Pulsed Laser Ablation of Polymers for Display Applications

Size: px
Start display at page:

Download "Pulsed Laser Ablation of Polymers for Display Applications"

Transcription

1 Pulsed Laser Ablation of Polymers for Display Applications James E.A Pedder 1, Andrew S. Holmes 2, Heather J. Booth 1 1 Oerlikon Optics UK Ltd, Oxford Industrial Estate, Yarnton, Oxford, OX5 1QU, UK 2 Imperial College London, EEE Department, Exhibition Road, London, SW7 2AZ, UK ABSTRACT Laser micromachining by ablation is a well established technique used for the production of 2.5D and 3D features in a wide variety of materials. The fabrication of stepped, multi-level, structures can be achieved using a number of binary mask projection techniques using excimer lasers. Alternatively, direct-writing of complex 2.5D features can easily be achieved with solid-state lasers. Excimer laser ablation using half-tone masks allows almost continuous surface relief and the generation of features with low surface roughness. We have developed techniques to create large arrays of repeating micro-optical structures on polymer substrates. Here, we show our recent developments in laser structuring with the combination of half-tone and binary mask techniques. 1. INTRODUCTION Laser micromachining has become an increasingly important process for display manufacture over the past few years. With the advent of very high average power solid state lasers, laser ablation has become a viable technique for patterning thin film transparent conductive oxides on an industrial scale [1], and this approach is now being applied in volume production of flat panel displays. Laser micromachining is also emerging as the preferred technique for manufacturing large area plastic microlens arrays. Such arrays are used as diffusers to optimize the viewing angle and/or contrast in liquid crystal displays and rear projection televisions. They are also required for 3D television, where lenticular lens arrays are used to separate two interlaced images for the viewer in order to generate a stereoscopic effect. As a technique for manufacturing large area arrays of micro-optical elements, laser micromachining competes primarily with two other approaches: greyscale lithography and diamond turning. Greyscale lithography [2] produces a photoresist master which may be transferred either into an underlying substrate by anisotropic etching, or into a metal by electroforming. In either case a hard replica of the original master is produced which can be used as a hot embossing tool for mass replication. This technique works well at wafer scale, where lithographic exposure tools and plasma etchers are available with well defined and uniform characteristics, but is difficult to scale to larger areas. Display applications have unusually stringent requirements in terms of uniformity across the array, because the eye is highly sensitive even to slight irregularities, and it is difficult to meet these requirements if a large area replication tool has to be built up by stitching together smaller ones. Diamond turning [3] is scaleable to large areas, and can produce lenses with lateral dimensions from 50 μm to a few mm with surface roughness less then 15 nm rms. However, aspherical lenses are difficult to fabricate by diamond turning without complex multi-stage motion and grinding tips formed using focused-ion-beam milling. The ability of laser processing to produce almost arbitrary lens profiles is a significant advantage for display applications. For example, the field of view requirements are different in the horizontal and vertical directions, so spherical lenses are not the optimal choice for diffusers. A further advantage of laser processing is that it can yield close-packed arrays of lenses with a fill factor approaching 100% with outstanding uniformity and repeatability. Large area laser micromachining for displays is invariably carried out in mask projection mode, where a mask pattern is projected onto the workpiece using a reduction lens. This approach is ideally suited to excimer lasers which have high pulse power but relatively low beam quality and pulse repetition rate. The exposure field at the workpiece is generally quite small (typically up to 10 mm 2 ), with larger areas being covered by moving the workpiece on translation stages. For large panels this requires precision, high-speed stages that can achieve micron accuracy over displacements of up to several metres, together with dynamic focus control to compensate for variations in surface height. Machines that incorporate these facilities are now highly developed and available commercially.

2 When laser machining microlens arrays, control of the lens profile is typically achieved by exposing each lens site to a sequence of different mask apertures. In this way different parts of each lens receive different numbers of laser pulses, and a stepped surface that closely matches the desired lens shape is produced. The synchronized-image-scanning (SIS) technique developed by Exitech Ltd, which uses a linear array of apertures, is based on this principle [4]. An alternative approach is to use a variable transmission mask, implemented as a half-tone screen, in which case all regions of the workpiece receive the same number of pulses, but the etch depth per pulse varies with position due to the variation in transmitted laser fluence. In this paper we make a critical comparison of these two approaches as applied to the fabrication of large area polycarbonate microlens arrays. 2. LARGE AREA LASER MICROMACHINING The principle of SIS is shown in Figure 1, where the projection lens has been omitted to simplify the diagram. The mask carries a series of apertures which are constructed simply by taking slices through a CAD model of the basic repeating structure. The different apertures are arranged in a linear array on the mask, with the spacing between apertures being equal to the desired pitch of the repeating structures on the workpiece (multiplied by the reduction ratio of the projection optics). The workpiece is moved continuously, and firing of the laser is synchronized to the stage motion so that each lens site on the workpiece is exposed to each aperture in turn. Fig. 1. Laser machining of 2.5D repeating structures by SIS. SIS is ideally implemented as a single pass process, with each region of the workpiece passing beneath the mask only once. This avoids problems with ablation debris that can occur in multiple-pass processes, whereby debris from earlier passes can lead to micro-masking and hence increased surface roughness. In a single-pass process with a linear array of apertures, ablation debris can be blown using an air-jet onto the part of the surface that has already been machined, and then removed at the end of the process by, for example, solvent cleaning. Figure 2 shows how a similar optical set-up can be used to form large area microlens array with a half-tone mask. In this case all the apertures have the same intensity transmission profile, chosen such that the desired lens shape is produced after N HT pulses where N HT is the total number of apertures. Note that the same result could, in principle, be achieved by a multiple-pass process with a single half-tone aperture. However, such a process would be expected to suffer from severe ablation debris issues, and would be inefficient in its use of the available laser power if multiple apertures could be accommodated within the beam cross-section. Half-tone mask design for processes of the kind shown in Fig. 2 is a relatively complex process in the general case. However, in the simplest analysis, where secondary effects such as the reduction of ablation rate on inclined surfaces

3 are ignored, the mask transmission profile for a given operating fluence may be derived directly from the CAD model and the material ablation curve at normal incidence. This approach, which was used in the present work, has been reported previously and will not be described in detail here [5,6]. Fig. 2. Alternative SIS process using an array of similar half-tone mask apertures. 2.1 Operating fluence and process efficiency Choosing the correct operating fluence is a key step in the design of any laser micromachining process. The fluence always has to be in a range where the surface finish and debris levels are acceptable for the intended application, and for prototyping or low-volume production these are often the only considerations. For large area applications, however, the achievable throughput and the process efficiency in terms of ablated volume per Joule of incident laser energy also need to be taken into account. For polymer materials under nanosecond ablation, the shape of the ablation curve is invariably such that there is a peak in the process efficiency some way above the ablation threshold. For polycarbonate machined at 248 nm wavelength, this occurs at a fluence of around 250 mj/cm 2 where the ablation depth per pulse is around 120 nm. For a given laser system, using this fluence level will give the maximum throughput provided all the available laser energy is used. In practice, however, other constraints may determine the fluence level. For example, if the machining tool has not been designed specifically for the application in question, it may not accommodate enough SIS apertures to achieve the required machining depth in a single pass at the optimal fluence, in which case a higher fluence will need to be used. In a different application, a lower than optimal fluence might be used, with a correspondingly higher number of SIS apertures, to reduce the stepping in the machined surfaces. The process efficiency when using half-tone apertures is inevitably lower than in conventional SIS, implying either a higher operating fluence or a larger number of apertures at the same fluence. The reasons for this are twofold. Firstly, the maximum transmission of the half-tone screen is always below 100% due to limitations in the mask manufacturing process. Secondly, there is always a minimum fluence below which ablation debris is not ejected effectively and hence accumulates on the machined surface. It is essential to keep the transmitted fluence above this minimum level, and consequently it is not possible to produce structures where the depth varies continuously down to zero. This minimum fluence requirement generally results in additional material removal beyond the minimum required to form the desired structure, and hence wasted laser energy. This effect can be quite significant at lower operating fluences. For example, a safe minimum fluence for polycarbonate at 248 nm wavelength is around 100 mj/cm 2. At an operating fluence of 250 mj/cm 2, and assuming a maximum half-tone mask transmission of 92%, the process efficiency is only about 60% of that of conventional SIS.

4 3. EXPERIMENTAL TECHNIQUE In order to compare the performances of conventional and half-tone SIS processes, arrays of close-packed convex microlenses were machined in polycarbonate. Each lens was designed to have a spherical surface of radius 41 μm, and the centre-to-centre separation of nearest neighbors was 50 μm, implying a maximum machined depth of about 12 μm. Experiments were carried out using an Exitech M8000 laser micromachining workstation designed specifically for SIS. The workstation was equipped with a KrF excimer laser (248 nm wavelength), a 5X 0.13NA projection lens, and beamforming optics configured to produce a 70 x 6 mm 2 exposure field at the mask plane. Exposures were carried out at a number of different operating fluences between 200 mj/cm 2 and 1000 mj/cm 2. A different, specially designed mask was used at each fluence so that all the lenses produced would have the same nominal shape. Table 1 shows the numbers of apertures and the half-tone transmission ranges used in each case. Figure 3 shows a representative lens array fabricated by half-tone exposure at 200 mj/cm 2. Table 1. Aperture numbers and half-tone transmission ranges used at different operating fluences. Fluence mj/cm 2 N SIS N HT Min HT transmission % Max HT transmission % Fig. 3. Close-packed microlens array formed by SIS with a half-tone mask at 200 mj/cm RESULTS The lens arrays produced were compared in terms of both profile accuracy and surface roughness. Data for both comparisons was acquired using an AFM (Veeco Multimode SPM). The maximum vertical travel of the AFM tip was about 5 μm, meaning that only a 30 x 30 μm 2 region at the centre of each lens could be explored.

5 4.1 Profile accuracy Figure 4 shows an AFM image of a half-tone lens, together with extracted surface profiles for lenses machined at all fluence levels. The measured profiles for lenses machined at fluences of 600, 800 and 1000 mj/cm 2 overlay the design profile almost perfectly. The profile accuracy is less good at lower fluences, but the nature of the error is such that it could be virtually eliminated by slight adjustment of the operating fluence. Fig. 4. AFM plot for half-tone lens machined at 200 mj/cm 2 (left), and extracted surface profiles for half-tone lenses machined at different fluences with design profile for comparison (right). The profile accuracy achieved with conventional SIS was generally found to be less good, and also dependent on the direction of motion of the workpiece. Figure 5 shows extracted profiles for lenses machined at all four fluences levels and both scan directions. In Figure 5a where the workpiece was moving in the direction of the arrow in Figure 1, the lens profiles are all severely distorted by a flat region at the top. This flattening is thought to arise from ablation debris being deposited in the central region of the lens during the early stages of machining, and then inhibiting ablation of the central region towards the end of the process. This effect cannot occur when the workpiece is moving in the opposite direction, because in that case the light transmitted by each aperture always falls on a region that has been ablated by all previous pulses, and debris does not have the opportunity to accumulate in such a region. (a) (b) Fig. 5. Extracted surface profiles for conventional SIS lenses formed at different fluences and with the workpiece moving either (a) Backward (along the direction of the arrow in Figure 1), or (b) Forward (in the opposite direction).

6 The dependence of the lens profile on the scanning direction is an undesirable feature of conventional SIS, since for large area applications the most efficient way to move the workpiece is in a raster pattern, with adjacent rows of elements being produced by opposing scan directions. This directional dependence does not arise with half-tone SIS because the mask apertures are all similar. 4.1 Surface roughness Figure 6 shows close-up SEM images of microlenses machined by conventional SIS with forward scanning, and by half-tone SIS, the operating fluence being 200 mj/cm 2 in both cases. The terracing in the surface of the conventional SIS lens is typical of structures fabricated by this method, and results from the sharp edges of the SIS apertures. This effect, which becomes more pronounced at higher fluences, is also evident in the surface profiles of Figure 5b. Interestingly it cannot be seen in the profiles in Figure 5a, and this is because with backward scanning the steps in the surface produced by each aperture are smoothed by successive laser pulses, in what is effectively a self-polishing process. In a similar fashion, the surface structure on the lens in Figure 6a could be reduced by a post-process involving flood exposure. No roughness is discernable in the SEM image of the half-tone SIS lens, except close to the boundaries between lenses. Figure 7 shows the variations in surface roughness with operating fluence for both processes, based on Ra values extracted from AFM data. (a) Fig. 6. Close-up SEM images of microlenses formed by (a) conventional SIS with forward scanning, and (b) half-tone SIS. The fluence was 200 mj/cm 2 in both cases. (b) (a) (b) Fig. 7. Variations of roughness parameters with fluence for (a) conventional SIS with forward scanning, and (b) halftone SIS. Roughness parameters are extracted from line scans of the AFM data.

7 The roughness with conventional SIS appears to rise steeply with fluence at low fluence levels, but then level out at around 90 nm. The best achievable roughness, at a fluence of 200 mj/cm 2, corresponds to an Ra of around 15 nm. It must be noted that is for a forward scanning process with no polishing. The Ra value with half-tone SIS is consistently below 10 nm, with values of 6 nm or below being achieved over most of the fluence range tested. 5. CONCLUSION We have compared SIS laser micromachining processes employing binary and half-tone masks as techniques for fabricating large area microlens arrays in polycarbonate. The results obtained with conventional binary masks indicate that the profile accuracy depends to some extent on the scan direction, and that there is an apparent trade-off between profile accuracy and surface finish. In the scan direction that gives the best profile accuracy, the minimum Ra value achieved was around 15 nm. The half-tone process was found to give good profile accuracy and low surface roughness over a wide fluence range. The Ra was consistently below 10 nm, with a typical value of around 6 nm. 6. REFERENCES 1. M. Henry, Laser Direct Write of Active Thin-Films on Glass for Industrial Flat Panel Display Manufacture, Proc. 4 th Int. Congress. Laser Adv. Mat. Processing, Kyoto, 2006, Paper No W. Daschner et al, General aspheric refractive micro-optics fabricated by optical lithography using a high energy beam sensitive glass gray-level mask, J. Vac. Sci. Tech. B, Vol. 14, Nov. 1996, pp A.Y. Yi, L. Li, Design and fabrication of a microlens array by use of a slow tool servo, Optics Letters, Vol. 30, July 2005, pp K.L. Boehlen et al, Advanced Laser Micro-Structuring of Super-Large Area Optical Films, Proc. SPIE, Vol. 5720, Jan. 2005, pp A.S. Holmes, Excimer laser micromachining with half-tone masks for the fabrication of 3D microstructures, IEE Proc. Sci. Meas. & Technol., Vol. 151, No. 2, 2004, pp A.S. Holmes, J.E.A. Pedder, K. Boehlen, Advanced laser micromachining processes for MEMS and optical applications, SPIE Proceedings Vol. 6261, Proc. High Power Laser Ablation Conference 2006, Taos, New Mexico, 7-12 May 2006, pp. 1E1-1E9.

Laser micro-machining of high density optical structures on large substrates

Laser micro-machining of high density optical structures on large substrates Laser micro-machining of high density optical structures on large substrates Karl L. Boehlen*, Ines B. Stassen Boehlen Exitech Ltd, Oxford Industrial Park, Yarnton, Oxford, OX5 1QU, United Kingdom ABSTRACT

More information

A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE

A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE Chih-Yuan Chang and Yi-Min Hsieh and Xuan-Hao Hsu Department of Mold and Die Engineering, National

More information

New techniques for laser micromachining MEMS devices

New techniques for laser micromachining MEMS devices New techniques for laser micromachining MEMS devices Charles Abbott, Ric Allott, Bob Bann, Karl Boehlen, Malcolm Gower, Phil Rumsby, Ines Stassen- Boehlen and Neil Sykes Exitech Ltd, Oxford Industrial

More information

Laser Profiling of 3-D Microturbine Blades

Laser Profiling of 3-D Microturbine Blades Laser Profiling of 3-D Microturbine Blades Andrew S. HOLMES *, Mark E. HEATON *, Guodong HONG *, Keith R. Pullen ** and Phil T. Rumsby *** * Optical & Semiconductor Devices Group, Department of Electrical

More information

UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS

UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS Optics and Photonics Letters Vol. 4, No. 2 (2011) 75 81 c World Scientific Publishing Company DOI: 10.1142/S1793528811000226 UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS ANDREW

More information

Laser Processing for the Fabrication of MEMS Devices

Laser Processing for the Fabrication of MEMS Devices Laser Processing for the Fabrication of MEMS Devices Andrew S. Holmes Optical & Semiconductor Devices Group Department of Electrical & Electronic Engineering Imperial College, London SW7 2AZ, UK a.holmes@imperial.ac.uk

More information

Lecture 22 Optical MEMS (4)

Lecture 22 Optical MEMS (4) EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie Lecture 22 Optical MEMS (4) Agenda: Refractive Optical Elements Microlenses GRIN Lenses Microprisms Reference: S. Sinzinger and J. Jahns,

More information

ICMIEE Generation of Various Micropattern Using Microlens Projection Photolithography

ICMIEE Generation of Various Micropattern Using Microlens Projection Photolithography International Conference on Mechanical, Industrial and Energy Engineering 2014 26-27 December, 2014, Khulna, BANGLADESH Generation of Various Micropattern Using Microlens Projection Photolithography Md.

More information

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs Andrea Kroner We present 85 nm wavelength top-emitting vertical-cavity surface-emitting lasers (VCSELs) with integrated photoresist

More information

Mask projection surface structuring

Mask projection surface structuring Willkommen Welcome Bienvenue Mask projection surface structuring Patrik Hoffmann Advanced Materials Processing Empa Thun, Switzerland EPHJ - Geneva, 18.6.2014 Outline Ablation process - limitations Excimer

More information

Excimer laser projector for microelectronics applications

Excimer laser projector for microelectronics applications Excimer laser projector for microelectronics applications P T Rumsby and M C Gower Exitech Ltd Hanborough Park, Long Hanborough, Oxford OX8 8LH, England ABSTRACT Fully integrated excimer laser mask macro

More information

The Laser Processing of Diamond and Sapphire

The Laser Processing of Diamond and Sapphire The Laser Processing of Diamond and Sapphire Neil Sykes Micronanics Limited neil@micronanics.com Diamond Diamond has the highest hardness and thermal conductivity of any bulk material 10/10 on the Mohs

More information

Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold

Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold Infrared Physics & Technology 48 (2006) 163 173 www.elsevier.com/locate/infrared Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold C.-Y. Chang a, S.-Y. Yang

More information

Fabrication Methodology of microlenses for stereoscopic imagers using standard CMOS process. R. P. Rocha, J. P. Carmo, and J. H.

Fabrication Methodology of microlenses for stereoscopic imagers using standard CMOS process. R. P. Rocha, J. P. Carmo, and J. H. Fabrication Methodology of microlenses for stereoscopic imagers using standard CMOS process R. P. Rocha, J. P. Carmo, and J. H. Correia Department of Industrial Electronics, University of Minho, Campus

More information

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers.

Copyright 2000 by the Society of Photo-Optical Instrumentation Engineers. Copyright by the Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of Optical Microlithography XIII, SPIE Vol. 4, pp. 658-664. It is made available as an electronic

More information

Tolerancing microlenses using ZEMAX

Tolerancing microlenses using ZEMAX Tolerancing microlenses using ZEMAX Andrew Stockham, John G. Smith MEMS Optical *, Inc., 05 Import Circle, Huntsville, AL, USA 35806 ABSTRACT This paper demonstrates a new tolerancing technique that allows

More information

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon

More information

Microlens array-based exit pupil expander for full color display applications

Microlens array-based exit pupil expander for full color display applications Proc. SPIE, Vol. 5456, in Photon Management, Strasbourg, France, April 2004 Microlens array-based exit pupil expander for full color display applications Hakan Urey a, Karlton D. Powell b a Optical Microsystems

More information

Fabrication of micro structures on curve surface by X-ray lithography

Fabrication of micro structures on curve surface by X-ray lithography Fabrication of micro structures on curve surface by X-ray lithography Yigui Li 1, Susumu Sugiyama 2 Abstract We demonstrate experimentally the x-ray lithography techniques to fabricate micro structures

More information

CHAPTER 2 Principle and Design

CHAPTER 2 Principle and Design CHAPTER 2 Principle and Design The binary and gray-scale microlens will be designed and fabricated. Silicon nitride and photoresist will be taken as the material of the microlens in this thesis. The design

More information

Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process

Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process Microelectronic Engineering 84 (2007) 355 361 www.elsevier.com/locate/mee Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process Chih-Yuan Chang, Sen-Yeu Yang *,

More information

Major Fabrication Steps in MOS Process Flow

Major Fabrication Steps in MOS Process Flow Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide Silicon substrate Oxidation (Field oxide) Photoresist Coating Mask-Wafer Alignment

More information

Fabrication method of quartz aspheric microlens array for turning mask

Fabrication method of quartz aspheric microlens array for turning mask Opto-Electronic Engineering Article 018 45 4 1 1300 400714 Reactive ion etching Single point diamond turning Photoresist Glass substrate 5 mm 5 mm 1.155 nm 0.47% O439 A. [J]. 018 45(4): 170671 Fabrication

More information

MICRO-ENGINEERING APPLICATIONS OF PULSED LASERS

MICRO-ENGINEERING APPLICATIONS OF PULSED LASERS MICRO-ENGINEERING APPLICATIONS OF PULSED LASERS Nadeem Rizvi Exitech Limited Hanborough Park, Long Hanborough, Oxford OX8 8LH, United Kingdom. INTRODUCTION Lasers are currently being used world-wide in

More information

Fabrication of suspended micro-structures using diffsuser lithography on negative photoresist

Fabrication of suspended micro-structures using diffsuser lithography on negative photoresist Journal of Mechanical Science and Technology 22 (2008) 1765~1771 Journal of Mechanical Science and Technology www.springerlink.com/content/1738-494x DOI 10.1007/s12206-008-0601-8 Fabrication of suspended

More information

Reducing Proximity Effects in Optical Lithography

Reducing Proximity Effects in Optical Lithography INTERFACE '96 This paper was published in the proceedings of the Olin Microlithography Seminar, Interface '96, pp. 325-336. It is made available as an electronic reprint with permission of Olin Microelectronic

More information

Fabrication of micro DOE using micro tools shaped with focused ion beam

Fabrication of micro DOE using micro tools shaped with focused ion beam Fabrication of micro DOE using micro tools shaped with focused ion beam Z. W. Xu, 1,2 F. Z. Fang, 1,2* S. J. Zhang, 1 X. D. Zhang, 1,2 X. T. Hu, 1 Y. Q. Fu, 3 L. Li 4 1 State Key Laboratory of Precision

More information

Part 5-1: Lithography

Part 5-1: Lithography Part 5-1: Lithography Yao-Joe Yang 1 Pattern Transfer (Patterning) Types of lithography systems: Optical X-ray electron beam writer (non-traditional, no masks) Two-dimensional pattern transfer: limited

More information

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. The lithographic process

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. The lithographic process Section 2: Lithography Jaeger Chapter 2 Litho Reader The lithographic process Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon dioxide barrier layer Positive photoresist

More information

Figure 7 Dynamic range expansion of Shack- Hartmann sensor using a spatial-light modulator

Figure 7 Dynamic range expansion of Shack- Hartmann sensor using a spatial-light modulator Figure 4 Advantage of having smaller focal spot on CCD with super-fine pixels: Larger focal point compromises the sensitivity, spatial resolution, and accuracy. Figure 1 Typical microlens array for Shack-Hartmann

More information

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 Litho Reader EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered

More information

Process Optimization

Process Optimization Process Optimization Process Flow for non-critical layer optimization START Find the swing curve for the desired resist thickness. Determine the resist thickness (spin speed) from the swing curve and find

More information

Lithography. Development of High-Quality Attenuated Phase-Shift Masks

Lithography. Development of High-Quality Attenuated Phase-Shift Masks Lithography S P E C I A L Development of High-Quality Attenuated Phase-Shift Masks by Toshihiro Ii and Masao Otaki, Toppan Printing Co., Ltd. Along with the year-by-year acceleration of semiconductor device

More information

Technical Notes. Introduction. Optical Properties. Issue 6 July Figure 1. Specular Reflection:

Technical Notes. Introduction. Optical Properties. Issue 6 July Figure 1. Specular Reflection: Technical Notes This Technical Note introduces basic concepts in optical design for low power off-grid lighting products and suggests ways to improve optical efficiency. It is intended for manufacturers,

More information

New high fill-factor triangular micro-lens array fabrication method using UV proximity printing

New high fill-factor triangular micro-lens array fabrication method using UV proximity printing New high fill-factor triangular micro-lens array fabrication method using UV proximity printing T.-H. Lin, H. Yang, C.-K. Chao To cite this version: T.-H. Lin, H. Yang, C.-K. Chao. New high fill-factor

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

High-speed Fabrication of Micro-channels using Line-based Laser Induced Plasma Micromachining (L-LIPMM)

High-speed Fabrication of Micro-channels using Line-based Laser Induced Plasma Micromachining (L-LIPMM) Proceedings of the 8th International Conference on MicroManufacturing University of Victoria, Victoria, BC, Canada, March 25-28, 2013 High-speed Fabrication of Micro-channels using Line-based Laser Induced

More information

Bias errors in PIV: the pixel locking effect revisited.

Bias errors in PIV: the pixel locking effect revisited. Bias errors in PIV: the pixel locking effect revisited. E.F.J. Overmars 1, N.G.W. Warncke, C. Poelma and J. Westerweel 1: Laboratory for Aero & Hydrodynamics, University of Technology, Delft, The Netherlands,

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Printing on Stones Map of Munich Stone Print Contact Printing light

More information

Performance Factors. Technical Assistance. Fundamental Optics

Performance Factors.   Technical Assistance. Fundamental Optics Performance Factors After paraxial formulas have been used to select values for component focal length(s) and diameter(s), the final step is to select actual lenses. As in any engineering problem, this

More information

DOE Project: Resist Characterization

DOE Project: Resist Characterization DOE Project: Resist Characterization GOAL To achieve high resolution and adequate throughput, a photoresist must possess relatively high contrast and sensitivity to exposing radiation. The objective of

More information

Multi-aperture camera module with 720presolution

Multi-aperture camera module with 720presolution Multi-aperture camera module with 720presolution using microoptics A. Brückner, A. Oberdörster, J. Dunkel, A. Reimann, F. Wippermann, A. Bräuer Fraunhofer Institute for Applied Optics and Precision Engineering

More information

Wuxi OptonTech Ltd. Structured light DOEs without requiring collimation: For surface-emitting lasers (e.g. VCSELs)

Wuxi OptonTech Ltd. Structured light DOEs without requiring collimation: For surface-emitting lasers (e.g. VCSELs) . specializes in diffractive optical elements (DOEs) and computer generated holograms (CGHs)for beam shaping, beam splitting and beam homogenizing (diffusing). We design and provide standard and custom

More information

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens George Curatu a, Brent Binkley a, David Tinch a, and Costin Curatu b a LightPath Technologies, 2603

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf MICROCHIP MANUFACTURING by S. Wolf Chapter 19 LITHOGRAPHY II: IMAGE-FORMATION and OPTICAL HARDWARE 2004 by LATTICE PRESS CHAPTER 19 - CONTENTS Preliminaries: Wave- Motion & The Behavior of Light Resolution

More information

Project Staff: Feng Zhang, Prof. Jianfeng Dai (Lanzhou Univ. of Tech.), Prof. Todd Hasting (Univ. Kentucky), Prof. Henry I. Smith

Project Staff: Feng Zhang, Prof. Jianfeng Dai (Lanzhou Univ. of Tech.), Prof. Todd Hasting (Univ. Kentucky), Prof. Henry I. Smith 3. Spatial-Phase-Locked Electron-Beam Lithography Sponsors: No external sponsor Project Staff: Feng Zhang, Prof. Jianfeng Dai (Lanzhou Univ. of Tech.), Prof. Todd Hasting (Univ. Kentucky), Prof. Henry

More information

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction CHAPTER 7 7.1 Introduction In this chapter, we want to emphasize the technological interest of controlled laser-processing in dielectric materials. Since the first report of femtosecond laser induced refractive

More information

MicroSpot FOCUSING OBJECTIVES

MicroSpot FOCUSING OBJECTIVES OFR P R E C I S I O N O P T I C A L P R O D U C T S MicroSpot FOCUSING OBJECTIVES APPLICATIONS Micromachining Microlithography Laser scribing Photoablation MAJOR FEATURES For UV excimer & high-power YAG

More information

Microlens formation using heavily dyed photoresist in a single step

Microlens formation using heavily dyed photoresist in a single step Microlens formation using heavily dyed photoresist in a single step Chris Cox, Curtis Planje, Nick Brakensiek, Zhimin Zhu, Jonathan Mayo Brewer Science, Inc., 2401 Brewer Drive, Rolla, MO 65401, USA ABSTRACT

More information

Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7

Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7 Lecture 7 Lithography and Pattern Transfer Reading: Chapter 7 Used for Pattern transfer into oxides, metals, semiconductors. 3 types of Photoresists (PR): Lithography and Photoresists 1.) Positive: PR

More information

Computer Generated Holograms for Optical Testing

Computer Generated Holograms for Optical Testing Computer Generated Holograms for Optical Testing Dr. Jim Burge Associate Professor Optical Sciences and Astronomy University of Arizona jburge@optics.arizona.edu 520-621-8182 Computer Generated Holograms

More information

Micron and sub-micron gratings on glass by UV laser ablation

Micron and sub-micron gratings on glass by UV laser ablation Available online at www.sciencedirect.com Physics Procedia 41 (2013 ) 708 712 Lasers in Manufacturing Conference 2013 Micron and sub-micron gratings on glass by UV laser ablation Abstract J. Meinertz,

More information

MICROBUMP LITHOGRAPHY FOR 3D STACKING APPLICATIONS

MICROBUMP LITHOGRAPHY FOR 3D STACKING APPLICATIONS MICROBUMP LITHOGRAPHY FOR 3D STACKING APPLICATIONS Patrick Jaenen, John Slabbekoorn, Andy Miller IMEC Kapeldreef 75 B-3001 Leuven, Belgium millera@imec.be Warren W. Flack, Manish Ranjan, Gareth Kenyon,

More information

A process for, and optical performance of, a low cost Wire Grid Polarizer

A process for, and optical performance of, a low cost Wire Grid Polarizer 1.0 Introduction A process for, and optical performance of, a low cost Wire Grid Polarizer M.P.C.Watts, M. Little, E. Egan, A. Hochbaum, Chad Jones, S. Stephansen Agoura Technology Low angle shadowed deposition

More information

Two step process for the fabrication of diffraction limited concave microlens arrays

Two step process for the fabrication of diffraction limited concave microlens arrays Two step process for the fabrication of diffraction limited concave microlens arrays Patrick Ruffieux 1*, Toralf Scharf 1, Irène Philipoussis 1, Hans Peter Herzig 1, Reinhard Voelkel 2, and Kenneth J.

More information

This writeup is adapted from Fall 2002, final project report for by Robert Winsor.

This writeup is adapted from Fall 2002, final project report for by Robert Winsor. Optical Waveguides in Andreas G. Andreou This writeup is adapted from Fall 2002, final project report for 520.773 by Robert Winsor. September, 2003 ABSTRACT This lab course is intended to give students

More information

Synthesis of projection lithography for low k1 via interferometry

Synthesis of projection lithography for low k1 via interferometry Synthesis of projection lithography for low k1 via interferometry Frank Cropanese *, Anatoly Bourov, Yongfa Fan, Andrew Estroff, Lena Zavyalova, Bruce W. Smith Center for Nanolithography Research, Rochester

More information

EE143 Fall 2016 Microfabrication Technologies. Lecture 3: Lithography Reading: Jaeger, Chap. 2

EE143 Fall 2016 Microfabrication Technologies. Lecture 3: Lithography Reading: Jaeger, Chap. 2 EE143 Fall 2016 Microfabrication Technologies Lecture 3: Lithography Reading: Jaeger, Chap. 2 Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 The lithographic process 1-2 1 Photolithographic

More information

Advances in Laser Micro-machining for Wafer Probing and Trimming

Advances in Laser Micro-machining for Wafer Probing and Trimming Advances in Laser Micro-machining for Wafer Probing and Trimming M.R.H. Knowles, A.I.Bell, G. Rutterford & A. Webb Oxford Lasers June 10, 2002 Oxford Lasers June 2002 1 Introduction to Laser Micro-machining

More information

Fabrication of Microgrooves with Excimer Laser Ablation Techniques for Plastic Optical Fibre Array Alignment Purposes.

Fabrication of Microgrooves with Excimer Laser Ablation Techniques for Plastic Optical Fibre Array Alignment Purposes. Fabrication of Microgrooves with Excimer Laser Ablation Techniques for Plastic Optical Fibre Array Alignment Purposes. Kris Naessens, An Van Hove, Thierry Coosemans, Steven Verstuyft, Heidi Ottevaere *,

More information

Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process

Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process Hewei Liu a, Feng Chen* a, Qing Yang b, Yang Hu a, Chao Shan a, Shengguan

More information

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation 238 Hitachi Review Vol. 65 (2016), No. 7 Featured Articles Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation AFM5500M Scanning Probe Microscope Satoshi Hasumura

More information

New Lasers Improve Glass Cutting Methods

New Lasers Improve Glass Cutting Methods New Lasers Improve Glass Cutting Methods Over the past decade, glass has become an increasingly sophisticated structural and functional component in uses as varied as flat panel displays (FPDs), automobiles

More information

Outline. 1 Introduction. 2 Basic IC fabrication processes. 3 Fabrication techniques for MEMS. 4 Applications. 5 Mechanics issues on MEMS MDL NTHU

Outline. 1 Introduction. 2 Basic IC fabrication processes. 3 Fabrication techniques for MEMS. 4 Applications. 5 Mechanics issues on MEMS MDL NTHU Outline 1 Introduction 2 Basic IC fabrication processes 3 Fabrication techniques for MEMS 4 Applications 5 Mechanics issues on MEMS 2.2 Lithography Reading: Runyan Chap. 5, or 莊達人 Chap. 7, or Wolf and

More information

optical and photoresist effects

optical and photoresist effects Focus effects in submicron optical lithography, optical and photoresist effects Chris A. Mack and Patricia M. Kaufman Department of Defense Fort Meade, Maryland 20755 Abstract This paper gives a review

More information

A study on the fabrication method of middle size LGP using continuous micro-lenses made by LIGA reflow

A study on the fabrication method of middle size LGP using continuous micro-lenses made by LIGA reflow Korea-Australia Rheology Journal Vol. 19, No. 3, November 2007 pp. 171-176 A study on the fabrication method of middle size LGP using continuous micro-lenses made by LIGA reflow Jong Sun Kim, Young Bae

More information

Optolith 2D Lithography Simulator

Optolith 2D Lithography Simulator 2D Lithography Simulator Advanced 2D Optical Lithography Simulator 4/13/05 Introduction is a powerful non-planar 2D lithography simulator that models all aspects of modern deep sub-micron lithography It

More information

Copyright 2002 by the Society of Photo-Optical Instrumentation Engineers.

Copyright 2002 by the Society of Photo-Optical Instrumentation Engineers. Copyright 22 by the Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of Optical Microlithography XV, SPIE Vol. 4691, pp. 98-16. It is made available as an

More information

Optical Proximity Effects

Optical Proximity Effects T h e L i t h o g r a p h y E x p e r t (Spring 1996) Optical Proximity Effects Chris A. Mack, FINLE Technologies, Austin, Texas Proximity effects are the variations in the linewidth of a feature (or the

More information

Low aberration monolithic diffraction gratings for high performance optical spectrometers

Low aberration monolithic diffraction gratings for high performance optical spectrometers Low aberration monolithic diffraction gratings for high performance optical spectrometers Peter Triebel, Tobias Moeller, Torsten Diehl; Carl Zeiss Spectroscopy GmbH (Germany) Alexandre Gatto, Alexander

More information

DIY fabrication of microstructures by projection photolithography

DIY fabrication of microstructures by projection photolithography DIY fabrication of microstructures by projection photolithography Andrew Zonenberg Rensselaer Polytechnic Institute 110 8th Street Troy, New York U.S.A. 12180 zonena@cs.rpi.edu April 20, 2011 Abstract

More information

An Evaluation of MTF Determination Methods for 35mm Film Scanners

An Evaluation of MTF Determination Methods for 35mm Film Scanners An Evaluation of Determination Methods for 35mm Film Scanners S. Triantaphillidou, R. E. Jacobson, R. Fagard-Jenkin Imaging Technology Research Group, University of Westminster Watford Road, Harrow, HA1

More information

Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser

Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser Lasers in Manufacturing Conference 215 Rear Side Processing of Soda-Lime Glass Using DPSS Nanosecond Laser Juozas Dudutis*, Paulius Gečys, Gediminas Račiukaitis Center for Physical Sciences and Technology,

More information

Sintec Optronics Pte Ltd Blk 134 Jurong East St 13 #04-309D Singapore Tel: (65) Fax:

Sintec Optronics Pte Ltd Blk 134 Jurong East St 13 #04-309D Singapore Tel: (65) Fax: Sintec Optronics Pte Ltd Blk 134 Jurong East St 13 #04-309D Singapore 600134 Tel: (65) 6862-7224 Fax: 6793-8060 E-mail: htinfo@singnet.com.sg Excimer laser drilling of polymers Y. H. Chen a, H. Y. Zheng

More information

Design Rules for Silicon Photonics Prototyping

Design Rules for Silicon Photonics Prototyping Design Rules for licon Photonics Prototyping Version 1 (released February 2008) Introduction IME s Photonics Prototyping Service offers 248nm lithography based fabrication technology for passive licon-on-insulator

More information

INTERNATIONAL ELECTRONIC CONFERENCE ON SENSORS AND APPLICATIONS

INTERNATIONAL ELECTRONIC CONFERENCE ON SENSORS AND APPLICATIONS INTERNATIONAL ELECTRONIC CONFERENCE ON SENSORS AND APPLICATIONS 01 16 JUNE 2014 AUTHORS / RESEARCHERS A.F.M. Anuar, Y. Wahab, H. Fazmir, M. Najmi, S. Johari, M. Mazalan, N.I.M. Nor, M.K. Md Arshad Advanced

More information

Laser Scanning for Surface Analysis of Transparent Samples - An Experimental Feasibility Study

Laser Scanning for Surface Analysis of Transparent Samples - An Experimental Feasibility Study STR/03/044/PM Laser Scanning for Surface Analysis of Transparent Samples - An Experimental Feasibility Study E. Lea Abstract An experimental investigation of a surface analysis method has been carried

More information

Maskless Lithography Based on Digital Micro-Mirror Device (DMD) with Double Sided Microlens and Spatial Filter Array

Maskless Lithography Based on Digital Micro-Mirror Device (DMD) with Double Sided Microlens and Spatial Filter Array 2017 2nd International Conference on Applied Mechanics, Electronics and Mechatronics Engineering (AMEME 2017) ISBN: 978-1-60595-497-4 Maskless Lithography Based on Digital Micro-Mirror Device (DMD) with

More information

Nanoscale Lithography. NA & Immersion. Trends in λ, NA, k 1. Pushing The Limits of Photolithography Introduction to Nanotechnology

Nanoscale Lithography. NA & Immersion. Trends in λ, NA, k 1. Pushing The Limits of Photolithography Introduction to Nanotechnology 15-398 Introduction to Nanotechnology Nanoscale Lithography Seth Copen Goldstein Seth@cs.cmu.Edu CMU Pushing The Limits of Photolithography Reduce wavelength (λ) Use Reducing Lens Increase Numerical Aperture

More information

UV LED ILLUMINATION STEPPER OFFERS HIGH PERFORMANCE AND LOW COST OF OWNERSHIP

UV LED ILLUMINATION STEPPER OFFERS HIGH PERFORMANCE AND LOW COST OF OWNERSHIP UV LED ILLUMINATION STEPPER OFFERS HIGH PERFORMANCE AND LOW COST OF OWNERSHIP Casey Donaher, Rudolph Technologies Herbert J. Thompson, Rudolph Technologies Chin Tiong Sim, Rudolph Technologies Rudolph

More information

immersion optics Immersion Lithography with ASML HydroLith TWINSCAN System Modifications for Immersion Lithography by Bob Streefkerk

immersion optics Immersion Lithography with ASML HydroLith TWINSCAN System Modifications for Immersion Lithography by Bob Streefkerk immersion optics Immersion Lithography with ASML HydroLith by Bob Streefkerk For more than 25 years, many in the semiconductor industry have predicted the end of optical lithography. Recent developments,

More information

All-Glass Gray Scale PhotoMasks Enable New Technologies. Che-Kuang (Chuck) Wu Canyon Materials, Inc.

All-Glass Gray Scale PhotoMasks Enable New Technologies. Che-Kuang (Chuck) Wu Canyon Materials, Inc. All-Glass Gray Scale PhotoMasks Enable New Technologies Che-Kuang (Chuck) Wu Canyon Materials, Inc. 1 Overview All-Glass Gray Scale Photomask technologies include: HEBS-glasses and LDW-glasses HEBS-glass

More information

Exhibit 2 Declaration of Dr. Chris Mack

Exhibit 2 Declaration of Dr. Chris Mack STC.UNM v. Intel Corporation Doc. 113 Att. 5 Exhibit 2 Declaration of Dr. Chris Mack Dockets.Justia.com UNITED STATES DISTRICT COURT DISTRICT OF NEW MEXICO STC.UNM, Plaintiff, v. INTEL CORPORATION Civil

More information

Institute of Solid State Physics. Technische Universität Graz. Lithography. Peter Hadley

Institute of Solid State Physics. Technische Universität Graz. Lithography. Peter Hadley Technische Universität Graz Institute of Solid State Physics Lithography Peter Hadley http://www.cleanroom.byu.edu/virtual_cleanroom.parts/lithography.html http://www.cleanroom.byu.edu/su8.phtml Spin coater

More information

Bringing Answers to the Surface

Bringing Answers to the Surface 3D Bringing Answers to the Surface 1 Expanding the Boundaries of Laser Microscopy Measurements and images you can count on. Every time. LEXT OLS4100 Widely used in quality control, research, and development

More information

Supporting Information 1. Experimental

Supporting Information 1. Experimental Supporting Information 1. Experimental The position markers were fabricated by electron-beam lithography. To improve the nanoparticle distribution when depositing aqueous Ag nanoparticles onto the window,

More information

11 kw direct diode laser system with homogenized 55 x 20 mm² Top-Hat intensity distribution

11 kw direct diode laser system with homogenized 55 x 20 mm² Top-Hat intensity distribution 11 kw direct diode laser system with homogenized 55 x 20 mm² Top-Hat intensity distribution Bernd Köhler *, Axel Noeske, Tobias Kindervater, Armin Wessollek, Thomas Brand, Jens Biesenbach DILAS Diodenlaser

More information

Microtools Shaped by Focused Ion Beam Milling and the Fabrication of Cylindrical Coils

Microtools Shaped by Focused Ion Beam Milling and the Fabrication of Cylindrical Coils Microtools Shaped by Focused Ion Beam Milling and the Fabrication of Cylindrical Coils M.J. Vasile, D.P. Adams #, and Y.N. Picard* Sandia National Laboratories P.O. Box 5800, MS 0959 Albuquerque, NM, 87185

More information

Laser Processes for MEMS Manufacture

Laser Processes for MEMS Manufacture Laser Processes for MEMS Manufacture Andrew S HOLMES Department of Electrical and Electronic Engineering, Imperial College of Science, Technology and Medicine, Exhibition Road, London SW7 2BT, United Kingdom

More information

Copyright 2000 Society of Photo Instrumentation Engineers.

Copyright 2000 Society of Photo Instrumentation Engineers. Copyright 2000 Society of Photo Instrumentation Engineers. This paper was published in SPIE Proceedings, Volume 4043 and is made available as an electronic reprint with permission of SPIE. One print or

More information

Study of a Miniature Air Bearing Linear Stage System

Study of a Miniature Air Bearing Linear Stage System Materials Science Forum Vols. 55-57 (26) pp. 13-18 online at http://www.scientific.net (26) Trans Tech Publications, Switzerland Study of a Miniature Air Bearing Linear Stage System K. C. Fan 1, a, R.

More information

5. Lithography. 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen

5. Lithography. 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen 5. Lithography 1. photolithography intro: overall, clean room 2. principle 3. tools 4. pattern transfer 5. resolution 6. next-gen References: Semiconductor Devices: Physics and Technology. 2 nd Ed. SM

More information

Optical Issues in Photolithography

Optical Issues in Photolithography OpenStax-CNX module: m25448 1 Optical Issues in Photolithography Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 note: This module

More information

Near-field optical photomask repair with a femtosecond laser

Near-field optical photomask repair with a femtosecond laser Journal of Microscopy, Vol. 194, Pt 2/3, May/June 1999, pp. 537 541. Received 6 December 1998; accepted 9 February 1999 Near-field optical photomask repair with a femtosecond laser K. LIEBERMAN, Y. SHANI,

More information

Linewidth control by overexposure in laser lithography

Linewidth control by overexposure in laser lithography Optica Applicata, Vol. XXXVIII, No. 2, 2008 Linewidth control by overexposure in laser lithography LIANG YIYONG*, YANG GUOGUANG State Key Laboratory of Modern Optical Instruments, Zhejiang University,

More information

MICRO AND NANOPROCESSING TECHNOLOGIES

MICRO AND NANOPROCESSING TECHNOLOGIES MICRO AND NANOPROCESSING TECHNOLOGIES LECTURE 4 Optical lithography Concepts and processes Lithography systems Fundamental limitations and other issues Photoresists Photolithography process Process parameter

More information

A NEW INNOVATIVE METHOD FOR THE FABRICATION OF SMALL LENS ARRAY MOLD INSERTS

A NEW INNOVATIVE METHOD FOR THE FABRICATION OF SMALL LENS ARRAY MOLD INSERTS A NEW INNOVATIVE METHOD FOR THE FABRICATION OF SMALL LENS ARRAY MOLD INSERTS Chih-Yuan Chang and Po-Cheng Chen Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences,

More information

IMAGE SENSOR SOLUTIONS. KAC-96-1/5" Lens Kit. KODAK KAC-96-1/5" Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2

IMAGE SENSOR SOLUTIONS. KAC-96-1/5 Lens Kit. KODAK KAC-96-1/5 Lens Kit. for use with the KODAK CMOS Image Sensors. November 2004 Revision 2 KODAK for use with the KODAK CMOS Image Sensors November 2004 Revision 2 1.1 Introduction Choosing the right lens is a critical aspect of designing an imaging system. Typically the trade off between image

More information

Photolithography Technology and Application

Photolithography Technology and Application Photolithography Technology and Application Jeff Tsai Director, Graduate Institute of Electro-Optical Engineering Tatung University Art or Science? Lind width = 100 to 5 micron meter!! Resolution = ~ 3

More information

EUVL Activities in China. Xiangzhao Wang Shanghai Inst. Of Opt. and Fine Mech. Of CAS. (SIOM) Shanghai, China.

EUVL Activities in China. Xiangzhao Wang Shanghai Inst. Of Opt. and Fine Mech. Of CAS. (SIOM) Shanghai, China. EUVL Activities in China Xiangzhao Wang Shanghai Inst. Of Opt. and Fine Mech. Of CAS. (SIOM) Shanghai, China. wxz26267@siom.ac.cn Projection Optics Imaging System Surface Testing Optical Machining ML Coating

More information