guide

UNIVERSITY OF CALIFORNIA, BERKELEY. EE40: Introduction to Microelectronic Circuits Lab 1. Introduction to Circuits and Instruments Guide UNERSTY OF CALFORNA, BERKELEY EE40: ntroduction to Microelectronic Circuits Lab 1 ntroduction to Circuits and nstruments Guide 1. Objectives The electronic circuit is the basis for all branches of electrical

More information

EE-4022 Experiment 2 Amplitude Modulation (AM)

EE-4022 Experiment 2 Amplitude Modulation (AM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 2-1 Student objectives: EE-4022 Experiment 2 Amplitude Modulation (AM) In this experiment the student will use laboratory modules to implement operations

More information

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15 INTRODUCTION The Diligent Analog Discovery (DAD) allows you to design and test both analog and digital circuits. It can produce, measure and

More information

Lab 1: Introduction to Laboratory Equipment ReadMeFirst

Lab 1: Introduction to Laboratory Equipment ReadMeFirst Lab 1: Introduction to Laboratory Equipment ReadMeFirst Lab Summary This is the introduction to laboratory equipment and cables. The equipment covered includes the oscilloscope, function generator, power

More information

ENG 100 Lab #2 Passive First-Order Filter Circuits

ENG 100 Lab #2 Passive First-Order Filter Circuits ENG 100 Lab #2 Passive First-Order Filter Circuits In Lab #2, you will construct simple 1 st -order RL and RC filter circuits and investigate their frequency responses (amplitude and phase responses).

More information

2 Oscilloscope Familiarization

2 Oscilloscope Familiarization Lab 2 Oscilloscope Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout the course you will investigate

More information

USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1

USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1 EE 241 Experiment #3: USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1 PURPOSE: To become familiar with additional the instruments in the laboratory. To become aware

More information

ECE 480: SENIOR DESIGN LABORATORY

ECE 480: SENIOR DESIGN LABORATORY ECE 480: SENIOR DESIGN LABORATORY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING MICHIGAN STATE UNIVERSITY I. TITLE: Lab I - Introduction to the Oscilloscope, Function Generator, Digital Multimeter

More information