LAB I. INTRODUCTION TO LAB EQUIPMENT

Size: px
Start display at page:

Download "LAB I. INTRODUCTION TO LAB EQUIPMENT"

Transcription

1 LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE In this lab you will learn how to properly operate the basic bench equipment used for characterizing active devices: 1. Oscilloscope (Keysight DSOX 1102A), 2. Source Measure Unit (SMU) (Keithley 2430), 3. Function generator Agilent 33220A, and a 4. Bread board. You will use these tools to characterize three simple resistive circuits, perform theoretical circuit analyses on them, analyze the results, and present your findings in a concise, organized lab report. 2. OVERVIEW The Background Information section in this lab manual describes the basic operations of each lab equipment. You are expected to learn these basic operations during lab, ideally before moving on to the Lab Procedure section. The lab procedure will test your comprehension of the background materials by asking you to build simple resistive circuits and use the bench equipment to characterize them. Information essential to your understanding of this lab: 1. Background Material Materials necessary for this experiment: 1. Standard bench equipment. 2. Two resistors: 3.3 kω and 5.1 kω. 3. Two 10:1 Oscilloscope Probes. 4. One RG58C/U Coaxial Cable. 5. Two Red & Black Test Lead Pair (Banana-Plug to Alligator-Clip.) 3. BACKGROUND INFORMATION 3.1 BREADBOARD BASICS Breadboards (aka. Solderless board, Prototype board) are simply a set of pre-wired interconnected strips that are accessible through periodically spaced hole in the board. Looking at Figure 1., you can identify which holes form an interconnected strip by the black lines connecting them. By plugging the lead of a component into a hole you will be connected to all the other components in that strip without permanently connecting them. This allows you to build, alter, and test your prototype circuits quickly. Lab I: Introduction to Lab Equipment Page 1

2 There are two basic types of strips. The first type is called connection strip, they typically take up most of the board and are connected horizontally. Each hole can uniquely identified using the labels a-j column labels and 1-63 row labels. NOTE: a-e connection strips are not connected to the f-i connection strips. The second type is called bus strip. ALL the holes in a bus strip are connected vertically. Bus strips are typically labeled A or B and are marked by a red or blue line along their length. Figure 1. A schematic diagram of the breadboard showing buses and strips. 3.2 KEITHLEY SOURCE MEASURE UNIT 2400 The Keithley SMU can be used as a voltage source, a current source, a voltmeter, or an ammeter. Examine Figures 2. & 3. below before moving on to studying the main functions of the Keithley SMU. Figure 2. Keithley SMU button descriptions. Lab I: Introduction to Lab Equipment Page 2

3 Figure 3. Front panel of Keithley 2430 SMU SET VOLTAGE/CURRENT SOURCE CONFIGURATION In order to use the Keithley SMU as a voltage source or a current source, you need to follow the steps given below. 1. Press the V or I button in the Source group. 2. Press the EDIT button (top left): The display value V src or I src should start blinking. If it is not blinking press the EDIT button again. 3. To set your source value, you need to use the following buttons: Select Range: These buttons are used to change the range of the source value by an order of magnitude (i.e. by a factor of 10). Select Digit: The Left and Right arrows in the EDIT group are used to select the digit you wish to alter. Select Number: The Up and Down arrows in the source group are used to change the digit value. Lab I: Introduction to Lab Equipment Page 3

4 Or you can enter the numbers directly using these buttons: 4. Once you set the value, press Enter COMPLIANCE (IMPORTANT!!!) Once you have set your source value, you need to set your compliance value. How do I set the compliance value? Press the Edit button twice. You will see a set of digits blink. Use the same buttons you used to set your source value above to set your compliance value. How do I determine compliance value? Use data sheets to determine the voltage and current limits of your component. Next, use your magical powers of electrical engineering (also known as the mystical art of circuit analysis ) to figure what voltage and current your component will experience. For example the average resistor is rated at a ¼ watt. If you put 1V across that resistor, you need to make sure as a good and employable electrical engineer that you don t put more that 0.25A through it. Therefore, if you set up the SMU as a voltage source delivering 1V to your resistor, your compliance value will be 250mA. What is compliance? Compliance is a safety feature incorporated in the Keithley SMU to protect your circuit components from unexpected high power of operation i.e. it prevents you from unexpectedly frying your circuit. It is a limiting factor input by the user. If you set up an SMU as a voltage source, you must also set the highest current value the SMU is allowed to provide to your circuit; this is called current clamping. If you set up an SMU as a current source, you must set the highest voltage value the SMU is allowed to provide to your circuit; this is called voltage clamping. Lab I: Introduction to Lab Equipment Page 4

5 On the screen, the compliance value is typically displayed to the right of the source value, and in this format: Cmpl: ma (assuming you set up a voltage source.) Once you have set up source and compliance for an SMU, you can push the ON/OFF button at the bottom right corner of the front panel to power your circuit. Check the compliance value in the display. If something blinks, there is a problem. If you turn on your SMU and your circuit attempts to draw more current than is allowed by your compliance value, the Cmpl: text will blink (ex. Cmpl: ma ; here bold text indicates blinking text). This is called breaking real compliance. To overcome this, you need to increase the compliance value or recheck your circuit setup. If the units portion of your compliance value blinks ( Cmpl: ma ), you broke range compliance. It means the compliance value you entered is well above the range of current values being drawn by your circuit. The actual current drawn is below the range of measurement of the SMU. You need to press the AUTO button to allow the Keithley to set the compliance value to some lower value VOLTMETER / AMMETER CONFIGURATION To configure the Keithley SMU as an Ammeter or a Voltmeter, do the following: Voltmeter Setup: 1. Set the SMU up as a current source with zero output current. 2. Then from the control panel area, press the V button in the MEAS group under the display. Ammeter instructions 1. Set the SMU up as a voltage source with zero output voltage. 2. Then from the control panel area, press the I button in the MEAS group under the display. 3.3 KEYSIGHT 1000 X-SERIES OSCILLOSCOPE This section will instruct you on how to operate the Keysight 1000 x-series Oscilloscope. Lab I: Introduction to Lab Equipment Page 5

6 Figure 4. Front Panel of Keysight InfiniiVision 1000 X-Series Oscilloscope OSCILLOSCOPE FRONT PANEL CONTROL Intensity Control (3 in Fig. 4) Press the key to illuminate it. When illuminated, turn the Entry knob to adjust waveform intensity on the display. Autoscale Key (6 in Fig. 4) When you press the [AutoScale] key, the oscilloscope will quickly determine which channels have activity, and it will turn these channels on and scale them to display the input signals. Channel On/Off Keys (1 & 2 in colored background in 16 in Fig. 4) Channel on/off keys Use these keys to switch a channel on or off, or to access a channel's menu in the softkeys. There is one channel on/off key for each channel. Vertical Control (16 in Fig. 4) There are knobs marked sinusoidal waveforms for each channel. Use these knobs to change the vertical sensitivity (gain) of each analog channel. Use knobs at the bottom to change a channel's vertical position on the display. There is one Vertical Position control for each channel. Horizontal and Acquisition Control (7 in Fig. 4) There are horizontal scale knob that is marked sinusoidal waveforms. Use this knob to adjust the Lab I: Introduction to Lab Equipment Page 6

7 time/div setting. Push the horizontal scale knob to toggle between fine and coarse adjustment. There are also horizontal position knob with two triangular marks. Turn the knob marked to pan through the waveform data horizontally. You can see the captured waveform before the trigger (turn the knob clockwise) or after the trigger (turn the knob counterclockwise). If you pan through the waveform when the oscilloscope is stopped (not in Run mode) then you are looking at the waveform data from the last acquisition taken. Press the Acquire key to open the Acquire menu where you can select the Normal, XY, and Roll time modes, enable or disable Zoom, and select the trigger time reference point. Measure Controls (9 in Fig. 4) Press the [Meas] key to access a set of predefined measurements. Press the [Cursors] key to open a menu that lets you select the cursors mode and source. Push Cursors knob to select cursors from a popup menu. Then, after the popup menu closes (either by timeout or by pushing the knob again), rotate the knob to adjust the selected cursor position. Press the [Analyze] key to access analysis features like trigger level setting, measurement threshold setting Entry Knob (4 in Fig. 4) The Entry knob is used to select items from menus and to change values. The function of the Entry knob changes based upon the current menu and softkey selections. Often, rotating the Entry knob is enough to make a selection. Sometimes, you can push the Entry knob to enable or disable a selection. Also, pushing the Entry knob can also make popup menus disappear. Softkeys (2 in Fig. 4) The functions of these keys change based upon the menus shown on the display next to the keys. Probe Attenuation Factor: Some Oscilloscope probe attenuates the incoming signal by a certain factor. In this lab, we use 10:1 probe which attenuates the incoming signal by a factor of 10. By matching the attenuation factor of the oscilloscope to the attenuation of the probe, your measurements will reflect the actual voltage levels at the probe tip. If you need to change the probe attenuation factor, follow the procedure shown below. Lab I: Introduction to Lab Equipment Page 7

8 3.3.2 MEASURING VOLTAGES AND TIME-RELATED PARAMETERS When measuring voltages with the oscilloscope, place the probes in parallel across the component where the voltage signal is being measured. Once you have the signal displayed on the screen, you can use buttons and keys to do the measurements. To measure RMS, DC, or peak to peak voltages with the oscilloscope, use the following method: Press the Meas button (9 in Fig. 4). The Select menu appears on the right side of the screen. Press the softkey next to that, or use the Entry Knob (4 in Fig. 4) to select the desired value like RMS, Amplitude, Average, Peak to peak, etc. The selected value would be displayed on the bottom of the display. To measure Frequency, period and other time-related parameters with the oscilloscope, use the following method: Press the Meas button (9 in Fig. 4). The Select menu appears on the right side of the screen. Press the softkey next to that, or use the Entry Knob (4 in Fig. 4) to select the desired value Frequency, delay, period, Duty cycle etc. Press the Entry knob to select specific type of measurement. The selected value would be displayed on the bottom of the display. For other measurements related to the voltage and time-related parameters, we use Cursors (9 in Fig. 4). To measure using the cursors do the following: Lab I: Introduction to Lab Equipment Page 8

9 Cursors are horizontal and vertical markers that indicate X-axis values (usually time) and Y-axis values (usually voltage) on a selected waveform source. The position of the cursors can be moved turning the knob next to the Cursors button. When you press the Cursors key, cursor lines are displayed on the screen. To turn cursors off, press this key again. Cursors are not always limited to the visible display. If you set a cursor, then pan and zoom the waveform until the cursor is off screen, its value will not be changed, and if you pan the waveform back again it will have the cursor in the original place. The following steps guide you through the front-panel Cursors key. You can use the cursors to make custom voltage or time measurements on the signal. 1. Connect a signal to the oscilloscope and obtain a stable display. 2. Press the Cursors key. View the cursor functions in the softkey menu: Cursors X1 and X2 X cursors are vertical dashed lines that adjust horizontally and can be used to measure time(s), frequency (1/s), phase ( ), and ratio (%). Cursors Y1 and Y2 Y cursors are horizontal dashed lines that adjust vertically and can be used to measure Volts or Amps. X1 X2 and Y1 Y2 Move the cursors together when turning the Entry knob MEASURING CURRENTS The Oscilloscope can only measure current indirectly, by reading the voltage across a resistor while it is in a circuit and then applying Ohm s Law to find the current. If you have two signals and want to find the phase between similar points select the source of measurement for cursor 1 as channel 1 and the source for cursor 2 as channel 2. The difference readout is the delay between the two signals. If you divide that delay by the period then you have the phase value as a fraction of 360, or 2π radians. If you would like to represent that in degrees all you have to do is convert it from radians to degrees HOW TO SAVE WAVEFORM TO USB To save waveform in the oscilloscope to USB, follow the steps in the Figure below. There are various formats that you can save, but most likely you can Lab I: Introduction to Lab Equipment Page 9

10 either save the waveform data as.bmp (image file) or CSV file which can be directly read by Microsoft Excel Spreadsheet for post measurement data processing. Figure 5. Saving waveform data to USB 3.4. FUNCTION GENERATOR AGILENT 33220A The function generator is used to generate signals for your circuits. You will need to know how to set the function generator to get sine, square, triangle or ramp signals. In addition, you will have to set up the frequency, the amplitude, offset voltage and the duty cycle. The default settings for this instrument are a sinewave of 1 khz, with an amplitude of 100 mv and a DC offset of 0.0 V. Lab I: Introduction to Lab Equipment Page 10

11 Figure 6. Front panel of the Agilent 33220A function generator. The function generator is very easy to use since each function has a specific button. If you want to select a waveform, just look for the button with the desired waveform such as a sine wave, a square wave, triangle wave, or ramp wave. Then, just press its button. All that you have to do now is set the parameters for the waveform. To set the frequency, amplitude, offset or the duty cycle you need to do the following: 1. Press the appropriate gray buttons beneath the display screen (Freq/Period, Ampl/Hi Level, Offset/Lo Level, or Duty Cycle). 2. You may enter the value one of two ways. a.) Turn the knob and the highlighted digit will change. You may select a different digit by using the < or the > buttons. b.) You can also key in the digit by using number buttons. 3. Press Output button on the bottom right of the front panel (right next to Sync cable) and make sure the light is on. IMPEDANCE MATCHING (IMPORTANT!) In order to make sure you read the exact value of the amplitude output by the function generator, You should make sure the output impedance of the function generator is matched to the impedance of the connected circuits. This function generator has 50 Ω output impedance. It has been configured by the manufacturer to deliver the voltage signal when a load of 50 Ω is attached to it. In the case of large impedance circuits the function generator may deliver up to twice the voltage that you have set it up to deliver. In our case, we use a series connected 5.1 kω resistor and 3.3 k Ω resistor, which is much higher than 50 Ω. Hence, when you set 1 V pp on the function generator, you will observe twice the amplitude (2 V pp) on the oscilloscope. In order to overcome this, you need to set the function generator to have High Lab I: Introduction to Lab Equipment Page 11

12 Z output impedance. To do this, press the Utility button and press the output setup and you can change the output impedance to the High Z output mode. 4. PREPARATION There is no preparation for this lab except for reading and learning the background material. 5. PROCEDURE Before proceeding with the lab, please familiarize yourself with setting up the bench equipment. Refer to Section 3 for details. 5.1 FUNCTION GENERATOR AND OSCILLOSCOPE Use the function generator and the oscilloscope to perform the following tasks. 1. Build circuit A shown below in Figure Set the function generator to generate a sinusoidal signal with a frequency of 100 Hz and peak-to-peak voltage of 5V. 3. Set up one probe across the whole circuit (Channel 1), and another across R2 (Channel 2). 4. Subtract Channel 2 signals from Channel 1 signals using the Oscilloscope. 5. Measure the voltages and time related parameters asked for on the Instructor Verification Sheet. Obtain TA Signature. Figure 7. Circuit A 5.2 KEITHLEY SMU Lab I: Introduction to Lab Equipment Page 12

13 Use the two Keithley SMUs to perform the following tasks: Using the circuit B of Figure 8 set up a Keithley SMU as a voltage source of 10 V DC. Figure out the compliance by evaluating the circuit. Use the second Keithley SMU to measure the voltages in R1 and R2. Measure the current in the circuit directly from the Keithley SMU used as the voltage source. Record values on IV sheet Using the circuit C of Figure 9, set up a Keithley SMU as a current source of 5 ma DC. Set up the other Keithley to measure the current in R1 and in R2. Record Values on IV Sheet Measure the impedance of your two resistors using the Ohmmeter setting of a Keithley SMU. Record the values in the Instructor Verification Sheet. Get TA Signature. Figure 8. Circuit 'B' Figure 9. Circuit 'C' Notice that Circuits B and C are source transforms of each other. You should be able to compare and contrast the voltage and current measurements. 6. LAB REPORT Type a lab report with a cover sheet containing your name, class (including section number), date of the lab, and the report due date. Use the following outline to draft sections of your lab report: Abstract: Briefly describe the purpose of the lab, the analysis you performed, and your findings. Introduction: Briefly mention the bench equipment you used Lab I: Introduction to Lab Equipment Page 13

14 in the lab and their basic functions in your own words. Procedure: You do not need to provide a procedure section for this lab. Data Presentation: Report all the measured data collected. Make sure it is well presented, has units and labels - and is easily discernable which values are from a particular section of the procedure. Please use Excel, Matlab or another software to help generate well-formed tables. Analysis: Perform theoretical circuit analysis on each circuit you characterized i.e. use the measured values of your resistors (5.2.3) to find the theoretical voltage and current values for circuit A, B, and C. Do show work typed equations, units etc. Include the circuit diagrams in your descriptions, if needed. Compare your calculated values to the measured values using percent error calculations. Be sure to organize your analyses appropriately according to procedure section number. Conclusions: What conclusions can you draw about using bench equipment from your direct experience of setting it up and using it to characterize circuits? What do the results of your circuit analyses tell you about your bench equipment? Attach: Signed instructor verification form. Attach: Read the Undergraduate Laboratories Rules and Regulations (Intro_F17.pdf) carefully and attach last page with your signature. Lab I: Introduction to Lab Equipment Page 14

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Lab #1 Lab Introduction

Lab #1 Lab Introduction Cir cuit s 212 Lab Lab #1 Lab Introduction Special Information for this Lab s Report Because this is a one-week lab, please hand in your lab report for this lab at the beginning of next week s lab. The

More information

ECE 53A: Fundamentals of Electrical Engineering I

ECE 53A: Fundamentals of Electrical Engineering I ECE 53A: Fundamentals of Electrical Engineering I Laboratory Assignment #1: Instrument Operation, Basic Resistor Measurements and Kirchhoff s Laws Fall 2007 General Guidelines: - Record data and observations

More information

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2110: CIRCUIT THEORY LABORATORY Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope,

More information

Sonoma State University Department of Engineering Science Spring 2017

Sonoma State University Department of Engineering Science Spring 2017 EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering ECE 2A & 2B Laboratory Equipment Information Table of Contents Digital Multi-Meter (DMM)... 1 Features... 1 Using

More information

Notes on Experiment #1

Notes on Experiment #1 Notes on Experiment #1 Bring graph paper (cm cm is best) From this week on, be sure to print a copy of each experiment and bring it with you to lab. There will not be any experiment copies available in

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1 EE 2101 - EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer

More information

54645D. Mixed Signal Oscilloscope

54645D. Mixed Signal Oscilloscope 54645D Mixed Signal Oscilloscope Page 1 of 42 Instructions for the use of the 54645D Mixed Signal Oscilloscope This pamphlet is intended to give you (the student) an overview on the use of the 54645D Mixed

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments Introduction to basic laboratory instruments 1. OBJECTIVES... 2 2. LABORATORY SAFETY... 2 3. BASIC LABORATORY INSTRUMENTS... 2 4. USING A DC POWER SUPPLY... 2 5. USING A FUNCTION GENERATOR... 3 5.1 TURN

More information

ECE 2274 Lab 1 (Intro)

ECE 2274 Lab 1 (Intro) ECE 2274 Lab 1 (Intro) Richard Dumene: Spring 2018 Revised: Richard Cooper: Spring 2018 Forward (DO NOT TURN IN) The purpose of this lab course is to familiarize you with high-end lab equipment, and train

More information

Agilent 33220A Function Generator Tutorial

Agilent 33220A Function Generator Tutorial Contents UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Agilent 33220A Function Generator Tutorial 1 Introduction

More information

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope Objectives 1 Introduce the Oscilloscope and learn some uses. 2 Observe Audio signals. 3 Introduce the Signal

More information

Time-Varying Signals

Time-Varying Signals Time-Varying Signals Objective This lab gives a practical introduction to signals that varies with time using the components such as: 1. Arbitrary Function Generator 2. Oscilloscopes The grounding issues

More information

EE 201 Lab! Tektronix 3021B function generator

EE 201 Lab! Tektronix 3021B function generator EE 201 Lab Tektronix 3021B function generator The function generator produces a time-varying voltage signal at its output terminal. The Tektronix 3021B is capable of producing several standard waveforms

More information

Introduction to Basic Laboratory Instruments

Introduction to Basic Laboratory Instruments Introduction to Contents: 1. Objectives... 2 2. Laboratory Safety... 2 3.... 2 4. Using a DC Power Supply... 2 5. Using a Function Generator... 3 5.1 Turn on the Instrument... 3 5.2 Setting Signal Type...

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor University of Utah Electrical & Computer Engineering Department ECE 1250 Lab 3 Electronic Speed Control and Pulse Width Modulation A. Stolp, 12/31/12 Rev. Objectives 1 Introduce the Oscilloscope and learn

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial 1 This is a programmed learning instruction manual. It is written for the Agilent DSO3202A Digital Storage Oscilloscope. The prerequisite

More information

Appendix A: Laboratory Equipment Manual

Appendix A: Laboratory Equipment Manual Appendix A: Laboratory Equipment Manual 1. Introduction: This appendix is a manual for equipment used in experiments 1-8. As a part of this series of laboratory exercises, students must acquire a minimum

More information

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Name: Date of lab: Section number: M E 345. Lab 1 Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Precalculations Score (for instructor or TA use only):

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

EENG-201 Experiment # 4: Function Generator, Oscilloscope

EENG-201 Experiment # 4: Function Generator, Oscilloscope EENG-201 Experiment # 4: Function Generator, Oscilloscope I. Objectives Upon completion of this experiment, the student should be able to 1. To become familiar with the use of a function generator. 2.

More information

Frequency and Time Domain Representation of Sinusoidal Signals

Frequency and Time Domain Representation of Sinusoidal Signals Frequency and Time Domain Representation of Sinusoidal Signals By: Larry Dunleavy Wireless and Microwave Instruments University of South Florida Objectives 1. To review representations of sinusoidal signals

More information

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M 2.4 Laboratory Procedure / Summary Sheet Group: Names: (1) Select five separate resistors whose nominal values are listed below. Record the band colors for each resistor in the table below. Then connect

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.091 Hands-On Introduction to EE Lab Skills Laboratory No. 1 Oscilloscopes, Multimeter, Function Generator IAP 2008 1 Objective In this laboratory, you will

More information

Physics 120 Lab 1 (2018) - Instruments and DC Circuits

Physics 120 Lab 1 (2018) - Instruments and DC Circuits Physics 120 Lab 1 (2018) - Instruments and DC Circuits Welcome to the first laboratory exercise in Physics 120. Your state-of-the art equipment includes: Digital oscilloscope w/usb output for SCREENSHOTS.

More information

LAB 1: Familiarity with Laboratory Equipment (_/10)

LAB 1: Familiarity with Laboratory Equipment (_/10) LAB 1: Familiarity with Laboratory Equipment (_/10) PURPOSE o gain familiarity with basic laboratory equipment oscilloscope, oscillator, multimeter and electronic components. EQUIPMEN (i) Oscilloscope

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1 Digital Multimeters ON / OFF power switch Continuity / Diode Test Function Resistance Function Ranges from 200Ω to 200MΩ Transistor Test Function DC Current Function Ranges from 2mA to 20A. AC Current

More information

2 Oscilloscope Familiarization

2 Oscilloscope Familiarization Lab 2 Oscilloscope Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout the course you will investigate

More information

UNIVERSITY OF CALIFORNIA, BERKELEY. EE40: Introduction to Microelectronic Circuits Lab 1. Introduction to Circuits and Instruments Guide

UNIVERSITY OF CALIFORNIA, BERKELEY. EE40: Introduction to Microelectronic Circuits Lab 1. Introduction to Circuits and Instruments Guide UNERSTY OF CALFORNA, BERKELEY EE40: ntroduction to Microelectronic Circuits Lab 1 ntroduction to Circuits and nstruments Guide 1. Objectives The electronic circuit is the basis for all branches of electrical

More information

USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1

USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1 EE 241 Experiment #3: USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1 PURPOSE: To become familiar with additional the instruments in the laboratory. To become aware

More information

A semester of Experiments for ECE 225

A semester of Experiments for ECE 225 A semester of Experiments for ECE 225 Contents General Lab Instructions... 3 Notes on Experiment #1... 4 ECE 225 Experiment #1 Introduction to the function generator and the oscilloscope... 5 Notes on

More information

INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015

INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015 INTRODUCTION TO ENGINEERING AND LABORATORY EXPERIENCE Spring, 2015 Saeid Rahimi, Ph.D. Jack Ou, Ph.D. Engineering Science Sonoma State University A SONOMA STATE UNIVERSITY PUBLICATION CONTENTS 1 Electronic

More information

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009 Lab 0: Introduction to basic laboratory instruments Revised by Dan Hoang & Tai-Chang Chen 03/30/2009 1. Objectives 1. To learn safety procedures in the laboratory. 2. To learn how to use basic laboratory

More information

EXPERIMENT 1 PRELIMINARY MATERIAL

EXPERIMENT 1 PRELIMINARY MATERIAL EXPERIMENT 1 PRELIMINARY MATERIAL BREADBOARD A solderless breadboard, like the basic model in Figure 1, consists of a series of square holes, and those columns of holes are connected to each other via

More information

Laboratory Project 1a: Power-Indicator LED's

Laboratory Project 1a: Power-Indicator LED's 2240 Laboratory Project 1a: Power-Indicator LED's Abstract-You will construct and test two LED power-indicator circuits for your breadboard in preparation for building the Electromyogram circuit in Lab

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

The oscilloscope and RC filters

The oscilloscope and RC filters (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 4 The oscilloscope and C filters The objective of this experiment is to familiarize the student with the workstation

More information

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc.

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc. P a g e 1 ST985 TDR Cable Analyzer Instruction Manual Analog Arts Inc. www.analogarts.com P a g e 2 Contents Software Installation... 4 Specifications... 4 Handling Precautions... 4 Operation Instruction...

More information

Lab 1: Basic Lab Equipment and Measurements

Lab 1: Basic Lab Equipment and Measurements Abstract: Lab 1: Basic Lab Equipment and Measurements This lab exercise introduces the basic measurement instruments that will be used throughout the course. These instruments include multimeters, oscilloscopes,

More information

EE283 Laboratory Exercise 1-Page 1

EE283 Laboratory Exercise 1-Page 1 EE283 Laboratory Exercise # Basic Circuit Concepts Objectives:. To become familiar with the DC Power Supply unit, analog and digital multi-meters, fixed and variable resistors, and the use of solderless

More information

EC310 Security Exercise 20

EC310 Security Exercise 20 EC310 Security Exercise 20 Introduction to Sinusoidal Signals This lab demonstrates a sinusoidal signal as described in class. In this lab you will identify the different waveform parameters for a pure

More information

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1 UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL FATIH GENÇ UCORE ELECTRONICS www.ucore-electronics.com 2017 - REV1 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 3 3.1. Display

More information

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope Agilent 33522A Function/Arbitrary Waveform Generator and Tektronix TDS 3012B Oscilloscope Agilent 33522A Function Arbitrary Waveform Generator The signal source for this lab is the Agilent 33522A Function

More information

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

Lab 6 Instrument Familiarization

Lab 6 Instrument Familiarization Lab 6 Instrument Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout todays lab you will investigate

More information

Laboratory 2 (drawn from lab text by Alciatore)

Laboratory 2 (drawn from lab text by Alciatore) Laboratory 2 (drawn from lab text by Alciatore) Instrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Objectives This exercise is designed

More information

Equipment: You will use the bench power supply, function generator and oscilloscope.

Equipment: You will use the bench power supply, function generator and oscilloscope. EE203 Lab #0 Laboratory Equipment and Measurement Techniques Purpose Your objective in this lab is to gain familiarity with the properties and effective use of the lab power supply, function generator

More information

AP034-OM-E Rev D ISSUED: January 2000 ²

AP034-OM-E Rev D ISSUED: January 2000 ² 3HUIRUPDQFH9HULILFDWLRQ 3HUIRUPDQFH9HULILFDWLRQ This procedure can be used to verify the warranted characteristics of the AP034 Active Differential Probe. The recommended calibration interval for the model

More information

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15 INTRODUCTION The Diligent Analog Discovery (DAD) allows you to design and test both analog and digital circuits. It can produce, measure and

More information

ECE 2274 Lab 2 (Network Theorems)

ECE 2274 Lab 2 (Network Theorems) ECE 2274 Lab 2 (Network Theorems) Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three

More information

Measurement Bench. Accessories. Power supply. Wave form generator. Multimetre. Oscilloscope. Dr. L.Scucchia

Measurement Bench. Accessories. Power supply. Wave form generator. Multimetre. Oscilloscope. Dr. L.Scucchia Measurement Bench Accessories Power supply Wave form generator Multimetre Oscilloscope OSCILLOSCOPE Oscilloscope (1) The oscilloscope allows to display a voltage (vertical axis - Y axis) versus time (horizontal

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

Introduction to Oscilloscopes Instructor s Guide

Introduction to Oscilloscopes Instructor s Guide Introduction to Oscilloscopes A collection of lab exercises to introduce you to the basic controls of a digital oscilloscope in order to make common electronic measurements. Revision 1.0 Page 1 of 25 Copyright

More information

Introduction to Lab Instruments

Introduction to Lab Instruments ECE316, Experiment 00, 2017 Communications Lab, University of Toronto Introduction to Lab Instruments Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will review the use of three lab instruments

More information

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope In this laboratory you will learn to use two additional instruments in the laboratory, namely the function/arbitrary waveform generator, which

More information

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics ECE 4670 Spring 2014 Lab 1 Linear System Characteristics 1 Linear System Characteristics The first part of this experiment will serve as an introduction to the use of the spectrum analyzer in making absolute

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

Lab 13 AC Circuit Measurements

Lab 13 AC Circuit Measurements Lab 13 AC Circuit Measurements Objectives concepts 1. what is impedance, really? 2. function generator and oscilloscope 3. RMS vs magnitude vs Peak-to-Peak voltage 4. phase between sinusoids skills 1.

More information

EGRE 101 DC Motor II

EGRE 101 DC Motor II EGRE 101 DC Motor II Preamble In this week s laboratory exercise you will become familiar with: Converting a circuit schematic to a physical circuit implementation Measuring physical quantities relevant

More information

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment Objectives: The purpose of this laboratory is to acquaint you with the electronic sources and measuring equipment you will be using throughout

More information

Lab #5 Steady State Power Analysis

Lab #5 Steady State Power Analysis Lab #5 Steady State Power Analysis Steady state power analysis refers to the power analysis of circuits that have one or more sinusoid stimuli. This lab covers the concepts of RMS voltage, maximum power

More information

48520 Electronics and Circuits. Lab Notes

48520 Electronics and Circuits. Lab Notes Family Name: First Name: 48520 Electronics and Circuits Lab Notes 2015 R R L V i L V o R 2 10 k +15 V 10 nf R 1 1 k v 1 2 3 7 10 F 6 TL071 4 10 F v 2 v S 500 mv pp 1.0 khz 10 nf -15 V PMcL i Introduction

More information

Lab 3: Kirchhoff's Laws and Basic Instrumentation

Lab 3: Kirchhoff's Laws and Basic Instrumentation Lab 3: Kirchhoff's Laws and Basic Instrumentation By: Gary A. Ybarra Christopher E. Cramer Duke Universty Department of Electrical and Computer Engineering Durham, NC 1. Purpose The purpose of this exercise

More information

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives:

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives: Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Pentium PC with National Instruments PCI-MIO-16E-4 data-acquisition board (12-bit resolution; software-controlled

More information

Fig. 1. NI Elvis System

Fig. 1. NI Elvis System Lab 2: Introduction to I Elvis Environment. Objectives: The purpose of this laboratory is to provide an introduction to the NI Elvis design and prototyping environment. Basic operations provided by Elvis

More information

Lab: Operational Amplifiers

Lab: Operational Amplifiers Page 1 of 6 Laboratory Goals Familiarize students with Integrated Circuit (IC) construction on a breadboard Introduce the LM 741 Op-amp and its applications Design and construct an inverting amplifier

More information

Faculty of Engineering, Thammasat University

Faculty of Engineering, Thammasat University Faculty of Engineering, Thammasat University Experiment 6: Oscilloscope (For room 506) Objectives: 1. To familiarize you with the Oscilloscope and Function Generator User Manual: Oscilloscope 1 5 9 4 7

More information

EECS40 Lab Introduction to Lab: Guide

EECS40 Lab Introduction to Lab: Guide Aschenbach, Konrad Muthuswamy, Bharathwaj EECS40 Lab Introduction to Lab: Guide Objective The student will use the following circuit elements and laboratory equipment to make basic circuit measurements:

More information

HP 16533A 1-GSa/s and HP 16534A 2-GSa/s Digitizing Oscilloscope

HP 16533A 1-GSa/s and HP 16534A 2-GSa/s Digitizing Oscilloscope User s Reference Publication Number 16534-97009 February 1999 For Safety Information, Warranties, and Regulatory Information, see the pages behind the Index Copyright Hewlett-Packard Company 1991 1999

More information

MULT SWP X1K K VERN START FREQ DURATION AMPLITUDE 0 TTL OUT RAMP

MULT SWP X1K K VERN START FREQ DURATION AMPLITUDE 0 TTL OUT RAMP Signal Generators This document is a quick reference guide to the operation of the signal generators available in the laboratories. Major functions will be covered, but some features such as their sweep

More information

A semester of Experiments for ECE 225

A semester of Experiments for ECE 225 A semester of Experiments for ECE 225 Contents General Lab Instructions... 3 Notes on Experiment #1... 4 ECE 225 Experiment #1 Introduction to the function generator and the oscilloscope... 5 Notes on

More information

Electrical Engineering Laboratory Equipment Instructional Videos

Electrical Engineering Laboratory Equipment Instructional Videos Summary In this project, instructional videos demonstrating the use of common laboratory equipment were created. The videos include the safe and proper use of DC power supplies, function generators, and

More information

Instrument Usage in Circuits Lab

Instrument Usage in Circuits Lab Instrument Usage in Circuits Lab This document contains descriptions of the various components and instruments that will be used in Circuit Analysis laboratory. Descriptions currently exist for the following

More information

Keysight InfiniiVision 1000 X-Series Oscilloscopes. User's Guide

Keysight InfiniiVision 1000 X-Series Oscilloscopes. User's Guide Keysight InfiniiVision 1000 X-Series Oscilloscopes User's Guide Notices Keysight Technologies, Inc. 2005-2018 No part of this manual may be reproduced in any form or by any means (including electronic

More information

EE 3302 LAB 1 EQIUPMENT ORIENTATION

EE 3302 LAB 1 EQIUPMENT ORIENTATION EE 3302 LAB 1 EQIUPMENT ORIENTATION Pre Lab: Calculate the theoretical gain of the 4 th order Butterworth filter (using the formula provided. Record your answers in Table 1 before you come to class. Introduction:

More information

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to Lab 3: RC Circuits Prelab Deriving equations for the output voltage of the voltage dividers you constructed in lab 2 was fairly simple. Now we want to derive an equation for the output voltage of a circuit

More information

EE 210 Lab Exercise #3 Introduction to PSPICE

EE 210 Lab Exercise #3 Introduction to PSPICE EE 210 Lab Exercise #3 Introduction to PSPICE Appending 4 in your Textbook contains a short tutorial on PSPICE. Additional information, tutorials and a demo version of PSPICE can be found at the manufacturer

More information

ECE 480: SENIOR DESIGN LABORATORY

ECE 480: SENIOR DESIGN LABORATORY ECE 480: SENIOR DESIGN LABORATORY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING MICHIGAN STATE UNIVERSITY I. TITLE: Lab I - Introduction to the Oscilloscope, Function Generator, Digital Multimeter

More information

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax Revision: Jan 29, 2011 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The purpose of this lab assignment is to provide users with an introduction to some of the equipment which

More information

LLS - Introduction to Equipment

LLS - Introduction to Equipment Published on Advanced Lab (http://experimentationlab.berkeley.edu) Home > LLS - Introduction to Equipment LLS - Introduction to Equipment All pages in this lab 1. Low Light Signal Measurements [1] 2. Introduction

More information

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Laboratory 2 nstrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor 2.1 Objectives This exercise is designed to acquaint you with the

More information

Name: Resistors and Basic Resistive Circuits. Objective: To gain experience with data acquisition proto-boards physical resistors. Table of Contents:

Name: Resistors and Basic Resistive Circuits. Objective: To gain experience with data acquisition proto-boards physical resistors. Table of Contents: Objective: To gain experience with data acquisition proto-boards physical resistors Table of Contents: Name: Resistors and Basic Resistive Circuits Pre-Lab Assignment 1 Background 2 National Instruments

More information

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format.

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format. ECE 2274 Lab 2 Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three leading digits and

More information

Ph 3455 The Franck-Hertz Experiment

Ph 3455 The Franck-Hertz Experiment Ph 3455 The Franck-Hertz Experiment Required background reading Tipler, Llewellyn, section 4-5 Prelab Questions 1. In this experiment, we will be using neon rather than mercury as described in the textbook.

More information

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL UCORE ELECTRONICS www.ucore-electronics.com 2017 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 4 3.1. Display Description...

More information

EE 1210 Op Amps, Gain, and Signal Integrity Laboratory Project 6

EE 1210 Op Amps, Gain, and Signal Integrity Laboratory Project 6 Objective Information The purposes of this laboratory project are for the student to observe an inverting operational amplifier circuit, to demonstrate how the resistors in an operational amplifier circuit

More information

Lab Equipment EECS 311 Fall 2009

Lab Equipment EECS 311 Fall 2009 Lab Equipment EECS 311 Fall 2009 Contents Lab Equipment Overview pg. 1 Lab Components.. pg. 4 Probe Compensation... pg. 8 Finite Instrumentation Impedance. pg.10 Simulation Tools..... pg. 10 1 - Laboratory

More information