Power Electronics Laboratory

Size: px
Start display at page:

Download "Power Electronics Laboratory"

Transcription

1 THE UNERSTY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunications ELEC4614 Experiment : C-C Step-up (Boost) Converter 1.0 Objectives This experiment introuces you to a step-up C-C converter circuits. These are foun in many power supplies where a C supply at a voltage which is higher than the available C supply is require. Operation an steay-state characteristics of the step-up (boost) converter circuit will be stuie experimentally..0 Backgroun The boost converter circuit is shown in figure 1(a) in which the switch T is operate from a pulse-with moulator operating at a carrier frequency f s. The switch T has a uty cycle which ranges from 0 to 1. Figure 1(b) inicates relevant waveforms of the circuit when the switch T is turne ON an OFF at frequency f s, with a uty cycle. i i L i + v L + o i c C T o R (Loa) Figure 1(a) v L - o max i L i L i c - o R T T Figure 1(b) Experiment C-C Boost Converter 1 F. Rahman/March 009

2 We will assume that all the evices an components of the circuit are ieal, the inuctor current is continuous (always positive) an the output voltage is hel constant at o by the large output capacitor uring the switching intervals. Uner these circumstances the inuctor voltage v L, an inuctor an capacitor currents i L an i C, respectively, are as inicate in figure 1(b). The following equations then hol for the boost converter. o 1..(1) max.() (1 ) R Lf s min..(3) (1 ) R Lf s ( 1 ) R.(4) L, average where o = output C voltage, = supply C voltage, L = inuctance of the inuctor, H R = Loa resistance,. o o o ; ; an o o.(5) R 1 For a given switching frequency, the minimum inuctance L min for continuous conuction is given by, Lmin ( 1 ) R f s (6) The output voltage ripple across the filter capacitance C is given by o o RCf s.(7) 3.0 Switching losses Losses in the evices ue to overlap of the voltage an current transients at turn off an turn on affect the efficiency of the converter. The switching frequency f s is carefully selecte to avoi these losses becoming significant. f s also affects the physical sizes of the inuctor an capacitor. Experiment C-C Boost Converter F. Rahman/Feb, 011

3 4.0 iscontinuous conuction The relationship between the output voltage o an, although simple when the inuctor current is continuous uring the whole of switching perio, it is very steep when approaches 1. The ynamics of this converter are also not suitable for operation in continuous conuction moe. For the iscontinuous conuction moe, it can be shown that 1 o 1 R 1 Lf s.(8) Although this is a non-linear function, nevertheless, iscontinuous conuction moe is the preferre moe of operation of a boost converter. 4. Equipment 1 power GBT switch 1 3 phase ioe brige rectifier moule 1 L-C smoothing filter for the C supply 1 50 loa resistor for the boost converter H inuctance boar for boost converter 1 four-channel oscilloscope 1 C voltmeter an ammeter moules solate transucer boars with 1/1A an 1/ sensors PC with SP boar an interface car 5. Experiment Familiarise yourself with the experimental set-up, especially the GBT, the rectifier ioe brige, the input C filter, the buck inuctor L, the buck ioe, the output filter capacitor C, an the loa resistor. The inuctor boar has inuctors in the range of -110 H which are connecte to taps. A SP boar resient in a PC generates the PWM switching pulses with which to turn the buck switch ON an OFF. The frequency of switching can be change only by running the appropriate Buck Converter for x khz programs from the esktop where x stans for the switching frequency. For each of these programs, the appropriate operator interface must also be run from the menu. The uty cycle for each of these switching frequencies can be selecte by a slier on the PC monitor. The C supply to the buck converter is obtaine from an AC supply via an auto-transformer (variac), a rectifier ioe brige followe by an LC filter. These are locate on the left-han sie of the equipment panel. For the whole of this experiment, must be set to 50. When the converter uty cycle or loa increases, will rop because of voltage rop in the variac. For each setting of or loa, you will nee to ajust the variac so that is always 50. PRECAUTONS!! 1. The experiment is pre-wire on the equipment panel. o not attempt to alter any connection of the power circuit while the C supply is on. The only alterations you will nee to make to the power circuit is the selection of tapings of the buck inuctor (using the blue wire) an connection/isconnection of the loa (using the re wire). Make sure that all power connections (screwe terminal blocks) are firm (tight) before the C supply is switche on. Any intermittent connection in any part of the circuit will estroy the GBT. Experiment C-C Boost Converter 3 F. Rahman/Feb, 011

4 . Also, make sure to ajust the variac to zero before you change the boost inuctor taps. You must not manually isconnect the boost inuctor while it still carrying current. Goals: n this experiment, you will run the boost converter with switching frequencies f s = 5, 10 an 0kHz; you will select boost inuctance L = 47, 141 an 35µH for each of these frequencies; you will vary the uty cycle from 0.1 to 0.9 in steps of 0. for each of these combinations, Finally you will take frequency response test ata by varying sinusoially, from 100Hz to 4kHz while the converter operates with f s = 0kHz an L = 141µH. ata obtaine from these tests will allow you unerstan the roles of L an f s on the continuous an iscontinuous moes of operation of the converter, an its control characteristics. 5.1 The power circuit for the boost converter is shown in figure. Before switching the C supply to the converter ON, run the SP program Boost Converter - 5kHz in irectory Elec4614_labs_boost on the esktop an run the Space control esk program using Open experiment uner the file menu to run the corresponing experiment file. Observe the PWM switching pulses for a switching frequency of f s = 5 khz. Ajust the uty cycle. Note own the range over which can be ajuste. Set initially to minimum. Connect the switching signal from the SP to the gate of the GBT using a BNC cable. Connect this signal also to channel 4 of the CRO an use it to trigger the CRO at all times. Set L to 35 H, an to minimum initially. Connect the boost converter loa (R 50 ). The C supply,, to the converter is obtaine from rectifier-filter circuit. Switch AC power to the variac (auto-transformer) supplying the rectifier an ajust it to obtain a C supply of 50. The C supply must be maintaine at 50 throughout the rest of this experiment by ajustment of the variac for each setting of or loa current. 5. Observe the inuctor an the capacitor currents, an voltages across these on CRO channels 1, an 3 of the CRO using the isolate sensors or clip-on probes. Blue wire LC filter L o Re wire 3- phase Hz Supply ariac L (47-35 H) BNC it C 1000 F o o 5 Ohm Loa Rectifier GBT gate river SP PC CRO solate sensor boars Experiment C-C Boost Converter 4 F. Rahman/Feb, 011

5 Figure The peak-peak ripple on the output voltage can be observe by using AC coupling on the CRO. 5.3 isplay the switching waveform at the top of the CRO. Using a suitable time base, isplay i L, v L, i c, v o, i T, an i, three at a time, below the trace of the switching waveform. Ajust from 0.1 to 0.9 an ientify vales of for which continuous an iscontinuous conuction of inuctor current i L take place. Note that the input current of the boost converter an the output C voltage o can become isastrously high when approaches unity. You may fin it necessary to maintain below about 0.7 in orer to prevent such situations. 5.4 Tabulate the C values of o,, L an the inuctor current ripple Δ L versus. ary from 0.1 to 0.9 in steps of 0.. Maintain = 50 throughout, by ajusting the variac. Note own the value of for which conuction of the inuctor current is at the bounary between continuous an iscontinuous conuction. Print the waveforms of i L, i, i c an v o for this conition of operation only. Mark the value of in the printout. Reuce to zero by ajusting the variac. 5.5 Select L = 141 H. Set = 50 by ajusting the variac. Repeat 5.3 an Select L = 47 µh, Set = 50 by ajusting the variac. Repeat 5.3 an Run SP program Boost Converter - 10kHz an repeat for L = 141 an 47 µh. 5.8 Run SP program Boost Converter - 0kHz an repeat for L = 141 an 47 µh. 5.9 Run SP program Boost Converter Frequency Response Test. n orer to carry out a frequency response test on the inuctor current an output voltage responses, you will vary the uty cycle sinusoially at some frequency an measure the variations in L an o. As the frequency of variation of increases, the variation of L an o will eventually fail to follow it. This is given by a cut-off frequency at which the amplitue of L an o falls to of its amplitue when the frequency of variation is well below the cut off frequency. Set the frequency of initially at 100Hz on the PC monitor. Set L = 35µH an f s = 0 khz. Note own the amplitue of the inuctor current an loa output voltage o. ncrease the frequency of an take a few reaings of amplitue of L an o vs frequency of. You are expecte to ata well beyon the cut-off frequency. 6.0 Report 6.1 Plot graphs of o versus from the results of sections 5. an 5.8 an iscuss with reference to theoretical preictions an experimental results. 6. escribe how switching frequency f s an the values of L affect the current ripple in the boost inuctor using your experimental results to verify theory. 6.3 escribe how o changes with when the converter operates with iscontinuous conuction using your experimental results to verify theory. 6.4 Plot the frequency response ata for inuctor current L an o versus frequency of foun in 5.9. Comment on these results. Experiment C-C Boost Converter 5 F. Rahman/Feb, 011

6 6.5 You may substantiate your comments by using the simulation results. Computer moel of the buck converter coul be built using PSM in the School computing lab or in room 130. Such moels will give you all waveforms you observe uring your experiment. Experiment C-C Boost Converter 6 F. Rahman/Feb, 011

Power Electronics Laboratory. THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunications

Power Electronics Laboratory. THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunications .0 Objective THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunication ELEC464 Experiment : C-C Step-own (Buck) Converter Thi experiment introduce you to a C-C tep-down (buck)

More information

Chapter 2 Review of the PWM Control Circuits for Power Converters

Chapter 2 Review of the PWM Control Circuits for Power Converters Chapter 2 Review of the PWM Control Circuits for Power Converters 2. Voltage-Moe Control Circuit for Power Converters Power converters are electrical control circuits that transfer energy from a DC voltage

More information

Switch-Mode DC-AC Converters

Switch-Mode DC-AC Converters Switch-Moe DC-AC Converters EE 442/642 8-1 Some Applications: AC Motor Drives & P Inverters 8-2 Switch-Moe DC-AC Inverter Four quarants of operation. 8-3 Half-Brige Inverter: 1. Capacitors provie the mi-point.

More information

Lecture 8 - Effect of source inductance on rectifier operation

Lecture 8 - Effect of source inductance on rectifier operation Lecture 8 - Effect of source inuctance on rectifier operation 8.1 Rectifier with input source inuctance The output DC voltage an current of rectifier circuits iscusse so far have been foun by assuming

More information

Experiment 1. Speed control of a DC motor with an inner current loop

Experiment 1. Speed control of a DC motor with an inner current loop he University of New South Wales School of Electrical Engineering & elecommunications ELEC463 - ELECRIC RIVE SYSEMS Experiment. Speed control of a C motor with an inner current loop. Introduction In this

More information

XIII International PhD Workshop OWD 2011, October Single-Stage DC-AC Converter Based On Two DC-DC Converters

XIII International PhD Workshop OWD 2011, October Single-Stage DC-AC Converter Based On Two DC-DC Converters XIII International Ph Workshop OW 20, 22 25 October 20 Single-Stage C-AC Converter Base On Two C-C Converters Tine Konjeic, University of Maribor (0.09.200, prof. Miro Milanovič, University of Maribor)

More information

Controller Design for Cuk Converter Using Model Order Reduction

Controller Design for Cuk Converter Using Model Order Reduction n International Conference on Power, Control an Embee Systems Controller Design for Cuk Converter Using Moel Orer Reuction Brijesh Kumar Kushwaha an Mr. Aniruha Narain Abstract: Cuk converter contain two

More information

16 DESEMBER AC to AC VOLTAGE CONVERTERS

16 DESEMBER AC to AC VOLTAGE CONVERTERS DSMBR AC to AC VOLTAG CONVRTRS THR PHAS AC RGULATORS Instructional Objectives Stuy of the following: The circuits use for the threephase ac regulators (ac to ac voltage converters) The operation of the

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Course Name Course Coe Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dunigal, Hyeraba - 00 04 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK : Power Electronic

More information

Study of 1-phase AC to DC controlled converter (both fully controlled And half controlled)

Study of 1-phase AC to DC controlled converter (both fully controlled And half controlled) Study of 1-phase AC to DC controlled converter (both fully controlled And half controlled) Object: To study the performances of single phase half-controlled bridge Rectifier. A. In configuration A. B.

More information

Digital Load Share Controller Design of Paralleled Phase-Shifted Full-Bridge Converters Referencing the Highest Current

Digital Load Share Controller Design of Paralleled Phase-Shifted Full-Bridge Converters Referencing the Highest Current Digital Loa Share Controller Design of Parallele Phase-Shifte Full-Brige Converters Referencing the Highest Current Hyun-Wook Seong, Je-Hyung Cho, Gun-Woo Moon, an Myung-Joong Youn Department of Electrical

More information

Multiple Input DC-DC Converters with Input Boost Stages

Multiple Input DC-DC Converters with Input Boost Stages Multiple Input DC-DC Converters with Input Boost Stages Frey Gerar #1, Babu Thomas *2, Thomas P Rajan #3 #1 PG Scholar, *, 2,3 Professor, Department of Electrical & Electronics Engineering M A College

More information

Describing Function Analysis of the Voltage Source Resonant Inverter with Pulse Amplitude Modulation

Describing Function Analysis of the Voltage Source Resonant Inverter with Pulse Amplitude Modulation Volume 48, Number 3, 007 3 Describing Function Analysis of the Voltage Source Resonant nverter with Pulse Amplitue Moulation Anrás KELEMEN, Nimró KUTAS Abstract: Pulse amplitue moulation (PAM is a wiely

More information

High Performance Control of a Single-Phase Shunt Active Filter

High Performance Control of a Single-Phase Shunt Active Filter High Performance Control of a Single-Phase Shunt Active Filter R. Costa-Castelló, R. Griñó, R. Caroner, E. Fossas Abstract Shunt active power filters are evices connecte in parallel with nonlinear an reactive

More information

Experiment 2 IM drive with slip power recovery

Experiment 2 IM drive with slip power recovery University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIE SYSTEMS Experiment 2 IM drive with slip power recovery 1. Introduction This experiment introduces

More information

Elimination of Harmonics and Dc Voltage Fluctuations Due to Non Linear Loads using Hysteresis Controlled Active Power Filter

Elimination of Harmonics and Dc Voltage Fluctuations Due to Non Linear Loads using Hysteresis Controlled Active Power Filter Elimination of Harmonics an Dc Voltage Fluctuations Due to Non Linear Loas using Hysteresis Controlle Active Power Filter J Venkatesh M Tech stuent Department of EEE AVANTHI S St. Theresa College of Engineering

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

Double Closed-loop Control System Design of PMSM Based on DSP MoupengTao1, a,songjianguo2, b, SongQiang3, c

Double Closed-loop Control System Design of PMSM Based on DSP MoupengTao1, a,songjianguo2, b, SongQiang3, c 4th International Conference on Mechatronics, Materials, Chemistry an Computer Engineering (ICMMCCE 2015) Double Close-loop Control System Design of PMSM Base on DSP MoupengTao1, a,songjianguo2, b, SongQiang3,

More information

UNIT IV CONTROLLER TUNING:

UNIT IV CONTROLLER TUNING: UNIT IV CONTROLLER TUNING: Evaluation Criteria IAE, ISE, ITAE An ¼ Decay Ratio - Tuning:- Process Reaction Curve Metho, Continuous Cycling Metho An Dampe Oscillation Metho Determination Of Optimum Settings

More information

Minimization of EMC Filter for Interconnection Inverter by High Switching Frequency

Minimization of EMC Filter for Interconnection Inverter by High Switching Frequency Minimization of EMC Filter for Interconnection Inverter by High Switching Frequency Takuya Kataoka, Masakazu Kato Nagaoka University of Technology Nagaoka, Niigata,Japan takuya_kataoka@stn.nagaokaut.ac.jp

More information

R8CB05BO 10-PIN Green-Mode PFC/PWM Combo CONTROLLER

R8CB05BO 10-PIN Green-Mode PFC/PWM Combo CONTROLLER GENERAL DESCRIPTION The R8CB05BO is the GreenMoe PFC/PWM Combo controller for Desktop PC an High Density AC Aapter For the power supply, it s input current shaping PFC performance coul be very close to

More information

Hybrid Posicast Controller for a DC-DC Buck Converter

Hybrid Posicast Controller for a DC-DC Buck Converter SERBIAN JOURNAL OF ELETRIAL ENGINEERING Vol. 5, No. 1, May, 11-13 Hybri Posicast ontroller for a D-D Buck onverter Kaithamalai Uhayakumar 1, Ponnusamy Lakshmi, Kanasamy Boobal Abstract: A new Posicast

More information

RF Microelectronics. Hanyang University. Oscillator. Changsik Yoo. Div. Electrical and Computer Eng. Hanyang University.

RF Microelectronics. Hanyang University. Oscillator. Changsik Yoo. Div. Electrical and Computer Eng. Hanyang University. RF Microelectronics Oscillator Changsik Yoo Div. Electrical an Computer Eng. anyang University. Barkausen s Criterion RF oscillators can be viewe as a feeback circuit with frequency selective network.

More information

Improvement of Power Factor and Harmonic Reduction with VSC for HVDC System

Improvement of Power Factor and Harmonic Reduction with VSC for HVDC System International Journal of Engineering an Management Research, Volume-3, Issue-2, April 2013 ISSN No.: 2250-0758 Pages: 6-12 www.ijemr.net Improvement of Power Factor an Harmonic Reuction with VSC for HVDC

More information

SSM2040 Filter Analysis Part 1 - Ryan Williams

SSM2040 Filter Analysis Part 1 - Ryan Williams SSM2040 Filter Analysis Part 1 - Ryan Williams http://www.siy.org/estrukto The following analysis is use to etermine the maximum bias current neee for the iscrete OTA cells in the ssm2040 filter (René

More information

Investigating Converter Options for Automotive Grade Permanent Magnet Sychronous Generators

Investigating Converter Options for Automotive Grade Permanent Magnet Sychronous Generators Investigating Converter Options for Automotive Grae Permanent Magnet Sychronous Generators Erkan MESE *, Yusuf YAŞA *, Hakan AKÇA *, Mustafa G. AYDENIZ *, Murat AYAZ **, Murat TEZCAN * ( * )Yiliz Technical

More information

Research on a Low-Harmonic Nearest Level Modulation Method for Modular Multilevel Converters Pengfei Hu1, a, Xi Wang1, Lun Tang1,

Research on a Low-Harmonic Nearest Level Modulation Method for Modular Multilevel Converters Pengfei Hu1, a, Xi Wang1, Lun Tang1, 6th International Conference on Machinery, Materials, Environment, Biotechnology an Computer (MMEBC 06) Research on a ow-harmonic Nearest evel Moulation Metho for Moular Multilevel Converters Pengfei Hu,

More information

Diode Rectifiers EE

Diode Rectifiers EE Dioe Rectifiers EE 442-642 5-1 Half-Brige Rectifier Circuit: R an R-L Loa Current continues to flow for a while even after the input voltage has gone negative. 5-2 Half Brige Rectifier Circuit: Loa with

More information

Wireless Event-driven Networked Predictive Control Over Internet

Wireless Event-driven Networked Predictive Control Over Internet UKACC International Conference on Control 22 Cariff, UK, 3-5 September 22 Wireless Event-riven Networke Preictive Control Over Internet Wenshan Hu, Hong Zhou, an Qijun Deng Abstract In networke control

More information

Experiment 4: Three-Phase DC-AC Inverter

Experiment 4: Three-Phase DC-AC Inverter 1.0 Objectives he University of New South Wales School of Electrical Engineering & elecommunications ELEC4614 Experiment 4: hree-phase DC-AC Inverter his experiment introduces you to a three-phase bridge

More information

Half and Full-Bridge Modular Multilevel Converter Models for Simulations of Full-Scale HVDC Links and Multi-terminal DC grids

Half and Full-Bridge Modular Multilevel Converter Models for Simulations of Full-Scale HVDC Links and Multi-terminal DC grids Half an Full-Brige Moular Multilevel Converter Moels for Simulations of Full-Scale HVDC Links an Multi-terminal DC gris Abstract This paper presents an improve electromagnetic transient (EMT) simulation

More information

Experiment No. 2 Half Wave Rectifier using RC-Triggering

Experiment No. 2 Half Wave Rectifier using RC-Triggering Experiment No. 2 Half Wave Rectifier using RC-Triggering Pre-Lab Reading: 1. Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. (See page 790 to get help for this experiment).

More information

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces.

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. 1. Basic diode characteristics Build the circuit shown in

More information

Bidirectional step-up/step-down DC-DC converter with magnetically coupled coils

Bidirectional step-up/step-down DC-DC converter with magnetically coupled coils Biirectional step-up/step-own DC-DC converter with magnetically couple coils Frivalský M.*, Dobrucký B.*, Scelba G.**, Špánik P.*, Drgoňa P.* * University of Zilina, Department of Mechatronics an electronics,

More information

CM6805(A;B;C)/CM6806(A;B;C) (ABC0401A03A/03C/05A ; ABC0401A06A/01B) 10-PIN Green-Mode PFC/PWM Combo CONTROLLER for High Density AC Adapter

CM6805(A;B;C)/CM6806(A;B;C) (ABC0401A03A/03C/05A ; ABC0401A06A/01B) 10-PIN Green-Mode PFC/PWM Combo CONTROLLER for High Density AC Adapter GENERAL DESCRIPTION The CM6805A an CM6806A series are monolithic ICs without software embee, the GreenMoe PFC/PWM Combo controller for High Density AC Aapter For the power supply less than 200Watt, its

More information

2013 Texas Instruments Motor Control Training Series. -V th. InstaSPIN Training

2013 Texas Instruments Motor Control Training Series. -V th. InstaSPIN Training 2013 Texas Instruments Motor Control Training Series -V th InstaSPIN Training How Do You Control Torque on a DC Motor? Brush DC Motor Desire Current + - Error Signal PI Controller PWM Power Stage Texas

More information

Principal Component Analysis-Based Compensation for Measurement Errors Due to Mechanical Misalignments in PCB Testing

Principal Component Analysis-Based Compensation for Measurement Errors Due to Mechanical Misalignments in PCB Testing Principal Component Analysis-Base Compensation for Measurement Errors Due to Mechanical Misalignments in PCB Testing Xin He 1, Yashwant Malaiya 2, Anura P. Jayasumana 1 Kenneth P. Parker 3 an Stephen Hir

More information

Class DE Inverters and Rectifiers for DC-DC Conversion

Class DE Inverters and Rectifiers for DC-DC Conversion Preprint: Power Electronics Specialists Conf., Baveno, Italy, June 996 Class DE Inverters an Rectifiers for DC-DC Conversion Davi C. Hamill Department of Electronic an Electrical Engineering University

More information

Experiment #2 Half Wave Rectifier

Experiment #2 Half Wave Rectifier PURPOSE: ELECTRONICS 224 ETR620S Experiment #2 Half Wave Rectifier This laboratory session acquaints you with the operation of a diode power supply. You will study the operation of half-wave and the effect

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (I max = 1A, PIV = 400V) Diodes Center tap transformer (35.6V pp, 12.6 V RMS ) 100 F Electrolytic Capacitor

More information

SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I)

SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I) Power Electronics Laboratory SINGLE PHASE CURRENT SOURCE INVERTER (C.S.I) OBJECT: To study the gate firing pulses. To observe and measure the voltages across the Thyristors and across the Load for a current

More information

Experiment No. 1 Half Wave Rectifier using R-Triggering

Experiment No. 1 Half Wave Rectifier using R-Triggering Experiment No. 1 Half Wave Rectifier using R-Triggering Pre-Lab Reading: Power Electronics: Circuits, Devices and Applications, by M. H. Rashid, 3e. Objectives: To analyze resistive firing/triggering of

More information

DESIGN AND IMPLEMENTATION OF FULL BRIDGE MODULAR DC-DC CONVERTER FOR SOLAR CONVERSION SYSTEMS

DESIGN AND IMPLEMENTATION OF FULL BRIDGE MODULAR DC-DC CONVERTER FOR SOLAR CONVERSION SYSTEMS VOL. 13, NO. 4, FEBRUARY 18 ISSN 1819-668 ARPN Journal o Engineering an Applie Sciences 6-18 Asian Research Publishing Network (ARPN). All rights reserve. DESIGN AND IMPLEMENTATION OF FULL BRIDGE MODULAR

More information

Carrier-based Discontinuous PWM Modulation for Current Source Converters

Carrier-based Discontinuous PWM Modulation for Current Source Converters Carrier-base Discontinuous PWM Moulation for Current Source Converters Olorunfemi Ojo, Sravan Vanaparthy Department of Electrical an Computer Engineering Tennessee Electric Machines an Power Electronics

More information

Extension of the Nearest-Three Virtual-Space-Vector PWM to the Four-Level Diode-Clamped dc-ac Converter

Extension of the Nearest-Three Virtual-Space-Vector PWM to the Four-Level Diode-Clamped dc-ac Converter Etension of the Nearest-Three irtual-space-ector PWM to the Four-Level Dioe-Clampe c-ac Converter S. Busquets-Monge, J. Boronau, an J. Rocabert Dept. of Electronic Engineering Technical University of Catalonia

More information

CM6807(A;B;C) 10-PIN Green-Mode PFC/PWM Combo CONTROLLER for High Density AC Adapter

CM6807(A;B;C) 10-PIN Green-Mode PFC/PWM Combo CONTROLLER for High Density AC Adapter GENERAL DESCRIPTION The CM6807A is the GreenMoe PFC/PWM Combo controller for High Density AC Aapter For the power supply less than 00Watt, it s input current shaping PFC performance coul be very close

More information

CHAPTER 3 DIODES. NTUEE Electronics L. H. Lu 3 1

CHAPTER 3 DIODES. NTUEE Electronics L. H. Lu 3 1 CHAPER 3 OE Chapter Outline 3.1 he eal ioe 3.2 erminal Characteristics of Junction ioes 3.3 Moeling the ioe Forwar Characteristics 3.4 Operation in the Reerse Breakown Region Zener ioes 3.5 Rectifier Circuits

More information

Keywords Electric vehicle, Dynamic wireless power transfer, Efficiency maximization, Power control, Secondary-side control

Keywords Electric vehicle, Dynamic wireless power transfer, Efficiency maximization, Power control, Secondary-side control Dynamic Wireless ower Transfer System for lectric Vehicles to Simplify Groun Facilities - ower Control an fficiency Maximization on the Seconary Sie - Katsuhiro Hata, Takehiro Imura, an Yoichi Hori The

More information

CM6805(A;B)/CM6806A 10-PIN Green-Mode PFC/PWM Combo CONTROLLER for High Density AC Adapter

CM6805(A;B)/CM6806A 10-PIN Green-Mode PFC/PWM Combo CONTROLLER for High Density AC Adapter 0PIN GreenMoe PFC/PWM Combo CONTROLLER for High Density AC Aapter GENERAL DESCRIPTION FEATURES The CM6805A an CM6806A are the GreenMoe PFC/PWM Combo controller for High Density AC Aapter For the power

More information

A Four Level Inverter Based Drive With a Passive Front End.

A Four Level Inverter Based Drive With a Passive Front End. A Four Level nverter Base Drive With a Passive Front En. Gautam Sinha EEE Stuent Member Thomas A. Lipo EEE Fellow Department of Electrical & Computer Engineering University of WisconsinMaison 45 Engineering

More information

Week 8 AM Modulation and the AM Receiver

Week 8 AM Modulation and the AM Receiver Week 8 AM Modulation and the AM Receiver The concept of modulation and radio transmission is introduced. An AM receiver is studied and the constructed on the prototyping board. The operation of the AM

More information

The use of power DC-DC converters and gyrator structures for energy processing in photovoltaic solar facilities 功率 DC-DC 转换器和回转器结构用于光伏太阳能设施中的能源加工

The use of power DC-DC converters and gyrator structures for energy processing in photovoltaic solar facilities 功率 DC-DC 转换器和回转器结构用于光伏太阳能设施中的能源加工 ISSN 2056-9386 Volume 1 (2014) issue 2, article 2 The use of power DC-DC converters an gyrator structures for energy processing in photovoltaic solar facilities 功率 DC-DC 转换器和回转器结构用于光伏太阳能设施中的能源加工 Herminio

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

Experiment 1: Instrument Familiarization (8/28/06)

Experiment 1: Instrument Familiarization (8/28/06) Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

More information

Control Scheme for Wide-Bandgap Motor Inverters with an Observer-Based Active Damped Sine Wave Filter

Control Scheme for Wide-Bandgap Motor Inverters with an Observer-Based Active Damped Sine Wave Filter PCIM Europe 28 5 7 June 28 Nuremberg Germany Control Scheme for Wie-Bangap Motor Inverters with an Observer-Base Active Dampe Sine Wave Filter F. Maislinger an H. Ertl TU-Wien Institute of Energy Systems

More information

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy,

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy, KTH Applie Physics Examination, TEN1, in courses SK2500/SK2501, Physics of Biomeical Microscopy, 2017-01-10, 8-13, FA32 Allowe ais: Compenium Imaging Physics (hane out) Compenium Light Microscopy (hane

More information

Dynamics and Control of Three-Phase Four-Leg Inverter

Dynamics and Control of Three-Phase Four-Leg Inverter RECENT ADVANCES in ELECTRONICS HARDWARE WIRELESS an OPTICAL COMMUNICATIONS Dynamics an Control of Three-Phase Four-Leg Inverter JENICA ILEANA CORCAU Avionics Division University of Craiova Faculty of Electrical

More information

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 63 CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 3.1 INTRODUCTION The power output of the PV module varies with the irradiation and the temperature and the output

More information

ON-LINE PARAMETER ESTIMATION AND ADAPTIVE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MACHINES. A Dissertation. Presented to

ON-LINE PARAMETER ESTIMATION AND ADAPTIVE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MACHINES. A Dissertation. Presented to ON-LINE PARAMETER ESTIMATION AND ADAPTIVE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MACHINES A Dissertation Presente to The Grauate Faculty of the University of Akron In Partial Fulfillment Of the Reuirements

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

FAMILIARISATION WITH P.E. COMPONENTS

FAMILIARISATION WITH P.E. COMPONENTS FAMILIARISATION WITH P.E. COMPONENTS A. SINGLE PHASE PAC USING TRIAC. Object : To study a) The triggering circuit of an A.C. phase angle controller using a triac. b) The performance with a resistive load.

More information

A Single-stage Three-phase DC/AC Inverter Based on Cuk Converter for PV Application

A Single-stage Three-phase DC/AC Inverter Based on Cuk Converter for PV Application A Singlestage Threephase D/A Inverter Base on uk onverter for PV Application A. Darwish A. Elserougi, A. S. AbelKhalik S. Ahme A. Massou D. Holliay, B. W. Williams University of Strathclye, UK Alexanria

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the worl s leaing publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors an eitors Downloas Our authors

More information

2.35 Tuning PID Controllers

2.35 Tuning PID Controllers 2.35 Tuning PID Controllers P. W. MURRILL (1970) P. D. SCHNELLE, JR. (1985) B. G. LIPTÁK (1995) J. GERRY, M. RUEL, F. G. SHINSKEY (2005) In orer for the reaer to fully unerstan the content an concepts

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

A Single-phase Current Source PV Inverter with Power Decoupling Capability using an Active Buffer

A Single-phase Current Source PV Inverter with Power Decoupling Capability using an Active Buffer A Single-phase urrent Source P nverter with Power Decoupling apability using an Active Buffer Yoshiya Ohnuma Koji Orikawa Jun-ichi toh Nagaoka University of Technology 1603-1 Kamitomioka-cho Nagaoka ity

More information

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters Goal: In circuits with a time-varying voltage, the relationship between current and voltage is more complicated

More information

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers.

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers. University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIVE SYSTEMS Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented

More information

Experiment DC-DC converter

Experiment DC-DC converter POWER ELECTRONIC LAB Experiment-7-8-9 DC-DC converter Power Electronics Lab Ali Shafique, Ijhar Khan, Dr. Syed Abdul Rahman Kashif 10/11/2015 This manual needs to be completed before the mid-term examination.

More information

Clocking Techniques (II)

Clocking Techniques (II) Phase-Locke Loops Clocking Techniques (II) Ching-Yuan Yang National Chung-Hsing University Department of Electrical Engineering Three-stage ifferential current moe ring oscillator 0.8-m n-well CMOS process

More information

AC LAB ECE-D ecestudy.wordpress.com

AC LAB ECE-D ecestudy.wordpress.com PART B EXPERIMENT NO: 1 AIM: PULSE AMPLITUDE MODULATION (PAM) & DEMODULATION DATE: To study Pulse Amplitude modulation and demodulation process with relevant waveforms. APPARATUS: 1. Pulse amplitude modulation

More information

Using Chaos to Detect IIR and FIR Filters

Using Chaos to Detect IIR and FIR Filters PIERS ONLINE, VOL. 6, NO., 00 90 Using Chaos to Detect IIR an FIR Filters T. L. Carroll US Naval Research Lab, Coe 66, Washington, DC 07, USA Abstract In many signal processing applications, IIR an FIR

More information

Experiment 1: Instrument Familiarization

Experiment 1: Instrument Familiarization Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

More information

Assuming continuous conduction, the circuit has two topologies switch closed, and switch open. These are shown in Figures 2a and 2b. L i C.

Assuming continuous conduction, the circuit has two topologies switch closed, and switch open. These are shown in Figures 2a and 2b. L i C. EE46, Power Electronics, DC-DC Buck Converter Version Sept. 9, 011 Overview DC-DC converters provide efficient conversion of DC voltage from one level to another. Specifically, the term buck converter

More information

Electronic Circuits Laboratory EE462G Lab #4. DC Power Supply Circuits Using Diodes

Electronic Circuits Laboratory EE462G Lab #4. DC Power Supply Circuits Using Diodes Electronic Circuits Laboratory EE462G Lab #4 DC Power Supply Circuits Using Diodes Instrumentation This lab requires the use of: arious features of the oscilloscope and function generator, most of which

More information

Sample Exam Solution

Sample Exam Solution Session 44; 1/6 Sample Exam Solution Problem 1: You are given a single phase diode rectifier, as shown below. Do the following: L d I s v (t) s L s C d V d Load : 310V Xs : 0.4ohm at 400 Hz Vspk : 360V

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

A Single-stage Three-phase DC/AC Inverter Based on Cuk Converter for PV Application

A Single-stage Three-phase DC/AC Inverter Based on Cuk Converter for PV Application Darwish, Ahme an Williams, Barry an Holliay, Derrick (214) A singlestage threephase D/A inverter base on uk converter for PV application. In: 213 7th IEEE G onference an Exhibition (G). IEEE, [Piscataway,

More information

A Circuit Level Fault Model for Resistive Shorts of MOS Gate Oxide

A Circuit Level Fault Model for Resistive Shorts of MOS Gate Oxide Circuit Level Fault Moel for esistive Shorts of MOS Gate Oxie Xiang Lu, Zhuo Li, Wangqi Qiu, D. M. H. Walker an Weiping Shi Dept. of Electrical Engineering Texas &M University College Station, TX 77843-34,

More information

EXPERIMENT 5 : DIODES AND RECTIFICATION

EXPERIMENT 5 : DIODES AND RECTIFICATION EXPERIMENT 5 : DIODES AND RECTIFICATION Component List Resistors, one of each o 2 1010W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic

More information

ENG 100 Lab #2 Passive First-Order Filter Circuits

ENG 100 Lab #2 Passive First-Order Filter Circuits ENG 100 Lab #2 Passive First-Order Filter Circuits In Lab #2, you will construct simple 1 st -order RL and RC filter circuits and investigate their frequency responses (amplitude and phase responses).

More information

Wave-Induced Fluctuations in Underwater Light Field: Analysis of Data from RaDyO Experiments

Wave-Induced Fluctuations in Underwater Light Field: Analysis of Data from RaDyO Experiments DISTRIBUTION STATEMENT A. Approve for public release; istribution is unlimite. Wave-Inuce Fluctuations in Unerwater Light Fiel: Analysis of Data from RaDyO Experiments Dariusz Stramski Marine Physical

More information

Suppression of Short-circuit Current in Halt Sequence to StopTwo-level Inverter connected to PMSM during Regeneration Mode

Suppression of Short-circuit Current in Halt Sequence to StopTwo-level Inverter connected to PMSM during Regeneration Mode Suppression of Short-circuit Current in Halt Seuence to StopTwo-level Inverter connecte to PMSM uring Regeneration Moe Tsuyoshi Nagano an Jun-ichi Itoh Dept. of Electrical Engineering Nagaoka University

More information

A new method of converter transformer protection without commutation failure

A new method of converter transformer protection without commutation failure IOP Conference Series: Earth an Environmental Science PAPER OPEN ACCESS A new metho of converter transformer protection without commutation failure To cite this article: Jiayu Zhang et al 08 IOP Conf.

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS TESTING OF DIODE CLIPPING CIRCUITS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS TESTING OF DIODE CLIPPING CIRCUITS TESTING OF DIODE CLIPPING CIRCUITS Aim: Testing of diode clipping circuits. Apparatus required: Diode (1N4007/BY127), Resistor, DC regulated power supply, signal generator and CRO. Theory: The circuit

More information

Dynamic Wireless Power Transfer System for Electric Vehicles to Simplify Ground Facilities - Real-time Power Control and Efficiency Maximization -

Dynamic Wireless Power Transfer System for Electric Vehicles to Simplify Ground Facilities - Real-time Power Control and Efficiency Maximization - Worl Electric Vehicle Journal Vol. 8 - ISSN 232-6653 - 26 WEVA Page WEVJ8-5 EVS29 Symposium Montréal, Québec, Canaa, June 9-22, 26 Dynamic Wireless Power Transfer System for Electric Vehicles to Simplify

More information

2 Dept. of Electrical and Electronic Engineering ( ) = d

2 Dept. of Electrical and Electronic Engineering ( ) = d Close-Loop Control Design for a Three-Level Three-Phase Neutral-Point-Clampe Inverter Using the Optimize Nearest-Three Virtual-Space-Vector Moulation S. Busquets-Monge 1, J. D. Ortega 1, J. Boronau 1,

More information

LIST OF EXPERIMENTS. Sl. No. NAME OF THE EXPERIMENT Page No.

LIST OF EXPERIMENTS. Sl. No. NAME OF THE EXPERIMENT Page No. LIST OF EXPERIMENTS u Sl. No. NAME OF THE EXPERIMENT Page No. 1 2 3 4 Simulation of Transient response of RLC Circuit To an input (i) step (ii) pulse and(iii) Sinusoidal signals Analysis of Three Phase

More information

COVERTER FOR LED LIGHTING APPLICATIONS

COVERTER FOR LED LIGHTING APPLICATIONS PRACTICAL IMPLEMENTATION OF A LC RESONANT PRACTICAL IMPLEMENTATION TION OF A LC RESONANT COVERTER FOR LIGHTING APPLICATIONS Eng. Petre-Dorel TEODOSESC 1, Assis. Eng. Mircea BOJAN 1, Assis. Eng. Ioana-Cornelia

More information

Modeling, Simulation and Development of Supervision/Control System for Hybrid Wind Diesel System Supplying an Isolated Load

Modeling, Simulation and Development of Supervision/Control System for Hybrid Wind Diesel System Supplying an Isolated Load Moeling, Simulation an Development of Supervision/Control System for Hybri Win Diesel System Supplying an Isolate Loa Vigneshwaran Rajasekaran 1, Ael Merabet 1 an Hussein Ibrahim 2 1 Division of Engineering,

More information

EE 171. MOS Transistors (Chapter 5) University of California, Santa Cruz May 1, 2007

EE 171. MOS Transistors (Chapter 5) University of California, Santa Cruz May 1, 2007 EE 171 MOS Transistors (Chapter 5) Uniersity of California, Santa Cruz May 1, 007 FET: Fiel Effect Transistors MOSFET (Metal-Oxie-Semiconuctor) N-channel (NMOS) P-channel (PMOS) Enhancement type (V to

More information

Resonance in Circuits

Resonance in Circuits Resonance in Circuits Purpose: To map out the analogy between mechanical and electronic resonant systems To discover how relative phase depends on driving frequency To gain experience setting up circuits

More information

SECONDARY TRANSMISSION POWER OF COGNITIVE RADIOS FOR DYNAMIC SPECTRUM ACCESS

SECONDARY TRANSMISSION POWER OF COGNITIVE RADIOS FOR DYNAMIC SPECTRUM ACCESS SECONDARY TRANSMISSION POWER OF COGNITIVE RADIOS FOR DYNAMIC SPECTRUM ACCESS Xiaohua Li 1 1 Department of ECE State University of New York at Binghamton Binghamton, NY 139, USA {xli,jhwu1}@binghamton.eu

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Zhang Yun an Shi Jilong an Zhou Lei an Li Jing an Sumner Mark an Wang Ping an Xia Changliang (7) Wie input-voltage range boost three-level DC- DC converter with quasi-z source for fuel cell vehicles. IEEE

More information

Testing, Characterization, and Modeling of SiC Diodes for Transportation Applications

Testing, Characterization, and Modeling of SiC Diodes for Transportation Applications Testing, haracterization, an Moeling of ioes for Transportation Applications Burak Ozpineci 1,3 burak@ieee.org Leon M. Tolbert 1,2 tolbert@utk.eu Sye K. slam 1 sislam@utk.eu Fang Z. Peng 2,4 fzpeng@msu.eu

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting access to White Rose research papers Universities of Lees, Sheffiel an York http://eprints.whiterose.ac.uk/ White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/4495/

More information

Wavelet Transform Based Relay Algorithm for the Detection of Stochastic High Impedance Faults

Wavelet Transform Based Relay Algorithm for the Detection of Stochastic High Impedance Faults International Conference on Power Systems Transients IPST 3 in New Orleans, USA Wavelet Transm Base Relay Algorithm the Detection of Stochastic High Impeance Faults T. M. ai,.a. Snier an E. o () Dept.

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. ISSUE NO. : ISSUE DATE: REV. NO. : REV. DATE : PAGE:

More information

Jawaharlal Nehru Engineering College

Jawaharlal Nehru Engineering College Jawaharlal Nehru Engineering College Laboratory Manual EDC-I For Second Year Students Manual made by A.A.Sayar Author JNEC, Aurangabad 1 MGM S Jawaharlal Nehru Engineering College N-6, CIDCO, Aurangabad

More information