T1 Tutorial description

Size: px
Start display at page:

Download "T1 Tutorial description"

Transcription

1 This tutorial, entitled : T Tutorial description Visible light communications in smart road infrastructures, reports four work areas: Admission Regulation of Traffic to Improve Public Transport in Urban Areas Essays for optical communications Indoor positioning using a-sich technology Connected cars: road to vehicle communication through visible light

2 II Work Area: Essays for optical communications Schematic diagram of the transducers essays. An indoor, line-of-sight visible light communication link.

3 Motivation and Objectives Optoelectronic WDM system: MAIN WORK AREAS: RESEARCH QUESTION : System Architecture Optoelectronic Algorithm Interface Experimental Design Applications Which kind of amorphous Si/SiC transducers, should be developed to allow the recovery of specific wavelengths for the transmission over WDM networks, in the visible spectrum, that could compete with conventional detection electronic devices in optical communications industry?

4 Outline State of art: Experimental Design Work Area. The original idea. ias controlled device: Voltage and Optical bias. Self amplification. Photonic filters. Photocurrent (a),4 NC,3, 75 Hz,, p-i(a-sic:h)-n/ito/p-i(a-si:h)-n - V -5 V V 3 V Dynamical effects: A two stage active circuit. Optoelectronic simulator. Wavelength (nm) Reconfigurable active filters: Opto-electronic conversion. Optoelectronic logic functions. Conclusions and future trends.

5 State of art of a-si/sic Photodiodes Produced by PECVD The thickness of the front photodiode was optimized for blue collection and red transmittance The thickness of the back photodiode was adjusted to achieve high collection in the red spectral range a) Photocurrent (A), #M69(mWcm - ),8 #M63(mWcm - ),6 #M79 (mwcm - ) -x -8,4 #M69(, L =) -4x -8, #M63( whithout,8 L =) optical bias -6x -8,6 S =65 nm #M79( L =),4 NC#5 (pin/pin) L =55 nm L =65 nm, -8x -8 L =45 nm, Sensitivity (A/W) Wavelength Voltage (V)(nm) p-i-n p-i-n Green lue Color rejections function on the applied bias Light-to-dark Sensitivity depends strongly on the carbon concentration P. Louro, M. Fernandes, A. Fantoni, G. Lavareda, C. Nunes de Carvalho, R. Schwarz and M. Vieira An amorphous SiC/Si image photodetector with voltageselectable spectral response Thin Solid Films, 5-5, 6, pp.67-7

6 Voltage controlled optical filter Photocurrent (a) (A).3 NC p-i'(a-sic:h)-n-p-i(a-si:h)-n Hz ITO/pi (a-sic:h)n/ito/pi(a-si:h)n/ito Front cell ack cell -5V V Wavelength (nm) Wavelength (nm) - V -5 V V 3 V ack diode Cuts the blue oth front and back diodes act as optical filters Front confining, diode Cuts respectively, the red Voltage the blue M. Vieira, P. Louro, controlled and the red M. Fernandes, M.A. spectral optical carriers, Vieira, A. Fantoni response. while the green ones are absorbed and M. arata, Large area a-sic:h WDM devices for signal multiplexing across and both. demultiplexing in the visible spectrum, Thin Solid Films 57 (9), pp

7 Operation Principle Photocurrent (A) R G R Wavelength Division Demultiplexing RG V=-8V V=V G Time (ms) R&G& Wavelength Division Multiplexing V Experimental Design Work Area soma (-8V) V R(-8V) -8V G(-8) ### () ### R() ### G() ### Led R ### Led G ### Led ### ### ### InOx n (a-sic:h) i (a-si:h) nm p (a-sic:h) n (a-sic:h) - i (a-sic:h) nm p (a-sic:h) InOx Substrate G R ack diode Front diode M. Vieira, M. Fernandes, P. Louro, A. Fantoni, M. arata, M A Vieira, Multilayered a-sic:h device for Wavelength-Division (de)multiplexing applications in the visible spectrum Mater. Res. Soc. Symp. Proc. Volume 66 (8), pp.5-3 DOI:.557/PROC-66-A8-

8 Optical bias controlled optical filter Optical bias Channels Front diode ack diode Optical bias Optical bias p G i G TCO nm (a-sic:h) n p i nm (a-si:h) n TCO Optical bias GLASS Applied Voltage Photocurrent (na) No background Red background Green background lue background Violet background p-i'-n diode p-i-n diode V=-8V 5 Hz Wavelength (nm) Normalized Photocurrent C N35 R35 G35 35 Violtet 35 Photocurrent (na) ack optical bias p-i'-n diode p-i-n diode V=-8V 5 Hz Wavelength (nm) Normalized Photocurrent

9 Dynamics of electrical model with light biasing control Two stage active circuit Two amplifying elements Two capacitive filter sections Q n n p p i n p I 3 I ac equivalent circuit i n Q I 4 I Two optical gate connections Light triggering Electrically programmable Light iasing Control M A Vieira, M. Vieira, M. Fernandes, A. Fantoni, P. Louro, M. arata, Amorphous and Polycrystalline Thin-Film Silicon Science and Technology 9, MRS Proceedings Volume 53, A8-3 Charge storage modelled by space-charge layer

10 State-space realization of the photonics active filters Dynamics of a parallel bucket connection How does the system input affect the state change?? i, Input variables V V,, State variables Control matrix State-space realization of the equivalent circuit dt A System matrix M. A. Vieira, M. Vieira, J. Costa, P. Louro, M. Fernandes, A. Fantoni, Double pin Photodiodes with two Optical Gate Connections for Light Triggering: A capacitive twophototransistor model in Sensors & Transducers Journal Vol., Special Issue, February, pp.96-. C Output matrix How does the current state affect the state change?? dv dt, RC RC Output variables it v, R RC R C R C v, C ( t) i C i t, ( t)

11 Optoelecronic simulator. Electrical model Input ackground Multiplexed channels (R signal (R G ) ) i (t) Simulator Dynamics of electrical model with light biasing control Vieira, M.A., Louro, P., Vieira, M., Fantoni, A., Steiger-Garção, A. Light-activated amplification in Si-C tandem devices: A capacitive active filter model IEEE SENSORS JOURNAL, VOL., NO. 6, JUNE pp DOI:.9/JSEN /C. v dt /R C v i(t) /R C i (t) /C. v /R C dt v /R /R C -/R C

12 Validation of the model MATLA as a programming environment and the four order Runge-Kutta method to solve the state equations Under negative dc. Without background Encoding: 8-levels Front Red background Encoding: 4-levels Photocurrent (A),,, 5 R R =.9 R = R G =.4 Red background no background) I R,,, Time (ms) I IGpi n I Gpin = =64 nm,5x -5,x -5 experimental (solid,5x lines) -5,x -5 5,x -6 simulated (symbols), IR ### IGR ### IG ### I ### Ion ### I ### -8V ### ### C Good agreement between experimental and simulated data M A Vieira, M. Vieira, M. Fernandes, A. Fantoni, P. Louro, M. arata, Amorphous and Polycrystalline Thin-Film Silicon Science and Technology 9, MRS Proceedings Volume 53, A8-3

13 Optical encoded data stream front red/without irradiation SiC tuneable background nonlinearity-based RG logic gates 4 = =64 nm Rdark Gdark dark Red blue green 5 5,,5,5,75,,5 Time (ms) Photocurrent ( A) Photocurrent ( A) 6bps... tn=n...t8=t t=t 3 G R G (αrg<),,5 _G _G (αr>>) RG R _G R, RG,5 _G _G G, _,5 Time (ms) (αrr<<) Red ackground : The output waveform becomes a main 4-level encoding (). Without optical bias is an 8-level encoding (3) to which it corresponds 8 different photocurrent thresholds. 3

14 Optical encoded data stream front/back violet irradiation SiC tuneable background nonlinearity-based RG logic gates V R,G, 3,5 3,,5,,5,,5 Violet background V pin V pin,,,5,,5,,5 Time (ms) V R pin V pin V pin V pin Front violet optical bias 8-level encoding ( 3 ) to which it corresponds 8 different photocurrent thresholds. Photocurrent (a.u) point AA Smoothing of Data3_ point AA Smoothing of Data3_E 5 point AA Smoothing of Data3_I 5 R G 4 R V G V 3 pin # R G # R # R # 5 point AA Smoothing of Data3_C 5 point AA Smoothing of Data3_G 5 point AA Smoothing of Data3_J pin,,5,,5,,5 Time (ms) G G (α V R >>) (α V G >) (α V ~) ack violet optical bias : The output waveform becomes a main 4-level encoding ( ). (α V >>) (α V G ~) (α V R <<) 4

15 Optical bias Conclusions Light-activated pi n/pin a-sic:h devices that combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal were designed, analyzed, validated and evaluated. Channels Front diode ack diode Experimental Design Optical bias G R p TCO GLASS i nm (a-sic:h) n p i nm (a-si:h) Applied Voltage Depending on the applied voltage and wavelength of the external background it acts either as a shortor a long- pass band filter or as a band-stop filter. n TCO Gain ( R, G, ) Photocurrent (A) nm, 35Hz.3 NC 64nm, 5Hz p-i'(a-sic:h)-n-p-i(a-si:h)-n 56nm, 35Hz 56nm, 5Hz 47nm, 35Hz. 47nm, 5Hz - V 4nm, 35Hz -5 V 4nm, 5Hz V 3 V. 75 Hz Wavelength 55 (nm) Wavelength (nm) Optoelectronic model Q p i I,I G n p n p I R,I G i Q n dv dt, RC RC it v, R RC R C R C t v, C ( t) i C, ( t)

Sensors & Transducers 2015 by IFSA Publishing, S. L.

Sensors & Transducers 2015 by IFSA Publishing, S. L. Sensors & Transducers, Vol. 8, Issue, January, pp. -9 Sensors & Transducers by IFSA Publishing, S. L. http://www.sensorsportal.com Photonic Amorphous Pi n/pin SiC Optical Filter Under Controlled Near UV

More information

Measurement of Photo Capacitance in Amorphous Silicon Photodiodes

Measurement of Photo Capacitance in Amorphous Silicon Photodiodes Measurement of Photo Capacitance in Amorphous Silicon Photodiodes Dora Gonçalves 1,3, L. Miguel Fernandes 1,2, Paula Louro 1,2, Manuela Vieira 1,2,3, and Alessandro Fantoni 1,2 1 Electronics Telecommunications

More information

Optical Wavelength-division Multiplexing/Demultiplexing Devices

Optical Wavelength-division Multiplexing/Demultiplexing Devices Optical Wavelength-division Multiplexing/Demultiplexing Devices M. Vieira 1,2, P. Louro 1,2, M A Vieira 1,3, A. Fantoni 1, M. Fernandes 1, M. Barata 1,2 1 Electronics Telecommunications and Computer Dept,

More information

Available online at ScienceDirect. Procedia Technology 17 (2014 )

Available online at   ScienceDirect. Procedia Technology 17 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology (0 ) 0 Conference on Electronics, Telecommunications and Computers CETC 0 Visible Light Communication in Traffic Links Using

More information

IV Work Area: CONNECTED CARS: ROAD TO VEHICLE COMMUNICATION THROUGH VISIBLE LIGHT. An illustration of traffic control system of tomorrow

IV Work Area: CONNECTED CARS: ROAD TO VEHICLE COMMUNICATION THROUGH VISIBLE LIGHT. An illustration of traffic control system of tomorrow IV Work Area: CONNECTED CARS: ROAD TO VEHICLE COMMUNICATION THROUGH VISIBLE LIGHT An illustration of traffic control system of tomorrow Motivation and Objectives IV, VV, VI optoelectronic WDM cooperative

More information

Three Transducers Embedded into One Single SiC Photodetector: LSP Direct Image Sensor, Optical Amplifier and Demux Device

Three Transducers Embedded into One Single SiC Photodetector: LSP Direct Image Sensor, Optical Amplifier and Demux Device 19 Three Transducers Embedded into One Single SiC Photodetector: LSP Direct Image Sensor, Optical Amplifier and Demux Device M. Vieira 1,2,3, P. Louro 1,2, M. Fernandes 1,2, M. A. Vieira 1,2, A. Fantoni

More information

Available online at ScienceDirect. Procedia Technology 17 (2014 )

Available online at   ScienceDirect. Procedia Technology 17 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 17 (2014 ) 557 565 Conference on Electronics, Telecommunications and Computers CETC 2013 AND, OR, NOT logical functions in a

More information

Simple and Complex Logical Functions in a SiC Tandem Device

Simple and Complex Logical Functions in a SiC Tandem Device Simple and Complex Logical Functions in a SiC Tandem Device Vitor Silva 1,2, Manuel A. Vieira 1,2, Paula Louro 1,2, Manuel Barata 1,2, and Manuela Vieira 1,2,3 1 Electronics Telecommunication and Computer

More information

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified Photodetector. This user s guide will help answer any questions you may have regarding the safe use and optimal operation

More information

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified High Speed Photodetector. This user s guide will help answer any questions you may have regarding the safe

More information

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi Optical Amplifiers Continued EDFA Multi Stage Designs 1st Active Stage Co-pumped 2nd Active Stage Counter-pumped Input Signal Er 3+ Doped Fiber Er 3+ Doped Fiber Output Signal Optical Isolator Optical

More information

Detectors for Optical Communications

Detectors for Optical Communications Optical Communications: Circuits, Systems and Devices Chapter 3: Optical Devices for Optical Communications lecturer: Dr. Ali Fotowat Ahmady Sep 2012 Sharif University of Technology 1 Photo All detectors

More information

Voltage-dependent quantum efficiency measurements of amorphous silicon multijunction mini-modules

Voltage-dependent quantum efficiency measurements of amorphous silicon multijunction mini-modules Loughborough University Institutional Repository Voltage-dependent quantum efficiency measurements of amorphous silicon multijunction mini-modules This item was submitted to Loughborough University's Institutional

More information

HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the safe use and optimal

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

Figure Responsivity (A/W) Figure E E-09.

Figure Responsivity (A/W) Figure E E-09. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

Figure Figure E E-09. Dark Current (A) 1.

Figure Figure E E-09. Dark Current (A) 1. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

Chap14. Photodiode Detectors

Chap14. Photodiode Detectors Chap14. Photodiode Detectors Mohammad Ali Mansouri-Birjandi mansouri@ece.usb.ac.ir mamansouri@yahoo.com Faculty of Electrical and Computer Engineering University of Sistan and Baluchestan (USB) Design

More information

Non-amplified Photodetectors

Non-amplified Photodetectors Non-amplified Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 9 EOT NON-AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified Photodetector

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 10: Photodetectors Original: Professor McLeod SUMMARY: In this lab, you will characterize the fundamental low-frequency characteristics of photodiodes and the circuits

More information

Non-amplified High Speed Photodetectors

Non-amplified High Speed Photodetectors Non-amplified High Speed Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 6 EOT NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified

More information

[MILLIMETERS] INCHES DIMENSIONS ARE IN:

[MILLIMETERS] INCHES DIMENSIONS ARE IN: Features: Wide acceptance angle, 00 Fast response time Linear response vs Irradiance Plastic leadless chip carrier (PLCC-) Low Capacitance Top Sensing Area Tape and reel packaging Moisture Sensitivity

More information

High Speed pin Photodetector with Ultra-Wide Spectral Responses

High Speed pin Photodetector with Ultra-Wide Spectral Responses High Speed pin Photodetector with Ultra-Wide Spectral Responses C. Tam, C-J Chiang, M. Cao, M. Chen, M. Wong, A. Vazquez, J. Poon, K. Aihara, A. Chen, J. Frei, C. D. Johns, Ibrahim Kimukin, Achyut K. Dutta

More information

GaN-based Schottky diodes for EUV/VUV/UV photodetection

GaN-based Schottky diodes for EUV/VUV/UV photodetection 1 GaN-based Schottky diodes for EUV/VUV/UV photodetection F. Shadi Shahedipour-Sandvik College of Nanoscale Science and Engineering University at Albany - SUNY, Albany NY 12203 cnse.albany.edu sshahedipour@uamail.albany.edu

More information

Optical Communications

Optical Communications Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #4, May 9 2006 Receivers OVERVIEW Photodetector types: Photodiodes

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

Optical Receivers Theory and Operation

Optical Receivers Theory and Operation Optical Receivers Theory and Operation Photo Detectors Optical receivers convert optical signal (light) to electrical signal (current/voltage) Hence referred O/E Converter Photodetector is the fundamental

More information

DEVICE APPLICATION OF NON-EQUILIBRIUM MOS CAPACITORS FABRICATED ON HIGH RESISTIVITY SILICON

DEVICE APPLICATION OF NON-EQUILIBRIUM MOS CAPACITORS FABRICATED ON HIGH RESISTIVITY SILICON INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 4, NO. 4, DECEMBER 2011 DEVICE APPLICATION OF NON-EQUILIBRIUM MOS CAPACITORS FABRICATED ON HIGH RESISTIVITY SILICON O. Malik, F. J.

More information

Downloaded from

Downloaded from Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers and trivalent atoms are the dopants. (b) Electrons are minority carriers and pentavalent

More information

Simulation of silicon based thin-film solar cells. Copyright Crosslight Software Inc.

Simulation of silicon based thin-film solar cells. Copyright Crosslight Software Inc. Simulation of silicon based thin-film solar cells Copyright 1995-2008 Crosslight Software Inc. www.crosslight.com 1 Contents 2 Introduction Physical models & quantum tunneling Material properties Modeling

More information

Low threshold continuous wave Raman silicon laser

Low threshold continuous wave Raman silicon laser NATURE PHOTONICS, VOL. 1, APRIL, 2007 Low threshold continuous wave Raman silicon laser HAISHENG RONG 1 *, SHENGBO XU 1, YING-HAO KUO 1, VANESSA SIH 1, ODED COHEN 2, OMRI RADAY 2 AND MARIO PANICCIA 1 1:

More information

Physics of Waveguide Photodetectors with Integrated Amplification

Physics of Waveguide Photodetectors with Integrated Amplification Physics of Waveguide Photodetectors with Integrated Amplification J. Piprek, D. Lasaosa, D. Pasquariello, and J. E. Bowers Electrical and Computer Engineering Department University of California, Santa

More information

FD MOS SOI CIRCUIT TO IMPROVE THE THRESHOLD OF DETECTION OF A CO-INTEGRATED AMORPHOUS PHOTODIODE.

FD MOS SOI CIRCUIT TO IMPROVE THE THRESHOLD OF DETECTION OF A CO-INTEGRATED AMORPHOUS PHOTODIODE. F MOS SOI CIRCUIT TO IMPROVE THE THRESHO OF ETECTION OF A CO-INTEGRATE AMORPHOUS PHOTOIOE. M. Estrada 1, A. Afzalian 2,. Flandre 2, A. Cerdeira 1, H. Baez 1, A. de ucca 3. 1 Sección de Electrónica del

More information

Unit 2 Semiconductor Devices. Lecture_2.5 Opto-Electronic Devices

Unit 2 Semiconductor Devices. Lecture_2.5 Opto-Electronic Devices Unit 2 Semiconductor Devices Lecture_2.5 Opto-Electronic Devices Opto-electronics Opto-electronics is the study and application of electronic devices that interact with light. Electronics (electrons) Optics

More information

Amplified Photodetectors

Amplified Photodetectors Amplified Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 6 EOT AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified Photodetector from EOT. This

More information

Three-level Code Division Multiplex for Local Area Networks

Three-level Code Division Multiplex for Local Area Networks Three-level Code Division Multiplex for Local Area Networks Mokhtar M. 1,2, Quinlan T. 1 and Walker S.D. 1 1. University of Essex, U.K. 2. Universiti Pertanian Malaysia, Malaysia Abstract: This paper reports

More information

Overview. Charge-coupled Devices. MOS capacitor. Charge-coupled devices. Charge-coupled devices:

Overview. Charge-coupled Devices. MOS capacitor. Charge-coupled devices. Charge-coupled devices: Overview Charge-coupled Devices Charge-coupled devices: MOS capacitors Charge transfer Architectures Color Limitations 1 2 Charge-coupled devices MOS capacitor The most popular image recording technology

More information

Amplified High Speed Photodetectors

Amplified High Speed Photodetectors Amplified High Speed Photodetectors User Guide 3340 Parkland Ct. Traverse City, MI 49686 USA Page 1 of 6 Thank you for purchasing your Amplified High Speed Photodetector from EOT. This user guide will

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

Physics and Technology

Physics and Technology Physics and Technology Emitters Materials Infrared emitting diodes (IREDs) can be produced from a range of different III-V compounds. Unlike the elemental semiconductor silicon, the compound III-V semiconductors

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

2nd Asian Physics Olympiad

2nd Asian Physics Olympiad 2nd Asian Physics Olympiad TAIPEI, TAIWAN Experimental Competition Thursday, April 26, 21 Time Available : 5 hours Read This First: 1. Use only the pen provided. 2. Use only the front side of the answer

More information

Solar Cell Parameters and Equivalent Circuit

Solar Cell Parameters and Equivalent Circuit 9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

More information

Spectrally Selective Photocapacitance Modulation in Plasmonic Nanochannels for Infrared Imaging

Spectrally Selective Photocapacitance Modulation in Plasmonic Nanochannels for Infrared Imaging Supporting Information Spectrally Selective Photocapacitance Modulation in Plasmonic Nanochannels for Infrared Imaging Ya-Lun Ho, Li-Chung Huang, and Jean-Jacques Delaunay* Department of Mechanical Engineering,

More information

Photodiode: LECTURE-5

Photodiode: LECTURE-5 LECTURE-5 Photodiode: Photodiode consists of an intrinsic semiconductor sandwiched between two heavily doped p-type and n-type semiconductors as shown in Fig. 3.2.2. Sufficient reverse voltage is applied

More information

Preface... iii. Chapter 1: Diodes and Circuits... 1

Preface... iii. Chapter 1: Diodes and Circuits... 1 Table of Contents Preface... iii Chapter 1: Diodes and Circuits... 1 1.1 Introduction... 1 1.2 Structure of an Atom... 2 1.3 Classification of Solid Materials on the Basis of Conductivity... 2 1.4 Atomic

More information

P-CUBE-Series High Sensitivity PIN Detector Modules

P-CUBE-Series High Sensitivity PIN Detector Modules High Sensitivity PIN Detector Modules Description The P-CUBE-series manufactured by LASER COMPONENTS has been designed for customers interested in experimenting with low noise silicon or InGaAs pin detectors.

More information

BYTE-INVERT TRANSMISSION FOR FLICKER PREVENTION AND ILLUMINATION CONTROL FOR VISIBLE LIGHT COMMUNICATION

BYTE-INVERT TRANSMISSION FOR FLICKER PREVENTION AND ILLUMINATION CONTROL FOR VISIBLE LIGHT COMMUNICATION BYTE-INVERT TRANSMISSION FOR FLICKER PREVENTION AND ILLUMINATION CONTROL FOR VISIBLE LIGHT COMMUNICATION Seong-Ho Lee Department of Electronics and IT Media Engineering, Seoul National University of Science

More information

Ultraviolet selective thin film sensor TW30DY NEW: Read important application notes on page 4 ff.

Ultraviolet selective thin film sensor TW30DY NEW: Read important application notes on page 4 ff. Features Schottky-type photodiode Intrinsic visible blindness due to wide-bandgap semiconductor material Built-in filter glass for low sensitivity above 400nm Large photoactive area No focusing lens needed,

More information

Ultra-high resolution 14,400 pixel trilinear color image sensor

Ultra-high resolution 14,400 pixel trilinear color image sensor Ultra-high resolution 14,400 pixel trilinear color image sensor Thomas Carducci, Antonio Ciccarelli, Brent Kecskemety Microelectronics Technology Division Eastman Kodak Company, Rochester, New York 14650-2008

More information

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by Supporting online material Materials and Methods Single-walled carbon nanotube (SWNT) devices are fabricated using standard photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited

More information

Avalanche Photodiode. Instructor: Prof. Dietmar Knipp Presentation by Peter Egyinam. 4/19/2005 Photonics and Optical communicaton

Avalanche Photodiode. Instructor: Prof. Dietmar Knipp Presentation by Peter Egyinam. 4/19/2005 Photonics and Optical communicaton Avalanche Photodiode Instructor: Prof. Dietmar Knipp Presentation by Peter Egyinam 1 Outline Background of Photodiodes General Purpose of Photodiodes Basic operation of p-n, p-i-n and avalanche photodiodes

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

Signal out Ranges Setting facilities U supply. 3 ranges configurable with jumpers. continuously adjustable amplification with potentiometer

Signal out Ranges Setting facilities U supply. 3 ranges configurable with jumpers. continuously adjustable amplification with potentiometer Introduction Photodiodes generate small photo-currents ranging from microamperes down to picoamperes, which cannot be measured with commonly available multimeters amplifiers are required. Amplifiers such

More information

Optical Fibre Communication Systems

Optical Fibre Communication Systems Optical Fibre Communication Systems Lecture 4 - Detectors & Receivers Professor Z Ghassemlooy Northumbria Communications Laboratory Faculty of Engineering and Environment The University of Northumbria

More information

S Optical Networks Course Lecture 2: Essential Building Blocks

S Optical Networks Course Lecture 2: Essential Building Blocks S-72.3340 Optical Networks Course Lecture 2: Essential Building Blocks Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9

More information

S2014, BME 101L: Applied Circuits Lab 7: Optical Pulse Monitor

S2014, BME 101L: Applied Circuits Lab 7: Optical Pulse Monitor S2014, BME 101L: Applied Circuits Lab 7: Optical Pulse Monitor Kevin Karplus May 13, 2014 1 Design Goal For this lab we ll be designing and building an optical pulse monitor to detect pulse by shining

More information

14.2 Photodiodes 411

14.2 Photodiodes 411 14.2 Photodiodes 411 Maximum reverse voltage is specified for Ge and Si photodiodes and photoconductive cells. Exceeding this voltage can cause the breakdown and severe deterioration of the sensor s performance.

More information

I D = I so e I. where: = constant T = junction temperature [K] I so = inverse saturating current I = photovoltaic current

I D = I so e I. where: = constant T = junction temperature [K] I so = inverse saturating current I = photovoltaic current H7. Photovoltaics: Solar Power I. INTRODUCTION The sun is practically an endless source of energy. Most of the energy used in the history of mankind originated from the sun (coal, petroleum, etc.). The

More information

Data Sheet. MCSi. Integral 3-Element Colour Sensor 1 FUNCTION 2 2 APPLICATION 2 3 FEATURES 2 4 CONSTRUCTION 2 5 MAXIMUM RATINGS / CHARACTERISTICS 3

Data Sheet. MCSi. Integral 3-Element Colour Sensor 1 FUNCTION 2 2 APPLICATION 2 3 FEATURES 2 4 CONSTRUCTION 2 5 MAXIMUM RATINGS / CHARACTERISTICS 3 The information disclosed herein was originated by and is the property of MAZeT. MAZeT reserves all patent, proprietary, design, use, sales, manufacturing an reproduction rights thereto. Product names

More information

Optical Fiber Communication Lecture 11 Detectors

Optical Fiber Communication Lecture 11 Detectors Optical Fiber Communication Lecture 11 Detectors Warriors of the Net Detector Technologies MSM (Metal Semiconductor Metal) PIN Layer Structure Semiinsulating GaAs Contact InGaAsP p 5x10 18 Absorption InGaAs

More information

A continuous-wave Raman silicon laser

A continuous-wave Raman silicon laser A continuous-wave Raman silicon laser Haisheng Rong, Richard Jones,.. - Intel Corporation Ultrafast Terahertz nanoelectronics Lab Jae-seok Kim 1 Contents 1. Abstract 2. Background I. Raman scattering II.

More information

CMOS 0.18 m SPAD. TowerJazz February, 2018 Dr. Amos Fenigstein

CMOS 0.18 m SPAD. TowerJazz February, 2018 Dr. Amos Fenigstein CMOS 0.18 m SPAD TowerJazz February, 2018 Dr. Amos Fenigstein Outline CMOS SPAD motivation Two ended vs. Single Ended SPAD (bulk isolated) P+/N two ended SPAD and its optimization Application of P+/N two

More information

Impact of Double Cavity Fabry-Perot Demultiplexers on the Performance of. Dispersion Supported Transmission of Three 10 Gbit/s

Impact of Double Cavity Fabry-Perot Demultiplexers on the Performance of. Dispersion Supported Transmission of Three 10 Gbit/s Impact of Double Cavity Fabry-Perot Demultiplexers on the Performance of Dispersion Supported Transmission of Three 10 Gbit/s WDM Channels Separated 1 nm Mário M. Freire and José A. R. Pacheco de Carvalho

More information

Energy band diagrams Metals: 9. ELECTRONIC DEVICES GIST ρ= 10-2 to 10-8 Ω m Insulators: ρ> 10 8 Ω m Semiconductors ρ= 1 to 10 5 Ω m 109 A. Intrinsic semiconductors At T=0k it acts as insulator At room

More information

SIGNAL RECOVERY: Sensors, Signals, Noise and Information Recovery

SIGNAL RECOVERY: Sensors, Signals, Noise and Information Recovery SIGNAL RECOVERY: Sensors, Signals, Noise and Information Recovery http://home.deib.polimi.it/cova/ 1 Signal Recovery COURSE OUTLINE Scenery preview: typical examples and problems of Sensors and Signal

More information

The 34th International Physics Olympiad

The 34th International Physics Olympiad The 34th International Physics Olympiad Taipei, Taiwan Experimental Competition Wednesday, August 6, 2003 Time Available : 5 hours Please Read This First: 1. Use only the pen provided. 2. Use only the

More information

Fiber Optic Communications Communication Systems

Fiber Optic Communications Communication Systems INTRODUCTION TO FIBER-OPTIC COMMUNICATIONS A fiber-optic system is similar to the copper wire system in many respects. The difference is that fiber-optics use light pulses to transmit information down

More information

Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link

Electronic Instrumentation. Experiment 8: Diodes (continued) Project 4: Optical Communications Link Electronic Instrumentation Experiment 8: Diodes (continued) Project 4: Optical Communications Link Agenda Brief Review: Diodes Zener Diodes Project 4: Optical Communication Link Why optics? Understanding

More information

New advances in silicon photonics Delphine Marris-Morini

New advances in silicon photonics Delphine Marris-Morini New advances in silicon photonics Delphine Marris-Morini P. Brindel Alcatel-Lucent Bell Lab, Nozay, France New Advances in silicon photonics D. Marris-Morini, L. Virot*, D. Perez-Galacho, X. Le Roux, D.

More information

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Bit error rate and cross talk performance in optical cross connect with wavelength converter Vol. 6, No. 3 / March 2007 / JOURNAL OF OPTICAL NETWORKING 295 Bit error rate and cross talk performance in optical cross connect with wavelength converter M. S. Islam and S. P. Majumder Department of

More information

Exp 3 COLCULATE THE RESPONSE TIME FOR THE SILICON DETECTOR

Exp 3 COLCULATE THE RESPONSE TIME FOR THE SILICON DETECTOR Exp 3 اعداد المدرس مكرم عبد المطلب فخري Object: To find the value of the response time (Tr) for silicone photodiode detector. Equipment: 1- function generator ( 10 khz ). 2- silicon detector. 3- storage

More information

Functional Materials. Optoelectronic devices

Functional Materials. Optoelectronic devices Functional Materials Lecture 2: Optoelectronic materials and devices (inorganic). Photonic materials Optoelectronic devices Light-emitting diode (LED) displays Photodiode and Solar cell Photoconductive

More information

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 06 34 Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System Meenakshi,

More information

CMOS Phototransistors for Deep Penetrating Light

CMOS Phototransistors for Deep Penetrating Light CMOS Phototransistors for Deep Penetrating Light P. Kostov, W. Gaberl, H. Zimmermann Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology Gusshausstr. 25/354,

More information

Fiber-Optic Communication Systems

Fiber-Optic Communication Systems Fiber-Optic Communication Systems Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, NY A WILEY-iNTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1

OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 OFCS OPTICAL DETECTORS 11/9/2014 LECTURES 1 1-Defintion & Mechanisms of photodetection It is a device that converts the incident light into electrical current External photoelectric effect: Electrons are

More information

Chapter Semiconductor Electronics

Chapter Semiconductor Electronics Chapter Semiconductor Electronics Q1. p-n junction is said to be forward biased, when [1988] (a) the positive pole of the battery is joined to the p- semiconductor and negative pole to the n- semiconductor

More information

Optical Receiver Operation With High Internal Gain of GaP and GaAsP/GaP Light-emitting diodes

Optical Receiver Operation With High Internal Gain of GaP and GaAsP/GaP Light-emitting diodes Optical Receiver Operation With High Internal Gain of GaP and GaAsP/GaP Light-emitting diodes Heinz-Christoph Neitzert *, Manuela Ferrara, Biagio DeVivo DIIIE, Università di Salerno, Via Ponte Don Melillo

More information

! Couplers. ! Isolators/Circulators. ! Multiplexers/Filters. ! Optical Amplifiers. ! Transmitters (lasers,leds) ! Detectors (receivers) !

! Couplers. ! Isolators/Circulators. ! Multiplexers/Filters. ! Optical Amplifiers. ! Transmitters (lasers,leds) ! Detectors (receivers) ! Components of Optical Networks Based on: Rajiv Ramaswami, Kumar N. Sivarajan, Optical Networks A Practical Perspective 2 nd Edition, 2001 October, Morgan Kaufman Publishers Optical Components! Couplers!

More information

Image sensor combining the best of different worlds

Image sensor combining the best of different worlds Image sensors and vision systems Image sensor combining the best of different worlds First multispectral time-delay-and-integration (TDI) image sensor based on CCD-in-CMOS technology. Introduction Jonathan

More information

for optical communication system

for optical communication system High speed Ge waveguide detector for optical communication system Xingjun Wang, Zhijuan Tu and Zhiping Zhou State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics

More information

In the name of God, the most merciful Electromagnetic Radiation Measurement

In the name of God, the most merciful Electromagnetic Radiation Measurement In the name of God, the most merciful Electromagnetic Radiation Measurement In these slides, many figures have been taken from the Internet during my search in Google. Due to the lack of space and diversity

More information

ALMY Stability. Kevan S Hashemi and James R Bensinger Brandeis University January 1998

ALMY Stability. Kevan S Hashemi and James R Bensinger Brandeis University January 1998 ATLAS Internal Note MUON-No-221 ALMY Stability Kevan S Hashemi and James R Bensinger Brandeis University January 1998 Introduction An ALMY sensor is a transparent, position-sensitive, optical sensor made

More information

OPB780-Kit. Color Sensor Evaluation Kit

OPB780-Kit. Color Sensor Evaluation Kit The is designed to provide the design engineer an easy way to evaluate the capability of the OPB78 Color Sensor. The OPB78Z is a full color sensor with 4 different frequencies relating directly to a specific

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you will measure the I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). Using a photodetector, the emission intensity

More information

Charge-integrating organic heterojunction

Charge-integrating organic heterojunction In the format provided by the authors and unedited. DOI: 10.1038/NPHOTON.2017.15 Charge-integrating organic heterojunction Wide phototransistors dynamic range for organic wide-dynamic-range heterojunction

More information

New automated laser facility for detector calibrations

New automated laser facility for detector calibrations CORM annual conference, NRC, Ottawa, CANADA June 1, 2012 New automated laser facility for detector calibrations Yuqin Zong National Institute of Standards and Technology Gaithersburg, Maryland USA Overview

More information

Lecture 4 INTEGRATED PHOTONICS

Lecture 4 INTEGRATED PHOTONICS Lecture 4 INTEGRATED PHOTONICS What is photonics? Photonic applications use the photon in the same way that electronic applications use the electron. Devices that run on light have a number of advantages

More information

Infrared Channels. Infrared Channels

Infrared Channels. Infrared Channels Infrared Channels Prof. David Johns (johns@eecg.toronto.edu) (www.eecg.toronto.edu/~johns) slide 1 of 12 Infrared Channels Advantages Free from regulation, low cost Blocked by walls reduces eavesdropping

More information

SDP Low Light Rejection Phototransistor

SDP Low Light Rejection Phototransistor FEATURES Side-looking plastic package Low light level immunity 50 (nominal) acceptance angle Mechanically and spectrally matched to SEP8506 and SEP8706 infrared emitting diodes INFRA-21.TIF DESCRIPTION

More information

Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

More information

Standard InGaAs Photodiodes IG17-Series

Standard InGaAs Photodiodes IG17-Series Description The IG17-series is a panchromatic PIN photodiode with a nominal wavelength cut-off at 1.7 µm. This series has been designed for demanding spectroscopic and radiometric applications. It offers

More information

Sensors & Transducers Published by IFSA Publishing, S. L.,

Sensors & Transducers Published by IFSA Publishing, S. L., Sensors & Transducers Published by IFSA Publishing, S. L., 017 http://www.sensorsportal.com A Finerained isible Light Communication Position Detection System 1,, 3 M. ieira, 1, M. A. ieira, 1, P. Louro,

More information

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors Veerendra Dhyani 1, and Samaresh Das 1* 1 Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi-110016,

More information

Development of a solar cell spectral response mapping system using multi-lbic excitation

Development of a solar cell spectral response mapping system using multi-lbic excitation Loughborough University Institutional Repository Development of a solar cell spectral response mapping system using multi-lbic excitation This item was submitted to Loughborough University's Institutional

More information

PERFORMANCE ASSESSMENT OF TWO-CHANNEL DISPERSION SUPPORTED TRANSMISSION SYSTEMS USING SINGLE AND DOUBLE-CAVITY FABRY-PEROT FILTERS AS DEMULTIPLEXERS

PERFORMANCE ASSESSMENT OF TWO-CHANNEL DISPERSION SUPPORTED TRANSMISSION SYSTEMS USING SINGLE AND DOUBLE-CAVITY FABRY-PEROT FILTERS AS DEMULTIPLEXERS PERFORMANCE ASSESSMENT OF TWO-CHANNEL DISPERSION SUPPORTED TRANSMISSION SYSTEMS USING SINGLE AND DOUBLE-CAVITY FABRY-PEROT FILTERS AS DEMULTIPLEXERS Mário M. Freire Department of Mathematics and Information

More information

Heinrich-Hertz-Institut Berlin

Heinrich-Hertz-Institut Berlin NOVEMBER 24-26, ECOLE POLYTECHNIQUE, PALAISEAU OPTICAL COUPLING OF SOI WAVEGUIDES AND III-V PHOTODETECTORS Ludwig Moerl Heinrich-Hertz-Institut Berlin Photonic Components Dept. Institute for Telecommunications,,

More information