VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION

Size: px
Start display at page:

Download "VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION"

Transcription

1 VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION Sem / Branch : V /EIE Subject code /Title: EI2301/Industrial Electronics UNIT-1 POWER DEVICES 1. What are the different methods to turn on the thyristor? 2. What are the types of power transistor? 3. Define latching current. 4. Define holding current. 5. What is a snubber circuit? 6. Why IGBT is very popular nowadays? 7. What is the difference between power diode and signal diode? 8. What are the advantages of GTO over SCR? 9. What losses occur in a thyristor during working conditions? 10. What do you mean by load commutation? 11. What do you mean by controlled switch? 12. What is the need of driver circuit? 13. Why are IGBT becoming popular in their application to controlled converters? 14. What are the factors that influence the turn-off time of a thyristor? 15. Write the merits and demerits of MOSFET over BJT. 16. Distinguish between holding current and latching current of SCR 17. Define the term pinch off voltage of MOSFET. 18. How a thyristor can be protected against excess dv/dt? 19. In TRIAC which of the modes the sensitivity of gate is high. 20. How SCR differs from TRIAC? 21. State the advantages of IGBT over MOSFET. 22. Draw the VI characteristics of TRIAC. 23. What is commutation? What are the two main types of commutation? 24. Draw the VI characteristics of SCR and mark the holding current and latching current in the characteristic.

2 25. What are the advantages of GTO over BJT? 26. What is an MCT? 27. Define turn-on time and turn-off time of thyristor. 28. Define PIV and reverse recovery time of Power diodes. 29. What are the drawbacks of GTO? 30. Draw the turn on characteristics of TRIAC and mark the timings t d, t r and t on 1. (i) Draw the two transistor model of SCR and derive an expression for anode current. (8) (ii) Explain the switching characteristics of SCR (8) 2. Describe the various methods of thyristor turn on. 3. Explain the operation of MOSFET and IGBT 4. (i) Explain the principle of operation and draw the chacteristics of MOSFET. (8) (ii)discuss the different modes of operation of thyristor with the help of its static V-I characteristics. (8) 5. (i) Draw and explain the two transistor model of a SCR. Using this model describe the various mechanisms of turning on a thyristor. (8) (ii)explain the turn off characteristics of a GTO. (8) 6. Compare the following power devices with respect to their advantages and limitations. A) Power MOSFET b)igbt, c)triac d)mct. 7. Explain the protection of power devices in detail. 8. Draw the schematic and equivalent circuit of MCT and explain its operation. 9. Discuss the transfer, output and switching characteristics of power MOSFET. 10. Explain the switching performance of BJT with relevant waveforms indicating clearly the turn-on, turn-off times and their components. Also define the term Safe Operating Area. 11. Describe about any one driver and sunbber circuit for MOSFET 12. Explain the structure, different modes of operation and characteristics of TRIAC 13. Explain the static and switching characteristics of IGBT. UNIT -2 CONVERTERS 1. What is the function of freewheeling diodes in controlled rectifier? 2. What is commutation angle or overlap angle? 3. What are the advantages of six pulse converter?

3 4. What is meant by commutation? 5. What are the types of commutation? 6. Mention some of the applications of controlled rectifier. 7. What are the different methods of firing circuits for line commutated converter? 8. What are the advantages of three phase converter over single phase converter? 9. What is commutation angle or overlap angle? 10. What are the advantages of six pulse converter? 11. What is meant by natural and forced commutation? 12. What does ac voltage controller mean? 13. What are the applications of ac voltage controllers? 14. What are the advantages and disadvantages of ac voltage controllers? 15. What are the two methods of control in ac voltage controllers? 16. What is the difference between ON-OFF control and phase control? 17. What is meant by cyclo-converter? 18. What is meant by step-up cyclo-converters? 19. What is meant by step down cyclo-converters? 20. What are the types and applications of cyclo-converter? 1. Explain about Rectifiers and specify their applications. 2. Describe using a power circuit and relevant waveforms the working of a single phase full converter with RL load. 3. Write neat sketch and output voltage waveforms explain the working of single phase bridge rectifier. 4. Discuss the operation of single phase half wave rectifier with RE load.also derive its average output voltage equations. 5. Describe the working of single phase fully controlled bridge converter in the rectifying mode. And derive the expressions for average output voltage and RMS output voltage. 6. Describe the working of single phase Dual converter. 7. Describe the working of three phase Dual converter. 8. Derive the expressions for average output voltage and RMS output voltage of single phase semi converter.

4 9. Describe the working of 3 phase fully controlled bridge converter in the Rectifying mode. And derive the expressions for average output voltage and RMS output voltage. 10. Explain the operation of AC voltage controllers with neat diagram. 11. Explain the operation of single phase AC voltage controller with RL load. 12. Derive the expressions for average output voltage and RMS output voltage of three phase semi converter. 13. Derive the expressions for average output voltage and RMS output voltage of three phase cycloconverter. 14. Derive the expressions for average output voltage and RMS output voltage of single phase cyclo converter. 15. Explain the operation of three phase full converter and also derive the expression for its average output voltage. 16. (i) Explain the effect of source inductance in the operation of single phase fully controlled converter (8) (ii) Describe the working principle of single phase AC voltage controller with circuits and wave forms. (8) UNIT-III INVERTER AND CHOPPER 1. What is meant by dc chopper? 2. What are the advantages and applications of dc chopper? 3. What is meant by step-up and step-down chopper? 4. What is meant by duty-cycle? 5. What are the two types of control strategies? 6. What is meant by TRC? And what are the two types of TRC? 7. What is meant by PWM control in dc chopper? 8. What is meant by inverter? 9. What are the applications of an inverter? 10. What are the main classifications of inverter? 11. Why thyristors are not preferred for inverters? 12. Give two advantages of CSI. 13. What is meant by series inverter? 14. What is meant by parallel inverter? 15. What are the applications of a series inverter? 16. What is meant by McMurray inverter?

5 17. What are the applications of a CSI? 18. What is meant by PWM control in inverter? 19. What are the advantages of PWM control? 20. What is current source inverter? 21. What is meant by time ratio control in chopper? 22. What is constant frequency control of chopper? 23. What are the advantages of PWM inverter? 24. What are the different techniques of PWM techniques? 1. Describe the operation of series inverter with aid of diagrams. Describe an Expression for output frequency, current and voltages. What are the disadvantages of basic series inverter? 2. Describe the operation of parallel inverter with aid of diagrams. Describe an Expression for output frequency, current and voltages. What are the disadvantages of basic series inverter? 3. State different methods of voltage control inverters. Describe about PWM control in inverter. 4. Describe in detail about the types of chopper. Derive an expression for the average output voltage in terms of input dc voltage & duty cycle 5. Explain the operation of 3 phase bridge inverter for 180 degree mode of operation with aid of relevant phase and line voltage waveforms. 6. Explain the operation of 3 phase bridge inverter for 120 degree mode of operation with aid of relevant phase and line voltage waveforms. 7. Describe the principle of step-up chopper. Derive an expression for the average output voltage in terms of input dc voltage & duty cycle. 8. Describe the principle of current source inverter. Derive an expression for the average output voltage in terms of input dc voltage. 9. Describe the working of four quadrant chopper. 10. Explain the working of current commutated chopper with aid of circuit diagram and necessary waveforms. Derive an expression for its output voltage. 11. Explain the working of voltage commutated chopper with aid of circuit diagram and necessary waveforms. Derive an expression for its output voltage. 12. Draw the power circuit for step down DC chopper and explain its operation for inductive load. What is the role of freewheeling diode in such choppers? 13. Explain the operation of boost and buck boost converter with neat circuit diagrams and waveforms

6 14. Discuss the functioning of three phase VSI with neat circuit diagrams and waveforms UNIT 4- DC AND AC DRIVES 1. What are the three types of DC drives? 2. Write the basic EMF equation of dc motor. 3. Draw the torque/speed characteristics of dc series motor. 4. Define plugging. 5. What is regenerative braking? 6. What is dynamic braking? 7. Draw the block diagram of modern electric drive. 8. What is the difference between armature and field speed control method? 9. Write the slip equation of induction motor? 10. Define slip. 11. Draw the per phase equivalent circuit of three phase induction motor. 12. Define pull out torque. 13. Write the relation between power and torque of three phase induction motor. 14. Draw the torque/speed characteristics of three phase induction motor. 15. What are the methods used to control the speed of three phase induction motor? 16. What are the advantages of slip power recovery schemes? 17. What is the significance of self controlled synchronous motor drives? 18. Mention the merits of forced commutated ac-dc converters used in dc drives. 19. What are the two important slip power recovery schemes? 20. What are the methods used to control the speed of synchronous motor? 21. Draw the phasor diagram for cylindrical rotor motors. 22. What is the difference between electromagnetic torque and reluctant torque? 1. Give the concepts of electric drive. Give the two methods of speed control normally employed for dc motors. 2. Draw the equivalent circuit of a separately excited dc motor and derive the expressions for motor torque and armature voltage.

7 3. Describe with appropriate voltage and current wave forms the working of single phase full converter fed drive. 4. Explain briefly the following methods of braking a dc motor Regenerative braking Dynamic braking Plugging 5. Draw the circuit diagram and explain the operation of three-phase, half wave converter drives. 6. Draw and explain the operation of single phase half wave converter drive and also draw the related voltage and current waveforms. 7. Enumerate the various method of speed control of a three phase induction motor when fed through semiconductor devices? 8. Derive the expressions for power developed in a salient pole synchronous motor in terms of excitation voltage, load angle etc. neglect armature resistance. 9. Enumerate the various types of synchronous motor. Derive the expressions for power developed in a cylindrical-rotor synchronous motor in terms of excitation voltage, load angle etc. neglect armature resistance. 10. Explain with relevant circuit diagrams, both types of static scherbius drive for obtaining speeds below as well as above synchronous speed. 11. Describe static Kramer drive for the speed control of a three phase SRIM and show how the steady state torque is not influenced by whether a transformer is used or not. And derive the appropriate expressions to obtain speed-torque characteristics of static Kramer drive. UNIT-5 OTHER APPLICATIONS 1. What is an electronic Timer? What is its use? 2. Mention the advantages of electronic timer over electron tube timer. 3. What are the classifications of electronic timers? 4. What is a digital counter? 5. What is the need of voltage regulators? 6. What is voltage regulation? 7. Mention the types of voltage regulators. 8. What is SMPS? 9. Mention the advantages and disadvantages of SMPS.

8 10. What is UPS? 11. What are the topologies of UPS? 12. What is high frequency heating? 13. Mention the two types of heating. 14. What is an induction heating? 15. What is Dielectric heating? 16. Mention the advantages and disadvantages of induction heating. 17. Mention some of the applications of induction heating. 18. Compare induction heating and dielectric heating. 19. Name the different topologies of un interrupted power supply. 20. What is offline UPS? 21. What is the necessity of UPS and draw its block diagram. 1. Explain the operation of Zener diode voltage regulator. 2. Explain the operation of transistor series regulator. 3. Draw the block diagram and explain the operation of SMPS which can be employed for low power applications and other for high power applications. 4. Explain in detail about the operation of UPS. 5. Draw and explain the operation of induction heating. 6. Explain in detail about the principle and application of Dielectric heating. 7. Write notes on (i) Electronic timers (ii) Digital Counters 8. Discuss the operation of on line and off line UPS with neat block diagram. 9. With neat circuit diagram explain the operation of switched mode and resonant ac power supply used in UPS. 10. With a neat sketch, explain the working of switched mode power supply.

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Power Diode EE2301 POWER ELECTRONICS UNIT I POWER SEMICONDUCTOR DEVICES PART A 1. What is meant by fast recovery

More information

11. Define the term pinch off voltage of MOSFET. (May/June 2012)

11. Define the term pinch off voltage of MOSFET. (May/June 2012) Subject Code : EE6503 Branch : EEE Subject Name : Power Electronics Year/Sem. : III /V Unit - I PART-A 1. State the advantages of IGBT over MOSFET. (Nov/Dec 2008) 2. What is the function of snubber circuit?

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

UNIVERSITY QUESTIONS. Unit-1 Introduction to Power Electronics

UNIVERSITY QUESTIONS. Unit-1 Introduction to Power Electronics UNIVERSITY QUESTIONS Unit-1 Introduction to Power Electronics 1. Give the symbol and characteristic features of the following devices. (i) SCR (ii) GTO (iii) TRIAC (iv) IGBT (v) SIT (June 2012) 2. What

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER EE6503 - POWER ELECTRONICS Regulation 2013

More information

Power Electronics (Sample Questions) Module-1

Power Electronics (Sample Questions) Module-1 Module-1 Short Questions (Previous Years BPUT Questions 1 to 18) 1. What are the conditions for a thyristor to conduct? di 2. What is the common method used for protection? dt 3. What is the importance

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad I INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-000 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name : POWER ELECTRONICS Course Code : AEE0

More information

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K.

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K. POWER ELECTRONICS S.C. Tripathy Alpha Science International Ltd. Oxford, U.K. Contents Preface vii 1. SEMICONDUCTOR DIODE THEORY 1.1 1.1 Introduction 1.1 1.2 Charge Densities in a Doped Semiconductor 1.1

More information

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16]

(a) average output voltage (b) average output current (c) average and rms values of SCR current and (d) input power factor. [16] Code No: 07A50204 R07 Set No. 2 1. A single phase fully controlled bridge converter is operated from 230 v, 50 Hz source. The load consists of 10Ω and a large inductance so as to reach the load current

More information

Power Electronics (BEG335EC )

Power Electronics (BEG335EC ) 1 Power Electronics (BEG335EC ) 2 PURWANCHAL UNIVERSITY V SEMESTER FINAL EXAMINATION - 2003 The figures in margin indicate full marks. Attempt any FIVE questions. Q. [1] [a] A single phase full converter

More information

Name of chapter & details

Name of chapter & details Course Title Course Code Power Electronics-I EL509 Lecture : 03 / 03 Course Credit / Hours Practical : 01 / 02 Tutorial : 00 / 00 Course Learning Outcomes Total : 04 / 05 At the end of the session student

More information

Sascha Stegen School of Electrical Engineering, Griffith University, Australia

Sascha Stegen School of Electrical Engineering, Griffith University, Australia Sascha Stegen School of Electrical Engineering, Griffith University, Australia Electrical Machines and Drives Motors Generators Power Electronics and Drives Open-loop inverter-fed General arrangement of

More information

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota POWER ELECTRONICS Converters, Applications, and Design THIRD EDITION NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota TORE M. UNDELAND Department of Electrical

More information

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS Chapter 1 : Power Electronics Devices, Drivers, Applications, and Passive theinnatdunvilla.com - Google D Download Power Electronics: Devices, Drivers and Applications By B.W. Williams - Provides a wide

More information

EE POWER ELECTRONICS

EE POWER ELECTRONICS EE6503 - POWER ELECTRONICS UNIT III - DC TO DC CONVERTER PART A 1.What is meant by time ratio or PWM control (duty cycle) of a DC chopper? (M/J16) The ratio of a period to the total time period is known

More information

Control of DC Motors by Choppers. Dr. D G Padhan PSD 1

Control of DC Motors by Choppers. Dr. D G Padhan PSD 1 Control of DC Motors by Choppers Dr. D G Padhan PSD 1 DC Chopper a static power electronic device that converts fixed dc input voltage to a variable dc output voltage considered as dc equivalent of an

More information

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE 3.1 STATOR VOLTAGE CONTROL The induction motor 'speed can be controlled by varying the stator voltage. This method of speed control is known as stator

More information

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state.

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state. 1991 1.12 The operating state that distinguishes a silicon controlled rectifier (SCR) from a diode is (a) forward conduction state (b) forward blocking state (c) reverse conduction state (d) reverse blocking

More information

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: POWER ELECTRONICS (COURSE CODE: 3350903) Diploma Programme in which this course is offered Semester in which offered

More information

Type of loads Active load torque: - Passive load torque :-

Type of loads Active load torque: - Passive load torque :- Type of loads Active load torque: - Active torques continues to act in the same direction irrespective of the direction of the drive. e.g. gravitational force or deformation in elastic bodies. Passive

More information

2 Marks - Question Bank. Unit 1- INTRODUCTION

2 Marks - Question Bank. Unit 1- INTRODUCTION Two marks 1. What is power electronics? EE6503 POWER ELECTRONICS 2 Marks - Question Bank Unit 1- INTRODUCTION Power electronics is a subject that concerns the applications electronics principles into situations

More information

INDUSTRIAL AUTOMATION

INDUSTRIAL AUTOMATION Department of Technical Education DIPLOMA COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING 1 SL.No 1 INDUSTRIAL AUTOMATION Subject Title : INDUSTRIAL AUTOMATION Subject Code : EC Hours Per Week : 04

More information

Power Electronics. Electrical Engineering. for

Power Electronics. Electrical Engineering.   for Power Electronics for Electrical Engineering By www.thegateacademy.com Syllabus Syllabus for Power Electronics Characteristics of Semiconductor Power Devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT;

More information

POWER ELECTRONICS PO POST GRAD POS UATE 2010 AC Ch AC o Ch p o per Prepare Prep d are by: d Dr. Gamal Gam SOwilam SOwila 11 December 2016 ١

POWER ELECTRONICS PO POST GRAD POS UATE 2010 AC Ch AC o Ch p o per Prepare Prep d are by: d Dr. Gamal Gam SOwilam SOwila 11 December 2016 ١ POWER ELECTRONICS POST GRADUATE 2010 AC Chopper Prepared by: Dr. Gamal SOwilam 11 December 2016 ١ 1. Introduction AC Chopper is An AC to AC Converter employs to vary the rms voltage across the load at

More information

POWER ELECTRONICS TWO MARK QUESTIONS & ANSWERS Class : V SEM EEE UNIT I 1. What is power electronics? Power electronics is a subject that concerns the applications electronics principles into situations

More information

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! Power electronics refers to control and conversion of electrical power by power semiconductor

More information

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY (Approved by A.I.C.T.E & Affiliated to JNTU,Kakinada) Jonnada (Village), Denkada (Mandal), Vizianagaram Dist 535 005 Phone No. 08922-241111, 241112 E-Mail: lendi_2008@yahoo.com

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS UNIT-I - PN DIODEAND ITSAPPLICATIONS 1. What is depletion region in PN junction?

More information

ELG3336: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

ELG3336: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! ELG3336: Power Electronics Systems Objective To Realize and Design arious Power Supplies and Motor Drives! Power electronics refers to control and conversion of electrical power by power semiconductor

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad - 500 043 CIVIL ENGINEERING ASSIGNMENT Name : Electrical and Electronics Engineering Code : A30203 Class : II B. Tech I Semester Branch

More information

ELECTRONIC CONTROL OF A.C. MOTORS

ELECTRONIC CONTROL OF A.C. MOTORS CONTENTS C H A P T E R46 Learning Objectives es Classes of Electronic AC Drives Variable Frequency Speed Control of a SCIM Variable Voltage Speed Control of a SCIM Chopper Speed Control of a WRIM Electronic

More information

CHIEF ENGINEER REG III/2 MARINE ELECTROTECHNOLOGY

CHIEF ENGINEER REG III/2 MARINE ELECTROTECHNOLOGY CHIEF ENGINEER REG III/2 MARINE ELECTROTECHNOLOGY LIST OF TOPICS 1 Electric Circuit Principles 2 Electronic Circuit Principles 3 Generation 4 Distribution 5 Utilisation The expected learning outcome is

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

Power Electronics Power semiconductor devices. Dr. Firas Obeidat

Power Electronics Power semiconductor devices. Dr. Firas Obeidat Power Electronics Power semiconductor devices Dr. Firas Obeidat 1 Table of contents 1 Introduction 2 Classifications of Power Switches 3 Power Diodes 4 Thyristors (SCRs) 5 The Triac 6 The Gate Turn-Off

More information

Literature Review. Chapter 2

Literature Review. Chapter 2 Chapter 2 Literature Review Research has been carried out in two ways one is on the track of an AC-AC converter and other is on track of an AC-DC converter. Researchers have worked in AC-AC conversion

More information

DC Chopper. Prof. Dr. Fahmy El-khouly

DC Chopper. Prof. Dr. Fahmy El-khouly DC Chopper Prof. Dr. Fahmy El-khouly Definitions: The power electronic circuit which converts directly from dc to dc is called dc-to-dc converter or dc-chopper. Chopper is a dc to dc transformer: The input

More information

Topic wise Tests. Complex Variables, Numerical Methods, Probability and Statistics & Transfrom Theory.

Topic wise Tests. Complex Variables, Numerical Methods, Probability and Statistics & Transfrom Theory. Topic wise Tests Each test carries 25 marks and 45 minutes duration Test consists of 5 one mark questions and 10 two marks questions Tests will be activated at 2:00 pm on scheduled day Test No Topic code

More information

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1

Module 4. AC to AC Voltage Converters. Version 2 EE IIT, Kharagpur 1 Module 4 AC to AC Voltage Converters Version EE IIT, Kharagpur 1 Lesson 9 Introduction to Cycloconverters Version EE IIT, Kharagpur Instructional Objectives Study of the following: The cyclo-converter

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016)

3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6503 POWER ELECTRONICS UNIT I- POWER SEMI-CONDUCTOR DEVICES PART - A 1. What is a SCR? A silicon-controlled rectifier

More information

Unit-3-A. AC to AC Voltage Converters

Unit-3-A. AC to AC Voltage Converters Unit-3-A AC to AC Voltage Converters AC to AC Voltage Converters This lesson provides the reader the following: AC-AC power conversion topologies at fixed frequency Power converter options available for

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information

CIRCUIT ANALYSIS LAB. List of Experiments (Electrical & Electronics Engineering)

CIRCUIT ANALYSIS LAB. List of Experiments (Electrical & Electronics Engineering) CIRCUIT ANALYSIS LAB List of Experiments (Electrical & Electronics Engineering) Verification of principle of superposition with dc and ac Sources. Verification of Thevenin, Norton's theorems in ac circuits.

More information

POWER ELECTRONICS LAB

POWER ELECTRONICS LAB MUFFAKHAM JAH COLLEGE OF ENGINEERING & TECHNOLOGY Banjara Hills Road No 3, Hyderabad 34 www.mjcollege.ac.in DEPARTMENT OF ELECTRICAL ENGINEERING LABORATORY MANUAL POWER ELECTRONICS LAB For B.E. III/IV

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING QUESTION BANK IV SEMESTER EI6402 ELECTRICAL MACHINES Regulation 2013 Academic

More information

ECET 211 Electric Machines & Controls Lecture 9-1 Adjustable-Speed Drives and PLC Installations (1 of 2)

ECET 211 Electric Machines & Controls Lecture 9-1 Adjustable-Speed Drives and PLC Installations (1 of 2) ECET 211 Electric Machines & Controls Lecture 9-1 Adjustable-Speed Drives (1 of 2) Text Book: Electric Motors and Control Systems, by Frank D. Petruzella, published by McGraw Hill, 2015. Paul I-Hai Lin,

More information

Tagore Engineering College Rathanamangalam, Melkottaiyur ( Post ), Vandular via Chennai 127

Tagore Engineering College Rathanamangalam, Melkottaiyur ( Post ), Vandular via Chennai 127 Tagore Engineering College Rathanamangalam, Melkottaiyur ( Post ), Vandular via Chennai 127 Department of Electrical and Electronics Engineering M.E - Power Electronics and Drives PX 7103 Analysis and

More information

Electrical Engineering EE / EEE. Postal Correspondence Course. Power Electronics. GATE, IES & PSUs

Electrical Engineering EE / EEE. Postal Correspondence Course. Power Electronics. GATE, IES & PSUs Power Electronics-EE GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Electrical Engineering EE / EEE Postal Correspondence Course Power Electronics GATE, IES & PSUs Power Electronics-EE GATE, IES, PSU 2 C O N T

More information

Dr.Arkan A.Hussein Power Electronics Fourth Class. Operation and Analysis of the Three Phase Fully Controlled Bridge Converter

Dr.Arkan A.Hussein Power Electronics Fourth Class. Operation and Analysis of the Three Phase Fully Controlled Bridge Converter Operation and Analysis of the Three Phase Fully Controlled Bridge Converter ١ Instructional Objectives On completion the student will be able to Draw the circuit diagram and waveforms associated with a

More information

COURSE OBJECTIVES. Academic Year : Name of the Faculty: G SWAPNA

COURSE OBJECTIVES. Academic Year : Name of the Faculty: G SWAPNA Academic Year : 2013-2014 COURSE OBJECTIVES YearII Section: B On completion of this Subject/Course the student shall be able to: S.No 1 2 Objectives To provide the students a deep insight in to the working

More information

ELECTRICAL ENGINEERING (CODE NO. 10) PAPER - I

ELECTRICAL ENGINEERING (CODE NO. 10) PAPER - I ELECTRICAL ENGINEERING (CODE NO. 10) PAPER - I 1. Circuit theory Circuit Components, Network graphs, KCL, KVL, Circuit analysis methods: Nodal analysis, mesh analysis, basic network theorems; transient

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 8, August -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Analysis

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR- 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT I PN JUNCTION DEVICES 1. Define Semiconductor.

More information

Frequently Asked Questions GE6252 BEEE UNIT I ELECTRICAL CIRCUITS AND MEASUREMENTS

Frequently Asked Questions GE6252 BEEE UNIT I ELECTRICAL CIRCUITS AND MEASUREMENTS Frequently Asked Questions GE6252 BEEE UNIT I ELECTRICAL CIRCUITS AND MEASUREMENTS 1. What is charge? 2. Define current. 3. Under what condition AC circuit said to be resonant? 4. What do you meant by

More information

POWER ELECTRONICS LAB MANUAL

POWER ELECTRONICS LAB MANUAL JIS College of Engineering (An Autonomous Institution) Department of Electrical Engineering POWER ELECTRONICS LAB MANUAL Exp-1. Study of characteristics of an SCR AIM: To obtain the V-I characteristics

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

Other Electronic Devices

Other Electronic Devices Other Electronic Devices 1 Contents Field-Effect Transistors(FETs) - JFETs - MOSFETs Insulate Gate Bipolar Transistors(IGBTs) H-bridge driver and PWM Silicon-Controlled Rectifiers(SCRs) TRIACs Device Selection

More information

Fundamentals of Power Electronics

Fundamentals of Power Electronics Fundamentals of Power Electronics SECOND EDITION Robert W. Erickson Dragan Maksimovic University of Colorado Boulder, Colorado Preface 1 Introduction 1 1.1 Introduction to Power Processing 1 1.2 Several

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK : ELECTRICAL AND ELECTRONICS ENGINEERING : A40203

More information

PAPER-II (Subjective)

PAPER-II (Subjective) PAPER-II (Subjective) 1.(A) Choose and write the correct answer from among the four options given in each case for (a) to (j) below: (a) Improved commutation in d.c machines cannot be achieved by (i) Use

More information

ELECTRIC DRIVE LAB Laboratory Manual

ELECTRIC DRIVE LAB Laboratory Manual DEV BHOOMI INSTITUTE OF TECHNOLOGY CHAKRATA ROAD, NAVGAOUN MANDUWALA, UTTARAKHAND Programs: B.TECH. (Electrical and Electronics Engineering) ELECTRIC DRIVE LAB Laboratory Manual PREPARED BY ASHISH KUKRETI,

More information

BHARATHIDASAN ENGINEERING COLLEGE, NATTRAMPALLI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING UNIT I

BHARATHIDASAN ENGINEERING COLLEGE, NATTRAMPALLI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING UNIT I BHARATHIDASAN ENGINEERING COLLEGE, NATTRAMPALLI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING FAQ-EE6010 HIGH VOLTAGE DC TRANSMISSION UNIT I Part -A 1. List out two merits of AC and DC transmission

More information

16 Basic Control Systems

16 Basic Control Systems 16 Basic Control Systems 16.1 Power Semiconductor-Controlled Drives 16.2 Feedback Control Systems 16.3 Digital Control Systems 16.4 Learning Objectives 16.5 Practical Application: A Case Study Digital

More information

Conventional Paper-II-2011 Part-1A

Conventional Paper-II-2011 Part-1A Conventional Paper-II-2011 Part-1A 1(a) (b) (c) (d) (e) (f) (g) (h) The purpose of providing dummy coils in the armature of a DC machine is to: (A) Increase voltage induced (B) Decrease the armature resistance

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS iii xii xiii xxi 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 LITERATURE SURVEY 1 1.3 OBJECTIVES

More information

The typical ratio of latching current to holding current in a 20 A thyristor is (A) 5.0 (B) 2.0 (C) 1.0 (D) 0.5

The typical ratio of latching current to holding current in a 20 A thyristor is (A) 5.0 (B) 2.0 (C) 1.0 (D) 0.5 CHAPTER 9 POWER ELECTRONICS YEAR 0 ONE MARK MCQ 9. MCQ 9. A half-controlled single-phase bridge rectifier is supplying an R-L load. It is operated at a firing angle α and the load current is continuous.

More information

High Voltage DC Transmission 2

High Voltage DC Transmission 2 High Voltage DC Transmission 2 1.0 Introduction Interconnecting HVDC within an AC system requires conversion from AC to DC and inversion from DC to AC. We refer to the circuits which provide conversion

More information

UNIT I PN JUNCTION DEVICES

UNIT I PN JUNCTION DEVICES UNIT I PN JUNCTION DEVICES 1. Define Semiconductor. 2. Classify Semiconductors. 3. Define Hole Current. 4. Define Knee voltage of a Diode. 5. What is Peak Inverse Voltage? 6. Define Depletion Region in

More information

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES Chapter-3 CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES This chapter is based on the published articles, 1. Nitai Pal, Pradip Kumar Sadhu, Dola Sinha and Atanu Bandyopadhyay, Selection

More information

MODELING AND SIMULATION OF Z- SOURCE INVERTER

MODELING AND SIMULATION OF Z- SOURCE INVERTER From the SelectedWorks of suresh L 212 MODELING AND SIMULATION OF Z- SOURCE INVERTER suresh L Available at: https://works.bepress.com/suresh_l/1/ MODELING AND SIMULATION OF Z-SOURCE INVERTER 1 SURESH L.,

More information

III B. Tech. II Sem (EC151)MICROPROCESSORS AND INTERFACING

III B. Tech. II Sem (EC151)MICROPROCESSORS AND INTERFACING (EC151)MICROPROCESSORS AND INTERFACING COURSE OBJECTIVES: Students will be able to. 1. Outline the history of computing devices. 2. Describe the architecture of 8086 microprocessors. 3. Develop programs

More information

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Lakshmi M Shankreppagol 1 1 Department of EEE, SDMCET,Dharwad, India Abstract: The power requirements for the microprocessor

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad I INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-500043 CIVIL ENGINEERING TUTORIAL QUESTION BANK Course Name : BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Course Code : AEE018

More information

DE71/DE110 POWER ELECTRONICS DEC 2015

DE71/DE110 POWER ELECTRONICS DEC 2015 Q.2 a. What is power loss in an ideal switch? Explain the conduction losses in a bipolar junction transistor with the help of circuit diagram. (8) Answer: IETE 1 b. Explain, how the power diode must be

More information

1. (a) Determine the value of Resistance R and current in each branch when the total current taken by the curcuit in figure 1a is 6 Amps.

1. (a) Determine the value of Resistance R and current in each branch when the total current taken by the curcuit in figure 1a is 6 Amps. Code No: 07A3EC01 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 ELECTRICAL AND ELECTRONICS ENGINEERING ( Common to Civil Engineering, Mechanical Engineering, Mechatronics, Production

More information

Switching and Semiconductor Switches

Switching and Semiconductor Switches 1 Switching and Semiconductor Switches 1.1 POWER FLOW CONTROL BY SWITCHES The flow of electrical energy between a fixed voltage supply and a load is often controlled by interposing a controller, as shown

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS FREQUENTLY ASKED QUESTIONS UNIT-1 SUBJECT : ELECTRONIC DEVICES AND CIRCUITS SUBJECT CODE : EC6202 BRANCH: EEE PART -A 1. What is meant by diffusion current in a semi conductor? (APR/MAY 2010, 2011, NOV/DEC

More information

EPC2201 Power Electronic Devices Tutorial Sheet

EPC2201 Power Electronic Devices Tutorial Sheet EPC2201 Power Electronic Devices Tutorial heet 1. The ON state forward voltage drop of the controlled static switch in Figure 1 is 2V. Its forward leakage current in the state is 2mA. It is operated with

More information

List of Experiments. 1. Steady state characteristics of SCR, IGBT and MOSFET. (Single phase half wave rectifier). (Simulation and hardware).

List of Experiments. 1. Steady state characteristics of SCR, IGBT and MOSFET. (Single phase half wave rectifier). (Simulation and hardware). (Scheme-2013) List of Experiments 1. Steady state characteristics of SCR, IGBT and MOSFET 2. nalog and digital firing methods for SCR (Single phase half wave rectifier). (Simulation and hardware). 3. Full

More information

((caqsd C c N. Q.No 1 a) Explain the various Connecting devices used in computer

((caqsd C c N. Q.No 1 a) Explain the various Connecting devices used in computer ((caqsd C c N E rick )( QP Code: 5985 (3 Hours) (Total Marks : 80 Instructions to candidates 1) Q.No. 1 is compulsory. 2) Solve any 3 questions from the remaining 5 questions. 3) Figures on right side

More information

University Visvesvaraya College of Engineering

University Visvesvaraya College of Engineering University Visvesvaraya College of Engineering K.R.Circle, -560001 INVITATION FOR QUOTATION TEQIP-II/2013/KA2G01/Shopping/25 29-Nov-2013 To, Sub: Invitation for Quotations for supply of Goods Dear Sir,

More information

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form JOHANN MINIBÖCK power electronics consultant Purgstall 5 A-3752 Walkenstein AUSTRIA Phone: +43-2913-411

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters Straightforward questions are marked! Tripos standard questions are marked * Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits dc to ac converters! 1. A three-phase bridge converter using

More information

Electrical And Electronics Engg

Electrical And Electronics Engg Electrical And Electronics Engg Rectifier Cubical panel type Voltage 3Ph 440V /(0-300V) DC 3Ph Isolation transformer-20kva Thyristor rating Current -300A/PIV - 1500V over load protection and necessary

More information

Low Cost Power Converter with Improved Performance for Switched Reluctance Motor Drives

Low Cost Power Converter with Improved Performance for Switched Reluctance Motor Drives ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Industrial Fully Control Dc Motor Drive without Microcontroller. Four Quadrant Speed Control of DC Motor Using MOSFET and Push Button Switch

Industrial Fully Control Dc Motor Drive without Microcontroller. Four Quadrant Speed Control of DC Motor Using MOSFET and Push Button Switch International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 Special Issue SIEICON-2017,April -2017 e-issn : 2348-4470 p-issn : 2348-6406 Industrial

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 3, Issue 1, January -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Design

More information

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Lecture -1 Introduction to DC-DC converter Good day to all of you, we

More information

Experiment 2 IM drive with slip power recovery

Experiment 2 IM drive with slip power recovery University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIE SYSTEMS Experiment 2 IM drive with slip power recovery 1. Introduction This experiment introduces

More information

8/4/2011. Electric Machines & Drives. Chapter 21 Example of gating pulses on SCR condition

8/4/2011. Electric Machines & Drives. Chapter 21 Example of gating pulses on SCR condition Welcome to Electric Machines & Drives thomasblairpe.com/emd Session 10 Fundamental Elements of Power Electronics (Part 2) USF Polytechnic Engineering tom@thomasblairpe.com Session 10: Power Electronics

More information

Chapter 6 Soft-Switching dc-dc Converters Outlines

Chapter 6 Soft-Switching dc-dc Converters Outlines Chapter 6 Soft-Switching dc-dc Converters Outlines Classification of soft-switching resonant converters Advantages and disadvantages of ZCS and ZVS Zero-current switching topologies The resonant switch

More information

Workshop Matlab/Simulink in Drives and Power electronics Lecture 4

Workshop Matlab/Simulink in Drives and Power electronics Lecture 4 Workshop Matlab/Simulink in Drives and Power electronics Lecture 4 : DC-Motor Chopper design SimPowerSystems Ghislain REMY Jean DEPREZ 1 / 20 Workshop Program 8 lectures will be presented based on Matlab/Simulink

More information

Principle Of Step-up Chopper

Principle Of Step-up Chopper Principle Of Step-up Chopper L + D + V Chopper C L O A D V O 1 Step-up chopper is used to obtain a load voltage higher than the input voltage V. The values of L and C are chosen depending upon the requirement

More information

Power Electronics. Contents

Power Electronics. Contents Power Electronics Overview Contents Electronic Devices Power, Electric, Magnetic circuits Rectifiers (1-ph, 3-ph) Converters, controlled rectifiers Inverters (1-ph, 3-ph) Power system harmonics Choppers

More information

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE Mrs. M. Rama Subbamma 1, Dr. V. Madhusudhan 2, Dr. K. S. R. Anjaneyulu 3 and Dr. P. Sujatha 4 1 Professor, Department of E.E.E, G.C.E.T, Y.S.R Kadapa,

More information

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering UNIT I DC MACHINES Three phase circuits, a review. Construction of DC machines Theory of operation of DC generators Characteristics of DC generators Operating principle of DC motors Types of DC motors

More information

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE Bhushan P. Mokal 1, Dr. K. Vadirajacharya 2 1,2 Department of Electrical Engineering,Dr.

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics Calhoon MEBA Engineering School Study Guide for Proficiency Testing Industrial Electronics January 0. Which factors affect the end-to-end resistance of a metallic conductor?. A waveform shows three complete

More information