Comparison of Laser-Ablation Techniques for Microstructuring Gravure-Printed PEDOT:PSS and Sputtered ITO on PET Substrates

Size: px
Start display at page:

Download "Comparison of Laser-Ablation Techniques for Microstructuring Gravure-Printed PEDOT:PSS and Sputtered ITO on PET Substrates"

Transcription

1 Comparison of Laser-blation Techniques for Microstructuring Gravure-Printed PEDOT:PSS and Sputtered ITO on PET Substrates Jukka Hast (1), Ilkka Vanttaja (2), Raimo Penttilä (2), Petri Laakso (2), Markku Känsäkoski (1) (1) Printed Functional Solutions, Oulu, (2) Laser Processing, Lappeenranta, VTT Technical Research Center of Finland, Finland nne-laure Seiler, Isabelle Chartier LITEN/DTNM /Printed Components Laboratory, CE Commissariat à l Energie tomique et aux Energies lternatives, Grenoble, France Petko Petkov, Georgi Lalev Manufacturing Engineering Centre (MEC), Cardiff University, Cardiff, UK Petronella Norberg Printed Electronics, creo, Norrköping, Sweden Thomas laudeck, Reinhard R. aumann Print and Media Technology, Chemnitz University of Technology, Chemnitz, Germany bstract In this paper we summarize the European research collaboration on the topic Integration of laser ablation in roll-to-roll manufacturing running from 2008 to Embedded into a case study for the manufacturing of anode structures for optoelectronic devices (OLED, OPV) on flexible substrates, we present our findings on the printing and laser process windows for the following cases: (i) structuring of gravure-printed PEDOT:PSS and (ii) structuring of sputtered ITO, each on flexible PET foil. The experiments were carried out with help of the following laser systems and plants available in the contributing institutes: (iii) Gaussian-profile ns-, ps- and fs- solid-state laser systems (focused laser beam) and (iv) a flat-profile ns excimer laser system for mask ablation. In this paper we present the results for case (i) structured by both (iii) and (iv) and for case (ii) structured by (iii). The remaining case (ii) structured by (iv) is found as a separate paper at this conference. 1. Introduction In 2008, as shown independently by the German company 3d-micromac and VTT Technical Research Center of Finland, laser micromachining has matured towards a technique with full roll-to-roll compatibility [1, 2]. In that viewpoint, this technology has gained interest for manufacturing of devices of organic and large-area electronics. However, the principles of laser micromachining are based on particular light-matter interaction and rely on both the deposited layer and the substrate beneath. Hence, they are subject for detailed empiric analysis for particular application cases. substrate was Toray s OPET (Lumirror), 125 μm thick. The printing cylinder layout is shown in Figure 1. It contains four different sections having different cylinder parameters as shown in Table 1 (upper section). 2. Gravure Printing of PEDOT:PSS and Characterization of the Printing Quality Gravure printing trials were done using VTT s ROKO R2R pilot production facility located in Oulu, Finland, shown in Figure 1. For the printing trials, modified Clevios PEDOT PHC99 from H.C. Starck was used. The used PET. Figure 1. () VTT's ROKO pilot production facility for gravure printing of PEDOT:PSS, () Gravure cylinder layout used in PEDOT:PSS printing trials. The numbers on the left refer to the rea ID used througout this Section. 1

2 Table 1. Gravure cell properties (upper section) and properties of the resulting printed layers of gravure-printed PEDOT:PSS sectors (lower section) consists of unwinder-rewinder units and a Lumera rapidablation laser with high-speed scanner optics. Gravure cylinder rea ID Engraving Mesh [lines/cm] Cell depth [µm] 2-1 X-treme ,2 2-2 Regular ,6 2-3 X-treme ,7 2-4 X-treme ,4 Cell volume [ml/m²] Resulting printed layer of PEDOT:PSS rea ID Engraving Thickness [nm] 2-1 X-treme Regular X-treme X-treme Roughness [nm] Tonal value The processing parameters during the trials were the following: Nip pressure: 2 bar Web speed: m/min 120 C: 20 sec The quality of the printing trials (with respect to layer thickness, roughness) was characterized using a Wyco whitelight optical profilometer. The results are listed in the Table 1 (lower section) including photo-micrographs of each printed PEDOT:PSS sector to illustrate the tonal value indicating the layer homogeneity (or uniformity). The homogeneity of printed areas was found to be positively correlated with printing speed so that the highest possible printing speed 10 m/min was chosen for the further trials of laser processing. Regarding the cell geometry, areas 2-2 and 2-3 were found to be suited best for the modified Clevios PEDOT PHC99. Contrarily, the printed structures of area 2-1 seem to be too large to produce a smooth film and area 2-4 transfers not enough material, producing only a thin film. This finding is clear as area 2-2 contains regular pyramidal cells whereas areas 2-1, 2-3 and 2-4 contain so-called X-treme engraved, irregularly shaped pyramidal cells with a relatively high transfer volume. Engraved areas 2-2 and 2-3 have similar mesh but different engraved structures, yet the materials flow appears to be quite similar. The film uniformity and thickness could be improved by optimizing the PEDOT:PSS formulation, the cylinder engraving and other process parameters. 3. Laser Structuring of Gravure-Printed PEDOT:PSS 3.1. Gaussian-Profile Laser Structuring by Short- Pulse Laser with Roll-to-Roll Web System fter the gravure printing, the PEDOT:PSS samples were sent to VTT, Lappeenranta, Finland for R2R laser processing with a picosecond Nd:YVO4 laser mounted on an in-housebuilt roll-to-roll (R2R) web system. Figure 2 shows the R2R laser processing unit developed at VTT. The system Figure 2. () VTT's R2R laser processing unit, () Layout of the 4x4 electrode structure chosen as test structure for laser processing. The laser processed pattern was a 4x4 electrode structure usually intended for optoelectronic applications (light emitting or photovoltaic devices) which is shown in Figure 2. Processing tests were started with stationary samples and when proper parameters were found the processing on the fly was started. In processing on the fly, the scan head adjusts trajectories so that the web movement is compensated and the geometry is done with same speed as with stationary samples. fter series of preliminary testing, the optimal laser processing parameters were found as the following: 355 nm: 150 mw Spot 355 nm: 20 μm 532 nm: 300 mw Spot 532 nm: 30 µm Pulse repetition rate: 100 khz Web speed: m/min The quality and function of the gravure-printed and laserprocessed thin-films of PEDOT:PSS was analysed by optical and mechanical profilometry. The inset of Figure 3 shows an exemplary profilogram taken for any top-left (*) and topright (*) areas of the samples recorded and evaluated. The profile along the laser processing line (blue curve) in Figure 3 shows a high periodic variation. With Fourier analysis, the distance of the peaks was proven to match well chosen spot size of the laser beam at this example, i. e nm. Together with the profilogram it shows also that the laser spots are separated. cross the laser processing direction (red curve), the line shows a edge height of roughly 1 µm. Furthermore, to prove the electrically insulating functionality, conductivity measurements between pad (*) and pixel (*) were performed using a standard multimeter. The electrical characterization showed that all connections were both conductive and isolated from the ground (i. e. the area 2

3 outside) and that a very good electrical shielding was obtained For the terms with (*), see Figure 2 (red arrows). of etched PEDOT:PSS for one pulse of 94 mj/cm² or for one pulse of 130 mj/cm² is clearly below 500 nm thickness. We suppose here that thickness of the conductive layer is not uniform over the surface. However, detritus is still remaining around corner-shaped forms. It can be concluded that a single pulse of a fluence of 130 mj/cm² etches 500 nm of PEDOT:PSS on PET. Multiple shots are burning the PET. C D Figure 3. Typical morphology profiles of of laser-processed gravure-printed PEDOT:PSS layers. The web speed for printing and laser processing was 10 m/min. The red and blue curves show the profiles _across_ (red) and _along_ (blue) the laser processing line, respectively. The colored image of the mechanical profilogram is shown in the inset Flat-Profile Laser Structuring of Gravure- Printed PEDOT:PSS using Excimer Laser In parallel to the results on Gaussian-profile short-pulse lasers, the samples were sent to CE-Liten, Saint Etienne, France to study the feasibility to etch gravure-printed PEDOT:PSS (in this case, Orgacon EL-350 was used) on PET (supplied by VTT and printed as described in Section 2) with an industrial excimer laser system at a wavelength of 248 nm. For flat-profile excimer laser structuring, a laser machine is projecting through an optical system a specific pattern localised on a <quartz/cr> mask onto a substrate situated on an x-y-translation stage at a specific fluence. The pulse durations were 30 ns at a typical frequency of ablation of 40 Hz. For laser fluences of 34, 54, 74, 94 and 130 mj/cm², single-pulse experiments were carried out. For the highest fluence achievable that date (130 mj/cm²), experiments with 2, 3, 5 and 10 pulses were additionally performed. The resulting patterns were analyzed by optical and mechanical profilometry as shown in Figure 4-D. Electrical measurements (carried out mounting the substrate on a wafer with a 3M sticker showed that electrical insulation is yielded at fluence of 94 mj/cm² or higher. Figure 4E shows the measured mean depth of the structures as a function of the laser fluence and repetition number. Note that the thickness E Figure 4. Optical micrographs of a 500 nm layer of gravure-printed PEDOT:PSS on PET etched by flat-profile ablation using a 248 nm excimer laser. Trench diameter is appr. 250 µm. () pulse energy 74 mj/cm², single shot; parts of PEDOT:PSS layer still remaining; (C) pulse energy 130 mj/cm², single shot. In the case of the higher pulse energy, a complete removal of the PEDOT:PSS layer is clearly seen. (E) Profilometry measurements of 500 nm of gravure-printed PEDOT:PSS on PET after one or many pulses with various fluences. Each color of the bar represents a specific measure. From 5 pulses at 130 mj/cm², the substrate is destroyed, too Comparison between Gaussian- and Flat-Profile Laser Structuring comparative view on the results on Gaussian- and flatprofile laser structuring reveals that the ultimate advantage of using mask projection flat-profile excimer laser systems is the possibility to obtain high-throughput production for the selective ablation of like patterns in sheet-to-sheet or roll-toroll manner. production speed of meters per minute (or khz) can be obtained. Edges and features have a better quality and definition both along processing direction and in the vertical direction of the profile at a improved production throughputs. On the contrary, the Gaussian-profile shortpulse lasers equipped with a roll-to-roll web system allow a selective, individual structuring. 3

4 4. Laser Structuring of ITO on PET using Gaussian-Profile Short-Pulse Laser Systems Striving for the optoelectronic applications of our process in the fabrication of anode structures, it turned out that in case of laser treatment the roles of both the substrates and the transparent conductive oxide coatings such as ITO have to be classified as well. For the experiments, standard ITO-coated PET (100 nm thick ITO layer, supplied by VTT) was used as a substrate Femtosecond laser systems For the femtosecond regime of pulse durations, VTT incorporated a Quantronics Integra C2.0 system based on Ti- Sapphire which can deliver 800 nm pulses of 130 fs duration at a maximum pulse energy of 2 mj situated in Lappeenranta, Finland. The laser can be tuned to operate from 1 Hz to 2 khz, however, the shortest pulses and best operational conditions were achieved at the operational frequency of 1 khz which was kept for the experiments. The laser was equipped with a f100 optics and the scanning speed was set to 10 mm/s. ssuming a Gaussian intensity profile, the investigated power ranges were 2 mw, 4 mw and 6 mw. The surface profiles of each sample was analyzed using Wyco optical profilometer. The 3D images of the optical profilograms are shown in Figure 5-C. electrically isolated. further optimization of the processing condition for this laser can be found by tuning other laser parameters and beam shape. Electrical shielding of the patterned structures was tested using a multimeter. It was found out that samples where processing power was 4 mw and 6 mw were electrically isolated, whereas sample 2 mw was in short circuit. dditionally, an ltechna tlsc laser was used, operating at 1030 nm with a pulse duration of 300 fs and a pulse repetition ratio adjustable between 1 and 350 khz. The samples were processed at 100 khz pulse rate and at a pulse density of 1000 pulses/mm (corresponding to 100 mm/s) and 5000 pulses/mm (corresponding to 500 mm/s). The results are shown in Figure 5D Picosecond laser systems For the picosecond regime, tests experiments were conducted on the Lumera laser system at a wavelength of 355 nm, varying the speed and power in order to eliminate the burrs on the top edge of the ablated material. few process windows showed very promising results with virtually no burrs formed after ablation. The evaluation is currently in progress. For picosecond processing, new results with acceptable edge quality have been achieved by optimizing the laser parameters in a new way. Same optimizing analogy worked also with a femtosecond laser. These results will be published elsewhere soon. C D Figure 5-C. Optical profilograms of abladed ITO on PET using a Quantronics Integra C2.0 fs laser system for different power ranges: () 2 mw, () 4 mw and (C) 6 mw. Figure 5D: Optical profilogram of abladed ITO on PET using an ltechna tlsc fs laser system. See text for details. s a conclusion, the best processing quality can be obtained when using the intermediate laser power of 4 mw. The value 6 mw is too high and the processing quality is quire rough. The value 2 mw is too low and patterned shapes are not 5. Summary In summary, this European research collaboration on the topic "Integration of laser ablation in roll-to-roll manufacturing" yielded comparative results on ablation of both gravure-printed PEDOT:PSS and sputtered ITO (100 nm) on flexible PET substrates. It has shown that structuring PEDOT:PSS and ITO with laser ablation is feasible with both flat-profile UV excimer laser machine and regular short-pulse laser systems combined with a roll-to-roill web system. Depending on the used drawings, production speeds of meters per minute could be obtained. 6. cknowledgements This project is a result of a research collaboration between VTT Technical Research Center of Finland, CE-Liten Commissariat à l Energie tomique et aux Energies lternatives (France), Cardiff University (U. K.), creo (Sweden) and Chemnitz University of Technology (Germany) within the EU-FP7-Network of Excellence PolyNet, funded by the European Community's Seventh Framework Programme (FP7/ ) under grant agreement n References [1] M. Clair et al. Laser Machining of Thin Solar Cells, Proceedings of the 2nd International Symposium on Laser Microfabrication (ISL), November 2008, Chemnitz, Germany. [2] J. Hast et al. Possibilities of Ultrafast Pico and Femtosecond Laser Systems in Roll-to-Roll Manufacturing Processes for Printed Intelligence, ibid. 4

5 5

Precision Cold Ablation Material Processing using High-Power Picosecond Lasers

Precision Cold Ablation Material Processing using High-Power Picosecond Lasers Annual meeting Burgdorf Precision Cold Ablation Material Processing using High-Power Picosecond Lasers Dr. Kurt Weingarten kw@time-bandwidth.com 26 November 2009 Background of Time-Bandwidth Products First

More information

UVISEL. Spectroscopic Phase Modulated Ellipsometer. The Ideal Tool for Thin Film and Material Characterization

UVISEL. Spectroscopic Phase Modulated Ellipsometer. The Ideal Tool for Thin Film and Material Characterization UVISEL Spectroscopic Phase Modulated Ellipsometer The Ideal Tool for Thin Film and Material Characterization High Precision Research Spectroscopic Ellipsometer The UVISEL ellipsometer offers the best combination

More information

Drilling of Glass by Excimer Laser Mask Projection Technique Abstract Introduction Experimental details

Drilling of Glass by Excimer Laser Mask Projection Technique Abstract Introduction Experimental details Drilling of Glass by Excimer Laser Mask Projection Technique Bernd Keiper, Horst Exner, Udo Löschner, Thomas Kuntze Laserinstitut Mittelsachsen e.v., Hochschule Mittweida, University of Applied Sciences

More information

Laser Induced Damage Threshold of Optical Coatings

Laser Induced Damage Threshold of Optical Coatings White Paper Laser Induced Damage Threshold of Optical Coatings An IDEX Optics & Photonics White Paper Ronian Siew, PhD Craig Hanson Turan Erdogan, PhD INTRODUCTION Optical components are used in many applications

More information

Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser

Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser Lasers in Manufacturing Conference 215 Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser Juozas Dudutis*, Paulius Gečys, Gediminas Račiukaitis Center for Physical Sciences and Technology,

More information

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction CHAPTER 7 7.1 Introduction In this chapter, we want to emphasize the technological interest of controlled laser-processing in dielectric materials. Since the first report of femtosecond laser induced refractive

More information

Performance of Microchannel Plates Fabricated Using Atomic Layer Deposition

Performance of Microchannel Plates Fabricated Using Atomic Layer Deposition Performance of Microchannel Plates Fabricated Using Atomic Layer Deposition Andrey Elagin on behalf of the LAPPD collaboration Introduction Performance (timing) Conclusions Large Area Picosecond Photo

More information

Polymer Optical Waveguide Fabrication Using Laser Ablation

Polymer Optical Waveguide Fabrication Using Laser Ablation Polymer Optical Waveguide Fabrication Using Laser Ablation Shefiu Zakariyah Loughborough University Shefiu S. Zakariyah, Paul P. Conway, David A. Hutt, #David R. Selviah, #Kai Wang #Hadi Baghsiahi *Jeremy

More information

II. PHASE I: TECHNOLOGY DEVELOPMENT Phase I has five tasks that are to be carried out in parallel.

II. PHASE I: TECHNOLOGY DEVELOPMENT Phase I has five tasks that are to be carried out in parallel. Krypton Fluoride Laser Development-the Path to an IRE John Sethian Naval Research Laboratory I. INTRODUCTION We have proposed a program to develop a KrF laser system for Inertial Fusion Energy. Although

More information

Femtosecond Pulsed Laser Direct Writing System for Photomask Fabrication

Femtosecond Pulsed Laser Direct Writing System for Photomask Fabrication Femtosecond Pulsed Laser Direct Writing System for Photomask Fabrication B.K.A.Ngoi, K.Venkatakrishnan, P.Stanley and L.E.N.Lim Abstract-Photomasks are the backbone of microfabrication industries. Currently

More information

Diverse Lasers Support Key Microelectronic Packaging Tasks

Diverse Lasers Support Key Microelectronic Packaging Tasks Diverse Lasers Support Key Microelectronic Packaging Tasks Written by D Muller, R Patzel, G Oulundsen, H Halou, E Rea 23 July 2018 To support more sophisticated and compact tablets, phones, watches and

More information

Printing versus coating technology Which way Printed Electronics with solution coating will go?

Printing versus coating technology Which way Printed Electronics with solution coating will go? Printing versus coating technology Which way Printed Electronics with solution coating will go? Frank Schäfer, Andrea Glawe, Dr. Daniel Eggerath, KROENERT GmbH& Co KG, Schuetzenstrasse 105, 22761 Hamburg

More information

A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE

A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE Chih-Yuan Chang and Yi-Min Hsieh and Xuan-Hao Hsu Department of Mold and Die Engineering, National

More information

New techniques for laser micromachining MEMS devices

New techniques for laser micromachining MEMS devices New techniques for laser micromachining MEMS devices Charles Abbott, Ric Allott, Bob Bann, Karl Boehlen, Malcolm Gower, Phil Rumsby, Ines Stassen- Boehlen and Neil Sykes Exitech Ltd, Oxford Industrial

More information

The Laser Processing of Diamond and Sapphire

The Laser Processing of Diamond and Sapphire The Laser Processing of Diamond and Sapphire Neil Sykes Micronanics Limited neil@micronanics.com Diamond Diamond has the highest hardness and thermal conductivity of any bulk material 10/10 on the Mohs

More information

New Lasers Improve Glass Cutting Methods

New Lasers Improve Glass Cutting Methods New Lasers Improve Glass Cutting Methods Over the past decade, glass has become an increasingly sophisticated structural and functional component in uses as varied as flat panel displays (FPDs), automobiles

More information

Pulsed Laser Ablation of Polymers for Display Applications

Pulsed Laser Ablation of Polymers for Display Applications Pulsed Laser Ablation of Polymers for Display Applications James E.A Pedder 1, Andrew S. Holmes 2, Heather J. Booth 1 1 Oerlikon Optics UK Ltd, Oxford Industrial Estate, Yarnton, Oxford, OX5 1QU, UK 2

More information

Micromachining with tailored Nanosecond Pulses

Micromachining with tailored Nanosecond Pulses Micromachining with tailored Nanosecond Pulses Hans Herfurth a, Rahul Patwa a, Tim Lauterborn a, Stefan Heinemann a, Henrikki Pantsar b a )Fraunhofer USA, Center for Laser Technology (CLT), 46025 Port

More information

Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps

Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps Technical Communication JLMN-Journal of Laser Micro/Nanoengineering Vol. 10, No. 2, 2015 Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps C. Fornaroli 1,

More information

Digital multimirror devices for precision laser micromachining

Digital multimirror devices for precision laser micromachining Digital multimirror devices for precision laser micromachining Rob Eason, Ben Mills, Matthias Feinäugle, Dan Heath, Collin Sones, James Grant-Jacob, Ioannis Katis, Collin Sones. Optoelectronics Research

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

The Swiss Army Knife for the Lab Micro Material Processing with the LPKF ProtoLaser U4

The Swiss Army Knife for the Lab Micro Material Processing with the LPKF ProtoLaser U4 The Swiss Army Knife for the Lab Micro Material Processing with the LPKF ProtoLaser U4 Micro Machining in the Lab LPKF ProtoLasers have been in use in leading electronics laboratories around the world

More information

Novel laser power sensor improves process control

Novel laser power sensor improves process control Novel laser power sensor improves process control A dramatic technological advancement from Coherent has yielded a completely new type of fast response power detector. The high response speed is particularly

More information

Microelectronics Packaging AS FEATURES GET SMALLER, THE ROLE FOR LASERS GETS LARGER

Microelectronics Packaging AS FEATURES GET SMALLER, THE ROLE FOR LASERS GETS LARGER MEMS ARTICLE Microelectronics Packaging AS FEATURES GET SMALLER, THE ROLE FOR LASERS GETS LARGER DIRK MÜLLER, MICROELECTRONICS AND SOLAR MARKET SEGMENT MANAGER, RALPH DELMDAHL, PRODUCT MARKETING MANAGER,

More information

Practical Applications of Laser Technology for Semiconductor Electronics

Practical Applications of Laser Technology for Semiconductor Electronics Practical Applications of Laser Technology for Semiconductor Electronics MOPA Single Pass Nanosecond Laser Applications for Semiconductor / Solar / MEMS & General Manufacturing Mark Brodsky US Application

More information

Ultrafast Lasers with Radial and Azimuthal Polarizations for Highefficiency. Applications

Ultrafast Lasers with Radial and Azimuthal Polarizations for Highefficiency. Applications WP Ultrafast Lasers with Radial and Azimuthal Polarizations for Highefficiency Micro-machining Applications Beneficiaries Call Topic Objective ICT-2013.3.2 Photonics iii) Laser for Industrial processing

More information

Deliverable D5.2 DEMO chip processing option 3

Deliverable D5.2 DEMO chip processing option 3 Deliverable D5.2 DEMO chip processing option 3 Deliverable D5.2 DEMO chip processing Option 3 Date: 22-03-2017 PiezoMAT 2017-03-22_Delivrable_D5.2 Author(s): E.Saoutieff; M.Allain (CEA) Participant(s):

More information

Picosecond Laser Direct Patterning of Poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) Thin Films

Picosecond Laser Direct Patterning of Poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) Thin Films JLMN-Journal of Laser Micro/Nanoengineering Vol. 6, No. 3, 2011 Picosecond Laser Direct Patterning of Poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) Thin Films Shizhou XIAO, Susana

More information

High Power and Energy Femtosecond Lasers

High Power and Energy Femtosecond Lasers High Power and Energy Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average powers. PHAROS features a mechanical and optical

More information

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging LMT F14 Cut in Three Dimensions The Rowiak Laser Microtome: 3-D Cutting and Imaging The Next Generation of Microtomes LMT F14 - Non-contact laser microtomy The Rowiak laser microtome LMT F14 is a multi-purpose

More information

MICRO-ENGINEERING APPLICATIONS OF PULSED LASERS

MICRO-ENGINEERING APPLICATIONS OF PULSED LASERS MICRO-ENGINEERING APPLICATIONS OF PULSED LASERS Nadeem Rizvi Exitech Limited Hanborough Park, Long Hanborough, Oxford OX8 8LH, United Kingdom. INTRODUCTION Lasers are currently being used world-wide in

More information

Applications of Maskless Lithography for the Production of Large Area Substrates Using the SF-100 ELITE. Jay Sasserath, PhD

Applications of Maskless Lithography for the Production of Large Area Substrates Using the SF-100 ELITE. Jay Sasserath, PhD Applications of Maskless Lithography for the Production of Large Area Substrates Using the SF-100 ELITE Executive Summary Jay Sasserath, PhD Intelligent Micro Patterning LLC St. Petersburg, Florida Processing

More information

Please contact T E L : ~ 4.

Please contact T E L : ~ 4. Please contact T E L : +82-32-623-6320~ 4 E-MAIL : sales@kortherm.co.kr jshuh@kortherm.co.kr 1. LASER SAMPLE TEST - To serve companies and individuals who need sample tests before buying new laser micromachining

More information

Flexible Glass Applications & Process Scaling

Flexible Glass Applications & Process Scaling Flexible Glass Applications & Process Scaling Sean Garner, Sue Lewis, Gary Merz, Alex Cuno, Ilia Nikulin October 16, 2017 Outline Flexible Glass Applications Process Scaling Summary 2 Flexible Glass Enables

More information

Since

Since Since 1999 www.kortherm.co.kr Advanced Laserr Technology at KORTherm Science S Since founded in 1999 we put our endeavor into building a specialized business, focusing on the application of lasers and

More information

Beam Shaping in High-Power Laser Systems with Using Refractive Beam Shapers

Beam Shaping in High-Power Laser Systems with Using Refractive Beam Shapers - 1 - Beam Shaping in High-Power Laser Systems with Using Refractive Beam Shapers Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Beam Shaping of the

More information

Modular multifunction micro-machining platform for European SMEs

Modular multifunction micro-machining platform for European SMEs Modular multifunction micro-machining platform for European SMEs Microsystem technology and micro-machining are innovative key technologies of the presence and future. However, for small and medium enterprises

More information

ESCC2006 European Supply Chain Convention

ESCC2006 European Supply Chain Convention ESCC2006 European Supply Chain Convention PCB Paper 20 Laser Technology for cutting FPC s and PCB s Mark Hüske, Innovation Manager, LPKF Laser & Electronics AG, Germany Laser Technology for cutting FPCs

More information

Additional information Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

Additional information Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels Additional information Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels By Don-Ju Kim 1, Hyo-Joong Kim 1, Ki-Won Seo 1, Ki-Hyun Kim 2, Tae-Wong Kim

More information

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope Kenichi Ikeda 1, Hideyuki Kotaki 1 ' 2 and Kazuhisa Nakajima 1 ' 2 ' 3 1 Graduate University for Advanced

More information

Hamidreza Karbasi, P. Eng., PhD Conestoga College ITAL Oct. 7, 2010

Hamidreza Karbasi, P. Eng., PhD Conestoga College ITAL Oct. 7, 2010 Presented at the COMSOL Conference 2010 Boston Presented by: Hamidreza Karbasi, P. Eng., PhD Conestoga College ITAL Oct. 7, 2010 Creating and Building Sustainable Environments Outline Background Objectives

More information

ADVANCES IN USING A POLYMERIC TAPE FOR LASER-INDUCED DEPOSITION AND ABLATION

ADVANCES IN USING A POLYMERIC TAPE FOR LASER-INDUCED DEPOSITION AND ABLATION ADVANCES IN USING A POLYMERIC TAPE FOR LASER-INDUCED DEPOSITION AND ABLATION Arne Koops, tesa AG, Hamburg, Germany Sven Reiter, tesa AG, Hamburg, Germany 1. Abstract Laser systems for industrial materials

More information

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION: Theoretical Approach Why do we need ultra short technology?? INTRODUCTION: Generating ultrashort laser pulses that last a few femtoseconds is a highly active area of research that is finding applications

More information

GRADE A ENGRAVING. Application-focused DPSS laser outshines industry favorite fiber laser counterpart when marking components

GRADE A ENGRAVING. Application-focused DPSS laser outshines industry favorite fiber laser counterpart when marking components GRADE A ENGRAVING by Marin Iliev, R&D manager, RMI Laser Application-focused DPSS laser outshines industry favorite fiber laser counterpart when marking components No doubt fiber lasers are the most common

More information

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Andrea Kroner We present 85 nm wavelength top-emitting vertical-cavity surface-emitting lasers (VCSELs) with integrated photoresist

More information

INTERNATIONAL ELECTRONIC CONFERENCE ON SENSORS AND APPLICATIONS

INTERNATIONAL ELECTRONIC CONFERENCE ON SENSORS AND APPLICATIONS INTERNATIONAL ELECTRONIC CONFERENCE ON SENSORS AND APPLICATIONS 01 16 JUNE 2014 AUTHORS / RESEARCHERS A.F.M. Anuar, Y. Wahab, H. Fazmir, M. Najmi, S. Johari, M. Mazalan, N.I.M. Nor, M.K. Md Arshad Advanced

More information

AVIA DPSS Lasers: Advanced Design for Increased Process Throughput

AVIA DPSS Lasers: Advanced Design for Increased Process Throughput White Paper AVIA DPSS Lasers: Advanced Design for Increased Process Throughput The Q-switched, diode-pumped, solid-state (DPSS) laser has become a widely employed tool in a broad range of industrial micromachining

More information

Sub-ns Microchip Lasers Technology: Overview and Progress in Health Science and Industrial Applications Florent Thibault

Sub-ns Microchip Lasers Technology: Overview and Progress in Health Science and Industrial Applications Florent Thibault Sub-ns Microchip Lasers Technology: Overview and Progress in Health Science and Industrial Applications Florent Thibault May 2012/ page 1 Agenda 1. Company overview 2. Laser technology 3. Added value for

More information

A Laser-Based Thin-Film Growth Monitor

A Laser-Based Thin-Film Growth Monitor TECHNOLOGY by Charles Taylor, Darryl Barlett, Eric Chason, and Jerry Floro A Laser-Based Thin-Film Growth Monitor The Multi-beam Optical Sensor (MOS) was developed jointly by k-space Associates (Ann Arbor,

More information

Features. Applications. Optional Features

Features. Applications. Optional Features Features Compact, Rugged Design TEM Beam with M 2 < 1.2 Pulse Rates from Single Shot to 15 khz IR, Green, UV, and Deep UV Wavelengths Available RS232 Computer Control Patented Harmonic Generation Technology

More information

ORGANIC ELECTRONICS: PHOTOLITHOGRAPHY OR PRINTING. Giles Lloyd Flex Europe Conference, 25th October 2016

ORGANIC ELECTRONICS: PHOTOLITHOGRAPHY OR PRINTING. Giles Lloyd Flex Europe Conference, 25th October 2016 ORGANIC ELECTRONICS: PHOTOLITHOGRAPHY OR PRINTING Giles Lloyd Flex Europe Conference, 25th October 2016 Organic Electronics: Photoligthography or Printing? Lithography Printing Enabling flexible TFT sheet-fed

More information

LASER TECHNOLOGY. Key parameters. Groundbreaking in the laser processing of cutting tools. A member of the UNITED GRINDING Group

LASER TECHNOLOGY. Key parameters. Groundbreaking in the laser processing of cutting tools. A member of the UNITED GRINDING Group Creating Tool Performance A member of the UNITED GRINDING Group Groundbreaking in the laser processing of cutting tools Key parameters The machining of modern materials using laser technology knows no

More information

A process for, and optical performance of, a low cost Wire Grid Polarizer

A process for, and optical performance of, a low cost Wire Grid Polarizer 1.0 Introduction A process for, and optical performance of, a low cost Wire Grid Polarizer M.P.C.Watts, M. Little, E. Egan, A. Hochbaum, Chad Jones, S. Stephansen Agoura Technology Low angle shadowed deposition

More information

True Three-Dimensional Interconnections

True Three-Dimensional Interconnections True Three-Dimensional Interconnections Satoshi Yamamoto, 1 Hiroyuki Wakioka, 1 Osamu Nukaga, 1 Takanao Suzuki, 2 and Tatsuo Suemasu 1 As one of the next-generation through-hole interconnection (THI) technologies,

More information

CHARACTERIZATION AND FIRST APPLICATION OF A THIN-FILM ELECTRET UNSTEADY PRESSURE MEASUREMENT TECHNIQUE

CHARACTERIZATION AND FIRST APPLICATION OF A THIN-FILM ELECTRET UNSTEADY PRESSURE MEASUREMENT TECHNIQUE XIX Biannual Symposium on Measuring Techniques in Turbomachinery Transonic and Supersonic Flow in CHARACTERIZATION AND FIRST APPLICATION OF A THIN-FILM ELECTRET UNSTEADY PRESSURE MEASUREMENT TECHNIQUE

More information

Ti surface laser polishing: effect of laser path and assist gas

Ti surface laser polishing: effect of laser path and assist gas Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 00 (2014) 000 000 www.elsevier.com/locate/procedia 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRP

More information

Feature-level Compensation & Control

Feature-level Compensation & Control Feature-level Compensation & Control 2 Sensors and Control Nathan Cheung, Kameshwar Poolla, Costas Spanos Workshop 11/19/2003 3 Metrology, Control, and Integration Nathan Cheung, UCB SOI Wafers Multi wavelength

More information

5kW DIODE-PUMPED TEST AMPLIFIER

5kW DIODE-PUMPED TEST AMPLIFIER 5kW DIODE-PUMPED TEST AMPLIFIER SUMMARY?Gain - OK, suggest high pump efficiency?efficient extraction - OK, but more accurate data required?self-stabilisation - Yes, to a few % but not well matched to analysis

More information

2.C A Substrate-Independent Noncontact Electro-Optic Probe Using Total Internal Reflection. 5. LLE Review 27, (1986).

2.C A Substrate-Independent Noncontact Electro-Optic Probe Using Total Internal Reflection. 5. LLE Review 27, (1986). LLE REVIEW, Volume 32 transmission lines and the DUT may be fabricated on a common substrate, eliminating the need for wirebond connections. 3. Photoconductive switching and electro-optic sampling allow

More information

Context Development Details Anticipated Effects

Context Development Details Anticipated Effects Dec 27, 2017 Tanaka Precious Metals/Tanaka Holdings Co., Ltd Japan Science and Technology Agency (JST). A Bendable Touch Panel Achieved with Silver Nano Ink Printing Technology (A Result of NexTEP: Joint

More information

Nmark AGV-HP. High Accuracy, Thermally Stable Galvo Scanner

Nmark AGV-HP. High Accuracy, Thermally Stable Galvo Scanner Nmark AGV-HP Galvanometer Nmark AGV-HP High Accuracy, Thermally Stable Galvo Scanner Highest accuracy scanner available attains single-digit, micron-level accuracy over the field of view Optical feedback

More information

Atlantic. Industrial High Power Picosecond Lasers. features

Atlantic. Industrial High Power Picosecond Lasers. features Atlantic Industrial High Power Picosecond Lasers lasers have been designed as a versatile tool for a variety of industrial material processing applications. They are compact, OEM rugged, with up to 8 W

More information

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES The current multiplication mechanism offered by dynodes makes photomultiplier tubes ideal for low-light-level measurement. As explained earlier, there

More information

Ultrafast instrumentation (No Alignment!)

Ultrafast instrumentation (No Alignment!) Ultrafast instrumentation (No Alignment!) We offer products specialized in ultrafast metrology with strong expertise in the production and characterization of high energy ultrashort pulses. We provide

More information

Fully Printed Transparent Capacitive Touchpads from PEDOT:PSS e.g. for Touchscreens - A Project of the HdM Stuttgart, Germany

Fully Printed Transparent Capacitive Touchpads from PEDOT:PSS e.g. for Touchscreens - A Project of the HdM Stuttgart, Germany Fully Printed Transparent Capacitive Touchpads from PEDOT:PSS e.g. for Touchscreens - A Project of the HdM Stuttgart, Germany Erich Steiner 1 1 Hochschule der Medien, Stuttgart, Germany Keywords: Printed

More information

FemtoFAB. Femtosecond laser micromachining system. tel fax Konstitucijos ave. 23C LT Vilnius, Lithuania

FemtoFAB. Femtosecond laser micromachining system. tel fax Konstitucijos ave. 23C LT Vilnius, Lithuania FemtoFAB Femtosecond laser micromachining system Konstitucijos ave. 23C LT-08105 Vilnius, Lithuania tel. +370 5 272 57 38 fax +370 5 272 37 04 info@wophotonics.com www.wophotonics.com INTRODUCTION FemtoFAB

More information

Midaz Micro-Slab DPSS Lasers:

Midaz Micro-Slab DPSS Lasers: Midaz Micro-Slab DPSS Lasers: Higher power & pulse rate for higher speed micromachining Professor Mike Damzen Midaz Laser Ltd 4 June 2008 AILU Meeting Industrial opportunities in laser micro and nano processing

More information

PILOT LINE FOR LARGE-AREA PRINTING OF ELECTRONIC AND PHOTONIC DEVICES. Simon Perraud, Ph.D. Vice president for European affairs

PILOT LINE FOR LARGE-AREA PRINTING OF ELECTRONIC AND PHOTONIC DEVICES. Simon Perraud, Ph.D. Vice president for European affairs PILOT LINE FOR LARGE-AREA PRINTING OF ELECTRONIC AND PHOTONIC DEVICES Simon Perraud, Ph.D. Vice president for European affairs ABOUT LITEN Liten is the research institute of CEA devoted to clean energy

More information

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

Influence of surface properties of ink jet papers on

Influence of surface properties of ink jet papers on Influence of surface properties of ink jet papers on print sharpness Ivana Jurič, Igor Karlović, Ivana Tomić University of Novi Sad, Faculty of Technical Sciences Department of Graphic Engineering and

More information

Lithography. Development of High-Quality Attenuated Phase-Shift Masks

Lithography. Development of High-Quality Attenuated Phase-Shift Masks Lithography S P E C I A L Development of High-Quality Attenuated Phase-Shift Masks by Toshihiro Ii and Masao Otaki, Toppan Printing Co., Ltd. Along with the year-by-year acceleration of semiconductor device

More information

Progress towards Actinic Patterned Mask Inspection. Oleg Khodykin

Progress towards Actinic Patterned Mask Inspection. Oleg Khodykin Progress towards Actinic Patterned Mask Inspection Oleg Khodykin Outline Status (technical) of EUV Actinic Reticle Inspection program Xe based LPP source as bright and reliable solution Requirements Choice

More information

End Capped High Power Assemblies

End Capped High Power Assemblies Fiberguide s end capped fiber optic assemblies allow the user to achieve higher coupled power into a fiber core by reducing the power density at the air/ silica interface, commonly the point of laser damage.

More information

Nanofluidic Diodes based on Nanotube Heterojunctions

Nanofluidic Diodes based on Nanotube Heterojunctions Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions Ruoxue Yan, Wenjie Liang, Rong Fan, Peidong Yang 1 Department of Chemistry, University of California, Berkeley, CA 94720, USA

More information

Kit for building your own THz Time-Domain Spectrometer

Kit for building your own THz Time-Domain Spectrometer Kit for building your own THz Time-Domain Spectrometer 16/06/2016 1 Table of contents 0. Parts for the THz Kit... 3 1. Delay line... 4 2. Pulse generator and lock-in detector... 5 3. THz antennas... 6

More information

Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse

Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse Cover Page Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse laser Authors: Futoshi MATSUI*(1,2), Masaaki ASHIHARA(1), Mitsuyasu MATSUO (1), Sakae KAWATO(2),

More information

Processes for Flexible Electronic Systems

Processes for Flexible Electronic Systems Processes for Flexible Electronic Systems Michael Feil Fraunhofer Institut feil@izm-m.fraunhofer.de Outline Introduction Single sheet versus reel-to-reel (R2R) Substrate materials R2R printing processes

More information

Analysis of Wet Coating Thickness Effect on Transparent Conductive Electrode Performance using Silver Nanowire

Analysis of Wet Coating Thickness Effect on Transparent Conductive Electrode Performance using Silver Nanowire Analysis of Wet Coating Thickness Effect on Transparent Conductive Electrode Performance using Silver Nanowire 2017. 04. 25 Seung-Hyun Lee, PhD Senior Researcher Dept. Printed Electronics Korea Institute

More information

shaping global nanofuture ULTRA-PRECISE PRINTING OF NANOMATERIALS

shaping global nanofuture ULTRA-PRECISE PRINTING OF NANOMATERIALS shaping global nanofuture ULTRA-PRECISE PRINTING OF NANOMATERIALS WHO ARE WE? XTPL S.A. is a company operating in the nanotechnology segment. The interdisciplinary team of XTPL develops on a global scale

More information

How an ink jet printer works

How an ink jet printer works How an ink jet printer works Eric Hanson Hewlett Packard Laboratories Ink jet printers are the most common type of printing devices used in home environments, and they are also frequently used personal

More information

National Centre for Flexible Electronics

National Centre for Flexible Electronics National Centre for Flexible Electronics Tripartite Partnership Government FlexE Centre - A platform for a meaningful interaction between industry and academia. An interdisciplinary team that advances

More information

Marking Cutting Welding Micro Machining Additive Manufacturing

Marking Cutting Welding Micro Machining Additive Manufacturing Marking Cutting Welding Micro Machining Additive Manufacturing Slide: 1 CM-F00003 Rev 4 G4 Pulsed Fiber Laser Slide: 2 CM-F00003 Rev 4 Versatility for Industry Automotive 2D/3D Cutting Night & Day Marking

More information

Optical Isolator Tutorial (Page 1 of 2) νlh, where ν, L, and H are as defined below. ν: the Verdet Constant, a property of the

Optical Isolator Tutorial (Page 1 of 2) νlh, where ν, L, and H are as defined below. ν: the Verdet Constant, a property of the Aspheric Optical Isolator Tutorial (Page 1 of 2) Function An optical isolator is a passive magneto-optic device that only allows light to travel in one direction. Isolators are used to protect a source

More information

Laser printing for micro and nanomanufacturing

Laser printing for micro and nanomanufacturing Laser printing for micro and nanomanufacturing Ph. Delaporte Lasers, Plasmas and Photonics Processes Laboratory, CNRS, Aix-Marseille University Marseille, France Contact: Philippe Delaporte delaporte@lp3.univ-mrs.fr

More information

Chapter 3 Fabrication

Chapter 3 Fabrication Chapter 3 Fabrication The total structure of MO pick-up contains four parts: 1. A sub-micro aperture underneath the SIL The sub-micro aperture is used to limit the final spot size from 300nm to 600nm for

More information

Adaptive optics for laser-based manufacturing processes

Adaptive optics for laser-based manufacturing processes Adaptive optics for laser-based manufacturing processes Rainer Beck 1, Jon Parry 1, Rhys Carrington 1,William MacPherson 1, Andrew Waddie 1, Derryck Reid 1, Nick Weston 2, Jon Shephard 1, Duncan Hand 1

More information

Atlantic. series. Industrial High Power Picosecond DPSS Lasers

Atlantic. series. Industrial High Power Picosecond DPSS Lasers Atlantic series Industrial High Power Picosecond DPSS Lasers Laser description Laser micromachining is rapidly becoming the material processing technology of choice for numerous small scale, real world

More information

Excimer laser projector for microelectronics applications

Excimer laser projector for microelectronics applications Excimer laser projector for microelectronics applications P T Rumsby and M C Gower Exitech Ltd Hanborough Park, Long Hanborough, Oxford OX8 8LH, England ABSTRACT Fully integrated excimer laser mask macro

More information

Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers

Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers Sensors & ransducers 2013 by IFSA http://www.sensorsportal.com Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers Dong LIU, Ying XIE, Gui XIN, Zheng-Ying LI School of Information

More information

Atlantic. Industrial High Power Picosecond Lasers. features

Atlantic. Industrial High Power Picosecond Lasers. features Industrial High Picosecond Lasers lasers have been designed as a versatile tool for a variety of industrial material processing applications. They are compact, OEM rugged, with up to 6 W output power at

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/2/e1700324/dc1 Supplementary Materials for Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures Long Yuan, Ting-Fung

More information

Lasers Defect Correction in DRAM's Problem: very hard to make memory chips with no defects Memory chips have maximum density of devices Repeated

Lasers Defect Correction in DRAM's Problem: very hard to make memory chips with no defects Memory chips have maximum density of devices Repeated Lasers Defect Correction in DRAM's Problem: very hard to make memory chips with no defects Memory chips have maximum density of devices Repeated structures all substitutable Create spare rows and columns

More information

LITE /LAB /SCAN /INLINE:

LITE /LAB /SCAN /INLINE: Metis Metis LITE /LAB /SCAN/ INLINE Metis LITE /LAB /SCAN /INLINE: Spectral Offline and Inline Measuring System, using Integrating Sphere, for coatings on foils/web and on large size glasses To ensure

More information

Effect of Corona Treatment on Spreading Behavior of UV Ink over Inkjet Printed Silver Nano-Particle Layer

Effect of Corona Treatment on Spreading Behavior of UV Ink over Inkjet Printed Silver Nano-Particle Layer Effect of Corona Treatment on Spreading Behavior of UV Ink over Inkjet Printed Silver Nano-Particle Layer Khushbeen Department of Printing Technology GJUS&T, Hisar, Haryana, India Email- khushveen12@gmail.com

More information

Experimental Investigation and Optimization for the Effective Parameters in the Laser Direct Structuring Process

Experimental Investigation and Optimization for the Effective Parameters in the Laser Direct Structuring Process Experimental Investigation and Optimization for the Effective Parameters in the Laser Direct Structuring Process Bassim Bachy a,1 and Jörg Franke 2 1,2 Institute for Factory Automation and Production Systems,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si Authors: Yi Sun 1,2, Kun Zhou 1, Qian Sun 1 *, Jianping Liu 1, Meixin Feng 1, Zengcheng Li 1, Yu Zhou 1, Liqun

More information

MEL 80 Excimer Laser. When you want to see better performance

MEL 80 Excimer Laser. When you want to see better performance MEL 80 Excimer Laser When you want to see better performance Reward your practice Invest in the very latest refractive excimer technology! The MEL 80 makes vision correction even safer, more patient-friendly

More information

EG2605 Undergraduate Research Opportunities Program. Large Scale Nano Fabrication via Proton Lithography Using Metallic Stencils

EG2605 Undergraduate Research Opportunities Program. Large Scale Nano Fabrication via Proton Lithography Using Metallic Stencils EG2605 Undergraduate Research Opportunities Program Large Scale Nano Fabrication via Proton Lithography Using Metallic Stencils Tan Chuan Fu 1, Jeroen Anton van Kan 2, Pattabiraman Santhana Raman 2, Yao

More information

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic Optical Modulator Technical Whitepaper MEMS Optical Modulator Technology Overview The BMC MEMS Optical Modulator, shown in Figure 1, was designed for use in free space optical communication systems. The

More information

The first uncooled (no thermal) MWIR FPA monolithically integrated with a Si-CMOS ROIC: a 80x80 VPD PbSe FPA

The first uncooled (no thermal) MWIR FPA monolithically integrated with a Si-CMOS ROIC: a 80x80 VPD PbSe FPA DOI 10.516/irs013/i4.1 The first uncooled (no thermal) MWIR FPA monolithically integrated with a Si-CMOS ROIC: a 80x80 VPD PbSe FPA G. Vergara, R. Linares-Herrero, R. Gutiérrez-Álvarez, C. Fernández-Montojo,

More information