Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse"

Transcription

1 Cover Page Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse laser Authors: Futoshi MATSUI*(1,2), Masaaki ASHIHARA(1), Mitsuyasu MATSUO (1), Sakae KAWATO(2), and Takao KOBAYASHI(2) 1 Industrial Technology Center of Fukui Prefecture 2 Graduate School of Engineering, University of Fukui Corresponding author: Futoshi MATSUI* Industrial Technology Center of Fukui Prefecture Postal address: Kawaiwashiduka, Fukui, Fukui Phone: Fax: e_mail: 1

2 Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse laser Authors: Futoshi MATSUI*(1,2), Masaaki ASHIHARA(1), and Mitsuyasu MATSUO (1), Sakae KAWATO(2), Takao KOBAYASHI(2) Keyword: laser-induced crack marking, high-contrast level, UV laser, borosilicate glass Abstract: We have developed an efficient laser-induced marking system using the UV (ultraviolet) ns (nanosecond) pulse laser for inscribing the laser-induced crack image inside transparent BK-7 glass plates. The crack area was found to be proportional to the total laser energy and number of laser shots and also related to the scattering intensity of the image points. The 16 steps or 4-bit contrast level could be recorded in one point and resolved by this method. This laser-induced crack marking technique with high-contrast level can be used for high quality, two and three-dimensional memory and image inside the transparent materials. 2

3 1. Introduction The laser marking on the surface of metals and semi-conductor materials are widely used in industry as an efficient laser processing technique. The laser-induced cracking inside transparent materials is also used for inscribing the image of objects [1], which is sometimes referred to as laser crystal art [2]. The laser marking inside the transparent materials is also useful in chemical and medical applications for protecting erosion, friction and correction of the marked surfaces. In this technique, the image contrast is controlled roughly by a crack number density using pulsed lasers and the image contrast level is limited to only one-bit (white and black) scale or so. In this research we report a new technique of the laser-induced crack marking for high contrast level imaging inside a glass by controlling the fluence of ns (nanosecond) pulse UV (ultraviolet) laser beam. More than 16-contrast level of scattering cracks was obtained and high quality and clear imaging was realized inside transparent glasses. 2. Crack formation and efficient laser processing A schematic of the laser-induced crack marking process inside transparent materials is shown in Fig. 1. By focusing the pulse laser beam, high intensity optical field is created near the focal point and generates high temperature and high shock wave pressure inside the transparent solid materials and induces cracks along the laser beam. The crack also expands toward transverse direction at 3

4 higher fluence of the laser energy. As a transparent material we used BK-7, borosilicate crown glass which has several advantages over silica glass in the laser induced crack marking. The BK-7 glass has absorption band edge wavelength of about 350nm and small absorption coefficient of α = cm -1 at the wavelength of 355nm of the third-harmonic beam of the Nd: YVO 4 laser. This close wavelength relation between the material absorption and the laser results in significantly lower laser-induced bulk damage threshold (LIDT) of the BK-7 glass than the silica glass by single photon absorption effect [3], and the UV 355nm third-harmonic beam is useful for efficient production of laser-induced cracks than using the fundamental beam at 1064nm or second-harmonic beam at 532nm wavelength. The ns (nanosecond) pulse laser for was used for marking BK-7 glasses. Fs (femtosecond) ultrashort pulse lasers are often used for micro processing [4,5]. Although it has high peak power enough to process wide band gap materials, the pulse energy and the average power are significantly lower than nanosecond lasers. In the case of laser marking application of transparent materials, large cracking volume is required and the nanosecond pulse laser is suitable for highly efficient laser marking processing. 3. Experimental system In the laser-induced crack marking system, the V pulse third-harmonic of Nd:YVO 4 laser at 4

5 355nm wavelength of 30 ns pulse width (Coherent, model AVIA ) was used as the laser source and the total block diagram is shown in Fig. 2. The pulse repetition frequency is selectable from 10kHz to 100kHz. The laser beam is scanned by galvanometer mirrors (GSI, model HMPM10) and focused by a 120mm-diameter f-θ lens with 106mm focal length. The scanning and focusing system has 16bit angle resolution and 1.2µm spatial resolution on a 75mm square transparent target material. The laser pulse repetition frequency, the number of laser shots and laser beam position are controlled by using a personal computer. The laser pulse energy is kept constant at 50 µj and the number of laser shots for single crack position is changed for controlling the crack size. The crack area was measured automatically by using a transmission camera and a micro-computer image processing system. 4. Experimental results In Fig. 3, the transmission microscope images of the laser-induced cracks observed along the laser beam direction are compared for single shot per point in Fig. 3 (a) and 16 laser shots per point in Fig. 3 (b). The spacing between the cracks is 150µm. It is shown that the crack size clearly increases by 16 laser shots. The images of the laser-induced cracks observed from transverse direction to the laser beam are shown in Fig. 3 (c) and (d), single and 16 shots respectively. The depth of the longitudinal crack along the laser beam was approximately 1.2mm. It is evident that the 5

6 longitudinal cracks are induced by single shot exposure and transverse cracks expand by increasing the number of shots or laser fluence. The area of the laser-induced cracks observed from longitudinal direction is plotted as a function of total laser energy or number of laser shots per point in Fig. 4. It is shown that the crack area is almost linearly proportional to the total laser energy or number of laser shots N. The scattering image and the transmission image of the laser-induced cracks observed from the longitudinal direction to the laser beam are compared in Fig. 5 (a) and (b). The scattering image was recorded by irradiating a halogen-lamp light from the transverse direction to the laser beam direction. It was checked the scattering intensity of the cracks is proportional to the crack area observed from the longitudinal direction. As an example of the laser-induced crack marking technique, 16 different contrast square images were marked in a BK-7 glass by changing the laser shots and the scattering images are shown in Fig.6. This result indicate each image contrast could be resolved and 16 step imaging contrasts can be demonstrated for high density two and three dimensional imaging inside the transparent glass. 5. Conclusion The efficient laser marking system has been realized using the UV ns pulse laser for inscribing the laser-induced crack image inside transparent BK-7 glass plates. The crack area was found to be 6

7 proportional to the total laser energy and the number of laser shots and also related to the scattering intensity of the image points. The 16 steps or 4-bit contrast level could be recorded and resolved by this marking method. This high-contrast level crack marking technique can be used for high-quality, two and three-dimensional memory and image inside the transparent materials. References [1] F. Dahmani, A. W. Schmid, J. C. Lambropoulos, and S. Burns, "Dependence of birefringence and residual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulse number", Appl. Opt., Vol. 37, No. 33, pp (1998) [2] H. Niino, A. Narasaki, T. Sato, Y. Kawaguchi, Micro-processing of transparent material using Laser ablation (in Japanese) Journal of Japan Laser Processing Society Vol.9, pp (2002) [3] N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, Laser-induced bulk damage of various types of silica glasses at 532 and 355nm Jap. J. Appl. Phys., Vol.43, pp (2004) [4] A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, pp (2001) [5] N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, "Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses," Opt. Express 12, pp (2004) 7

8 Fig. 1 Laser-induced crack marking process Fig. 2 Experimental system of laser-induced crack marking Fig. 3 Microscope images of laser-induced cracks; (a) and (b) are transmission images observed along the laser beam direction, (c) and (d) are images observed from transverse the laser beam direction. The number of laser shots N=1 for (a)and (c), N=16 (b) and (d), respectively. Fig. 4 Crack area as a function of total laser energy or number of laser shots per point Fig. 5 The scattering image and the transmission image of the laser-induced cracks observed from the longitudinal direction to the laser beam Fig. 6 Scattering images of 16 different contrast squares marked in a BK-7 glass by changing the number of laser shots 8

9 Pulse laser beam Focusing lens Transparent solid material Laser-induced cracks Fig. 1 Laser-induced crack marking process Galvanometer mirrors F-θ focusing lens UV Laser Control signal Transparent Scanning material control Z axis stage PC Fig. 2 Experimental system of laser-induced crack marking 9

10 (a) (b) (c) (d) Fig. 3 Microscope images of laser-induced cracks; (a) and (b) are transmission images observed along the laser beam direction, (c) and (d) are images observed from transverse the laser beam direction. The number of laser shots N=1 for (a)and (c), N=16 (b) and (d), respectively. 10

11 Crack area [µm 2 ] Number of laser shot : N BK-7 glass λ = 355nm Single pulse energy:50µj Total laser energy [µj] Fig. 4 Crack area as a function of total laser energy or number of laser shots per point (a) Scattering image (b) Transmission image Fig. 5 The scattering image and the transmission image of the laser-induced cracks observed from the longitudinal direction to the laser beam 11

12 Fig. 6 Scattering images of 16 different contrast squares marked in a BK-7 glass by changing the number of laser shots 12

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction CHAPTER 7 7.1 Introduction In this chapter, we want to emphasize the technological interest of controlled laser-processing in dielectric materials. Since the first report of femtosecond laser induced refractive

More information

Micron and sub-micron gratings on glass by UV laser ablation

Micron and sub-micron gratings on glass by UV laser ablation Available online at www.sciencedirect.com Physics Procedia 41 (2013 ) 708 712 Lasers in Manufacturing Conference 2013 Micron and sub-micron gratings on glass by UV laser ablation Abstract J. Meinertz,

More information

k λ NA Resolution of optical systems depends on the wavelength visible light λ = 500 nm Extreme ultra-violet and soft x-ray light λ = 1-50 nm

k λ NA Resolution of optical systems depends on the wavelength visible light λ = 500 nm Extreme ultra-violet and soft x-ray light λ = 1-50 nm Resolution of optical systems depends on the wavelength visible light λ = 500 nm Spatial Resolution = k λ NA EUV and SXR microscopy can potentially resolve full-field images with 10-100x smaller features

More information

Effects of spherical aberrations on micro welding of glass using ultra short laser pulses

Effects of spherical aberrations on micro welding of glass using ultra short laser pulses Available online at www.sciencedirect.com Physics Procedia 39 (2012 ) 563 568 LANE 2012 Effects of spherical aberrations on micro welding of glass using ultra short laser pulses Kristian Cvecek a,b,, Isamu

More information

Laser Induced Damage Threshold of Optical Coatings

Laser Induced Damage Threshold of Optical Coatings White Paper Laser Induced Damage Threshold of Optical Coatings An IDEX Optics & Photonics White Paper Ronian Siew, PhD Craig Hanson Turan Erdogan, PhD INTRODUCTION Optical components are used in many applications

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

30 MM CAGE CUBE MOUNTED TURNING PRISM MIRRORS

30 MM CAGE CUBE MOUNTED TURNING PRISM MIRRORS 30 MM CAGE CUBE MOUNTED TURNING PRISM MIRRORS Metallic or Dielectric Coated Turning Prism Mirrors Premounted in 30 mm Cage Cubes Compatible with SM1 Lens Tubes and 30 mm Cage System CM1 G01 4 40 Tapped

More information

LASER TECHNOLOGY. Key parameters. Groundbreaking in the laser processing of cutting tools. A member of the UNITED GRINDING Group

LASER TECHNOLOGY. Key parameters. Groundbreaking in the laser processing of cutting tools. A member of the UNITED GRINDING Group Creating Tool Performance A member of the UNITED GRINDING Group Groundbreaking in the laser processing of cutting tools Key parameters The machining of modern materials using laser technology knows no

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

Nanosecond Laser Processing of Soda-Lime Glass

Nanosecond Laser Processing of Soda-Lime Glass Nanosecond Laser Processing of Soda-Lime Glass Paulius GEČYS, Juozas DUDUTIS and Gediminas RAČIUKAITIS Center for Physical Sciences and Technology, Savanoriu Ave. 231, Vilnius, LT-02300, Lithuania E-mail:

More information

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging LMT F14 Cut in Three Dimensions The Rowiak Laser Microtome: 3-D Cutting and Imaging The Next Generation of Microtomes LMT F14 - Non-contact laser microtomy The Rowiak laser microtome LMT F14 is a multi-purpose

More information

UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS

UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS Optics and Photonics Letters Vol. 4, No. 2 (2011) 75 81 c World Scientific Publishing Company DOI: 10.1142/S1793528811000226 UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS ANDREW

More information

End Capped High Power Assemblies

End Capped High Power Assemblies Fiberguide s end capped fiber optic assemblies allow the user to achieve higher coupled power into a fiber core by reducing the power density at the air/ silica interface, commonly the point of laser damage.

More information

Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps

Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps Technical Communication JLMN-Journal of Laser Micro/Nanoengineering Vol. 10, No. 2, 2015 Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps C. Fornaroli 1,

More information

Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining

Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining Appl Phys B (2011) 105:379 384 DOI 10.1007/s00340-011-4520-5 Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining F. He J. Lin Y. Cheng Received:

More information

CVI LASER OPTICS ANTIREFLECTION COATINGS

CVI LASER OPTICS ANTIREFLECTION COATINGS CVI LASER OPTICS ANTIREFLECTION COATINGS BROADBAND MULTILAYER ANTIREFLECTION COATINGS Broadband antireflection coatings provide a very low reflectance over a broad spectral bandwidth. These advanced multilayer

More information

Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing

Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing M.H. Hong *, **, Q. Xie *, K.S. Tiaw * *, ** and T.C. Chong * Data Storage Institute, DSI Building 5, Engineering

More information

Femtosecond Pulsed Laser Direct Writing System for Photomask Fabrication

Femtosecond Pulsed Laser Direct Writing System for Photomask Fabrication Femtosecond Pulsed Laser Direct Writing System for Photomask Fabrication B.K.A.Ngoi, K.Venkatakrishnan, P.Stanley and L.E.N.Lim Abstract-Photomasks are the backbone of microfabrication industries. Currently

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

HEO 1080P APPLICATION NOTE

HEO 1080P APPLICATION NOTE HEO 8P APPLICATION NOTE HDTV Phase Panel Developer Kit For FS-Laser Applications,8,6,4,2 759.95 nm 77.9 nm 78.2 nm 789.88 nm 799.98 nm 8.6 nm 82.2 nm 83.7 nm 84.2 nm 3 6 9 2 5 8 2 24 HOLOEYE Photonics

More information

Beam Shaping in High-Power Laser Systems with Using Refractive Beam Shapers

Beam Shaping in High-Power Laser Systems with Using Refractive Beam Shapers - 1 - Beam Shaping in High-Power Laser Systems with Using Refractive Beam Shapers Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Beam Shaping of the

More information

ARCoptix. Radial Polarization Converter. Arcoptix S.A Ch. Trois-portes Neuchâtel Switzerland Mail: Tel:

ARCoptix. Radial Polarization Converter. Arcoptix S.A Ch. Trois-portes Neuchâtel Switzerland Mail: Tel: ARCoptix Radial Polarization Converter Arcoptix S.A Ch. Trois-portes 18 2000 Neuchâtel Switzerland Mail: info@arcoptix.com Tel: ++41 32 731 04 66 Radially and azimuthally polarized beams generated by Liquid

More information

AVIA DPSS Lasers: Advanced Design for Increased Process Throughput

AVIA DPSS Lasers: Advanced Design for Increased Process Throughput White Paper AVIA DPSS Lasers: Advanced Design for Increased Process Throughput The Q-switched, diode-pumped, solid-state (DPSS) laser has become a widely employed tool in a broad range of industrial micromachining

More information

EE-527: MicroFabrication

EE-527: MicroFabrication EE-57: MicroFabrication Exposure and Imaging Photons white light Hg arc lamp filtered Hg arc lamp excimer laser x-rays from synchrotron Electrons Ions Exposure Sources focused electron beam direct write

More information

High-Power, Passively Q-switched Microlaser - Power Amplifier System

High-Power, Passively Q-switched Microlaser - Power Amplifier System High-Power, Passively Q-switched Microlaser - Power Amplifier System Yelena Isyanova Q-Peak, Inc.,135 South Road, Bedford, MA 01730 isyanova@qpeak.com Jeff G. Manni JGM Associates, 6 New England Executive

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Practical Applications of Laser Technology for Semiconductor Electronics

Practical Applications of Laser Technology for Semiconductor Electronics Practical Applications of Laser Technology for Semiconductor Electronics MOPA Single Pass Nanosecond Laser Applications for Semiconductor / Solar / MEMS & General Manufacturing Mark Brodsky US Application

More information

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO. a Nd:YSO resonator array µm Transmission spectrum (a. u.) b 4 F3/2-4I9/2 25 2 5 5 875 88 λ(nm) 885 Supplementary Figure. An array of nano-beam resonators fabricated in Nd:YSO. (a) Scanning electron microscope

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

Development of Ultrashort Pulsed VUV Laser and its Applications

Development of Ultrashort Pulsed VUV Laser and its Applications Development of Ultrashort Pulsed VUV Laser and its Applications Masahito Katto, Masanori Kaku 2, Atsushi Yokotani 2, Kenzo Miyazaki 3, Noriaki Miyanaga 4, and Shoichi Kubodera 2 Center for Collaborative

More information

Zero Focal Shift in High Numerical Aperture Focusing of a Gaussian Laser Beam through Multiple Dielectric Interfaces. Ali Mahmoudi

Zero Focal Shift in High Numerical Aperture Focusing of a Gaussian Laser Beam through Multiple Dielectric Interfaces. Ali Mahmoudi 1 Zero Focal Shift in High Numerical Aperture Focusing of a Gaussian Laser Beam through Multiple Dielectric Interfaces Ali Mahmoudi a.mahmoudi@qom.ac.ir & amahmodi@yahoo.com Laboratory of Optical Microscopy,

More information

White Paper: Modifying Laser Beams No Way Around It, So Here s How

White Paper: Modifying Laser Beams No Way Around It, So Here s How White Paper: Modifying Laser Beams No Way Around It, So Here s How By John McCauley, Product Specialist, Ophir Photonics There are many applications for lasers in the world today with even more on the

More information

Radial Polarization Converter With LC Driver USER MANUAL

Radial Polarization Converter With LC Driver USER MANUAL ARCoptix Radial Polarization Converter With LC Driver USER MANUAL Arcoptix S.A Ch. Trois-portes 18 2000 Neuchâtel Switzerland Mail: info@arcoptix.com Tel: ++41 32 731 04 66 Principle of the radial polarization

More information

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES The current multiplication mechanism offered by dynodes makes photomultiplier tubes ideal for low-light-level measurement. As explained earlier, there

More information

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Razvan Dabu, Daniel Ursescu INFLPR, Magurele, Romania Contents GiWALAS laser facility TEWALAS laser facility CETAL project

More information

High-power diode-pumped Er 3+ :YAG single-crystal fiber laser

High-power diode-pumped Er 3+ :YAG single-crystal fiber laser High-power diode-pumped Er 3+ :YAG single-crystal fiber laser Igor Martial, 1,2,* Julien Didierjean, 2 Nicolas Aubry, 2 François Balembois, 1 and Patrick Georges 1 1 Laboratoire Charles Fabry de l Institut

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

Oriel Flood Exposure Sources

Oriel Flood Exposure Sources 218 Oriel Flood Exposure Sources High intensity outputs CALIBRATION SOURCES Highly uniform, large collimated beams Efficient out of band rejection Timed exposures DEUTERIUM SOURCES ARC SOURCES INCANDESCENT

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 1 1 2! NA = 0.5! NA 2D imaging

More information

ADVANCES IN USING A POLYMERIC TAPE FOR LASER-INDUCED DEPOSITION AND ABLATION

ADVANCES IN USING A POLYMERIC TAPE FOR LASER-INDUCED DEPOSITION AND ABLATION ADVANCES IN USING A POLYMERIC TAPE FOR LASER-INDUCED DEPOSITION AND ABLATION Arne Koops, tesa AG, Hamburg, Germany Sven Reiter, tesa AG, Hamburg, Germany 1. Abstract Laser systems for industrial materials

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza Experiment C & D: Course: FY1 The Pulsed Laser Done by: Wael Al-Assadi Mangwiza 8/1/ Wael Al Assadi Mangwiza Experiment C & D : Introduction: Course: FY1 Rev. 35. Page: of 16 1// In this experiment we

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

Copyright by Priti Duggal 2006

Copyright by Priti Duggal 2006 Copyright by Priti Duggal 26 An Experimental Study of Rim Formation in Single-Shot Femtosecond Laser Ablation of Borosilicate Glass by Priti Duggal, B.Tech. Thesis Presented to the Faculty of the Graduate

More information

Lithium Triborate (LiB 3 O 5, LBO)

Lithium Triborate (LiB 3 O 5, LBO) NLO Cr ys tals Introduction Lithium Triborate (LiB 3 O 5, LBO) Lithium Triborate (LiB 3 O 5 or LBO) is an excellent nonlinear optical crystal discovered and developed by FIRSM, CAS (Fujian Institute of

More information

Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film

Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film Shie-Chang Jeng, 1 Shug-June Hwang, 2,* Jing-Shyang Horng, 2 and Kuo-Ren Lin 2 1 Institute of Imaging and Biomedical

More information

Picosecond Ultrasonics: a Technique Destined for BAW Technology

Picosecond Ultrasonics: a Technique Destined for BAW Technology 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Picosecond Ultrasonics: a Technique Destined for BAW Technology Patrick EMERY 1,

More information

ND:YAG/ND:YLF...T-26 TUNABLE LASER MIRRORS...T-28 MISCELLANEOUS MIRRORS...T-30 ANTI-REFLECTIVE OVERVIEW...T-31 0 DEGREE ANGLE OF INCIDENCE...

ND:YAG/ND:YLF...T-26 TUNABLE LASER MIRRORS...T-28 MISCELLANEOUS MIRRORS...T-30 ANTI-REFLECTIVE OVERVIEW...T-31 0 DEGREE ANGLE OF INCIDENCE... COATING TRACES HIGH REFLECTION COATING TRACES Coating Backgrounder ND:YAG/ND:YLF...T-26 TUNABLE LASER MIRRORS...T-28 MISCELLANEOUS MIRRORS...T-30 ANTI-REFLECTION COATING TRACES ANTI-REFLECTIVE OVERVIEW...T-31

More information

Fabrication and Characterization of Photonic Devices Directly Written in Glass Using Femtosecond Laser Pulses

Fabrication and Characterization of Photonic Devices Directly Written in Glass Using Femtosecond Laser Pulses 246 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 1, JANUARY 2003 Fabrication and Characterization of Photonic Devices Directly Written in Glass Using Femtosecond Laser Pulses Catalin Florea, Member, IEEE,

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Characterization of Chirped volume bragg grating (CVBG)

Characterization of Chirped volume bragg grating (CVBG) Characterization of Chirped volume bragg grating (CVBG) Sobhy Kholaif September 7, 017 1 Laser pulses Ultrashort laser pulses have extremely short pulse duration. When the pulse duration is less than picoseconds

More information

SNV/U High Performances UV Microchip Series

SNV/U High Performances UV Microchip Series SNV/U High Performances UV Microchip Series Key features 355nm and 266nm Repetition rate up to 20kHz Ultrashort pulses down to 550ps Multi-kW peak power Excellent beam quality Efficient, air-cooled Sealed

More information

Synthesis of projection lithography for low k1 via interferometry

Synthesis of projection lithography for low k1 via interferometry Synthesis of projection lithography for low k1 via interferometry Frank Cropanese *, Anatoly Bourov, Yongfa Fan, Andrew Estroff, Lena Zavyalova, Bruce W. Smith Center for Nanolithography Research, Rochester

More information

Laser Beam Analysis Using Image Processing

Laser Beam Analysis Using Image Processing Journal of Computer Science 2 (): 09-3, 2006 ISSN 549-3636 Science Publications, 2006 Laser Beam Analysis Using Image Processing Yas A. Alsultanny Computer Science Department, Amman Arab University for

More information

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ring cavity tunable fiber laser with external transversely chirped Bragg grating Ring cavity tunable fiber laser with external transversely chirped Bragg grating A. Ryasnyanskiy, V. Smirnov, L. Glebova, O. Mokhun, E. Rotari, A. Glebov and L. Glebov 2 OptiGrate, 562 South Econ Circle,

More information

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING Siti Aisyah bt. Ibrahim and Chong Wu Yi Photonics Research Center Department of Physics,

More information

Practical Guide to Specifying Optical Components

Practical Guide to Specifying Optical Components Practical Guide to Specifying Optical Components OPTI 521 Introduction to Opto-Mechanical Engineering Fall 2012 December 10, 2012 Brian Parris Introduction This paper is intended to serve as a practical

More information

Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process

Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process Hewei Liu a, Feng Chen* a, Qing Yang b, Yang Hu a, Chao Shan a, Shengguan

More information

High-peak power laser system used in Yb doped LMA fiber

High-peak power laser system used in Yb doped LMA fiber High-peak power laser system used in Yb doped LMA fiber Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan YOSHIDA Hidetsugu, TSUBAKIMOTO Koji, FUJITA Hisanori, NAKATSUKA Masahiro, MIYANAGA

More information

GRENOUILLE.

GRENOUILLE. GRENOUILLE Measuring ultrashort laser pulses the shortest events ever created has always been a challenge. For many years, it was possible to create ultrashort pulses, but not to measure them. Techniques

More information

Polarization Experiments Using Jones Calculus

Polarization Experiments Using Jones Calculus Polarization Experiments Using Jones Calculus Reference http://chaos.swarthmore.edu/courses/physics50_2008/p50_optics/04_polariz_matrices.pdf Theory In Jones calculus, the polarization state of light is

More information

Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films

Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films Ribal Georges Sabat * Department of Physics, Royal Military College of Canada, PO Box 17000 STN Forces, Kingston,

More information

On-line spectrometer for FEL radiation at

On-line spectrometer for FEL radiation at On-line spectrometer for FEL radiation at FERMI@ELETTRA Fabio Frassetto 1, Luca Poletto 1, Daniele Cocco 2, Marco Zangrando 3 1 CNR/INFM Laboratory for Ultraviolet and X-Ray Optical Research & Department

More information

Fast Laser Raman Microscope RAMAN

Fast Laser Raman Microscope RAMAN Fast Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Fast Raman Imaging A New Generation of Raman Microscope RAMAN-11 developed by Nanophoton was created by combining confocal laser microscope technology

More information

Ultra-short Pulse Off-axis Digital Holography for Imaging the Core Structure of Transient. University of California, Irvine Irvine, CA USA

Ultra-short Pulse Off-axis Digital Holography for Imaging the Core Structure of Transient. University of California, Irvine Irvine, CA USA ILASS-Americas 29th Annual Conference on Liquid Atomization and Spray Systems, Atlanta, GA, May 2017 Ultra-short Pulse Off-axis Digital Holography for Imaging the Core Structure of Transient Sprays. M.

More information

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1,

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1, SOLITON DYNAMICS IN THE MULTIPHOTON PLASMA REGIME Chad A. Husko,, Sylvain Combrié, Pierre Colman, Jiangjun Zheng, Alfredo De Rossi, Chee Wei Wong, Optical Nanostructures Laboratory, Columbia University

More information

Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing

Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing C. R. Liao, T.Y. Hu, and D. N. Wang * The Hong Kong Polytechnic

More information

Sinusoidal wavelength-scanning common-path interferometer with a beam-scanning system for measurement of film thickness variations

Sinusoidal wavelength-scanning common-path interferometer with a beam-scanning system for measurement of film thickness variations Sinusoidal wavelength-scanning common-path interferometer with a beam-scanning system for measurement of film thickness variations Osami Sasaki, Takafumi Morimatsu, Samuel Choi, and Takamasa Suzuki Faculty

More information

StockOptics. CATALOG 2018 Europe

StockOptics. CATALOG 2018 Europe StockOptics CATALOG 2018 Europe Dear asphericon customer Within the StockOptics product line, you can choose from an extensive portfolio of precision-polished aspheric lenses, cylinders and axicons. Benefit

More information

Vanishing Core Fiber Spot Size Converter Interconnect (Polarizing or Polarization Maintaining)

Vanishing Core Fiber Spot Size Converter Interconnect (Polarizing or Polarization Maintaining) Vanishing Core Fiber Spot Size Converter Interconnect (Polarizing or Polarization Maintaining) The Go!Foton Interconnect (Go!Foton FSSC) is an in-fiber, spot size converting interconnect for convenient

More information

Micromachining with tailored Nanosecond Pulses

Micromachining with tailored Nanosecond Pulses Micromachining with tailored Nanosecond Pulses Hans Herfurth a, Rahul Patwa a, Tim Lauterborn a, Stefan Heinemann a, Henrikki Pantsar b a )Fraunhofer USA, Center for Laser Technology (CLT), 46025 Port

More information

Fiber Optics. Laboratory exercise

Fiber Optics. Laboratory exercise Fiber Optics V 1/27/2012 Laboratory exercise The purpose of the present laboratory exercise is to get practical experience in handling optical fiber. In particular we learn how to cleave the fiber and

More information

Incident IR Bandwidth Effects on Efficiency and Shaping for Third Harmonic Generation of Quasi-Rectangular UV Longitudinal Profiles *

Incident IR Bandwidth Effects on Efficiency and Shaping for Third Harmonic Generation of Quasi-Rectangular UV Longitudinal Profiles * LCLS-TN-05-29 Incident IR Bandwidth Effects on Efficiency and Shaping for Third Harmonic Generation of Quasi-Rectangular UV Longitudinal Profiles * I. Introduction Paul R. Bolton and Cecile Limborg-Deprey,

More information

Transferring wavefront measurements to ablation profiles. Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich

Transferring wavefront measurements to ablation profiles. Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich Transferring wavefront measurements to ablation profiles Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich corneal ablation Calculation laser spot positions Centration Calculation

More information

Fiber Optic Communications Communication Systems

Fiber Optic Communications Communication Systems INTRODUCTION TO FIBER-OPTIC COMMUNICATIONS A fiber-optic system is similar to the copper wire system in many respects. The difference is that fiber-optics use light pulses to transmit information down

More information

10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD

10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD 10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD Hideaki Hasegawa a), Yosuke Oikawa, Masato Yoshida, Toshihiko Hirooka, and Masataka Nakazawa

More information

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. The lithographic process

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. The lithographic process Section 2: Lithography Jaeger Chapter 2 Litho Reader The lithographic process Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon dioxide barrier layer Positive photoresist

More information

Pulse energy vs. Repetition rate

Pulse energy vs. Repetition rate Pulse energy vs. Repetition rate 10 0 Regen + multipass Pulse energy (J) 10-3 10-6 Regen + multimulti-pass RegA Regen 1 W average power 10-9 Cavity-dumped oscillator Oscillator 10-3 10 0 10 3 10 6 10 9

More information

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices Dr. Rüdiger Paschotta RP Photonics Consulting GmbH Competence Area: Fiber Devices Topics in this Area Fiber lasers, including exotic types Fiber amplifiers, including telecom-type devices and high power

More information

Thermal management and thermal properties of high-brightness diode lasers

Thermal management and thermal properties of high-brightness diode lasers Thermal management and thermal properties of high-brightness diode lasers Jens W. Tomm Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Berlin Max-Born-Str. 2 A, D-12489 Berlin, Germany

More information

Color electroholography by three colored reference lights simultaneously incident upon one hologram panel

Color electroholography by three colored reference lights simultaneously incident upon one hologram panel Color electroholography by three colored reference lights simultaneously incident upon one hologram panel Tomoyoshi Ito Japan Science and Technology Agency / Department of Medical System Engineering, Chiba

More information

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2 Litho Reader. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 Litho Reader EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered

More information

Optical Gain Experiment Manual

Optical Gain Experiment Manual Optical Gain Experiment Manual Table of Contents Purpose 1 Scope 1 1. Background Theory 1 1.1 Absorption, Spontaneous Emission and Stimulated Emission... 2 1.2 Direct and Indirect Semiconductors... 3 1.3

More information

Tunable Color Filters Based on Metal-Insulator-Metal Resonators

Tunable Color Filters Based on Metal-Insulator-Metal Resonators Chapter 6 Tunable Color Filters Based on Metal-Insulator-Metal Resonators 6.1 Introduction In this chapter, we discuss the culmination of Chapters 3, 4, and 5. We report a method for filtering white light

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Printing on Stones Map of Munich Stone Print Contact Printing light

More information

A high-resolution fringe printer for studying synthetic holograms

A high-resolution fringe printer for studying synthetic holograms Publication : SPIE Proc. Practical Holography XX: Materials and Applications, SPIE#6136, San Jose, 347 354(2006). 1 A high-resolution fringe printer for studying synthetic holograms K. Matsushima a, S.

More information

New application of liquid crystal lens of active polarized filter for micro camera

New application of liquid crystal lens of active polarized filter for micro camera New application of liquid crystal lens of active polarized filter for micro camera Giichi Shibuya, * Nobuyuki Okuzawa, and Mitsuo Hayashi Department Devices Development Center, Technology Group, TDK Corporation,

More information

Development of high average power fiber lasers for advanced accelerators

Development of high average power fiber lasers for advanced accelerators Development of high average power fiber lasers for advanced accelerators Almantas Galvanauskas Center for Ultrafast Optical Science (CUOS), University of Michigan 16 th Advanced Accelerator Concepts Workshop

More information

Copyright 2000 Society of Photo Instrumentation Engineers.

Copyright 2000 Society of Photo Instrumentation Engineers. Copyright 2000 Society of Photo Instrumentation Engineers. This paper was published in SPIE Proceedings, Volume 4043 and is made available as an electronic reprint with permission of SPIE. One print or

More information

LASER EMISSION IN DIODE-PUMPED Nd:YAG SINGLE-CRYSTAL WAVEGUIDES REALIZED BY DIRECT FEMTOSECOND-LASER WRITING TECHNIQUE

LASER EMISSION IN DIODE-PUMPED Nd:YAG SINGLE-CRYSTAL WAVEGUIDES REALIZED BY DIRECT FEMTOSECOND-LASER WRITING TECHNIQUE Romanian Reports in Physics, Vol. 65, No. 3, P. 943 953, 2013 Dedicated to Professor Valentin I. Vlad s 70 th Anniversary LASER EMISSION IN DIODE-PUMPED Nd:YAG SINGLE-CRYSTAL WAVEGUIDES REALIZED BY DIRECT

More information

Assembly and Experimental Characterization of Fiber Collimators for Low Loss Coupling

Assembly and Experimental Characterization of Fiber Collimators for Low Loss Coupling Assembly and Experimental Characterization of Fiber Collimators for Low Loss Coupling Ruby Raheem Dept. of Physics, Heriot Watt University, Edinburgh, Scotland EH14 4AS, UK ABSTRACT The repeatability of

More information

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser V.I.Baraulya, S.M.Kobtsev, S.V.Kukarin, V.B.Sorokin Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ABSTRACT

More information

6 Electromagnetic Field Distribution Measurements using an Optically Scanning Probe System

6 Electromagnetic Field Distribution Measurements using an Optically Scanning Probe System 6 Electromagnetic Field Distribution Measurements using an Optically Scanning Probe System TAKAHASHI Masanori, OTA Hiroyasu, and ARAI Ken Ichi An optically scanning electromagnetic field probe system consisting

More information

Photolithography II ( Part 2 )

Photolithography II ( Part 2 ) 1 Photolithography II ( Part 2 ) Chapter 14 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Saroj Kumar Patra, Department of Electronics and Telecommunication, Norwegian University of Science

More information

Bandpass Edge Dichroic Notch & More

Bandpass Edge Dichroic Notch & More Edmund Optics BROCHURE Filters COPYRIGHT 217 EDMUND OPTICS, INC. ALL RIGHTS RESERVED 1/17 Bandpass Edge Dichroic Notch & More Contact us for a Stock or Custom Quote Today! USA: +1-856-547-3488 EUROPE:

More information

DISTRIBUTION A: Distribution approved for public release.

DISTRIBUTION A: Distribution approved for public release. AFRL-OSR-VA-TR-2014-0205 Optical Materials PARAS PRASAD RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK THE 05/30/2014 Final Report DISTRIBUTION A: Distribution approved for public release. Air Force

More information

Lithium Triborate (LiB 3 O 5, LBO) Introductions

Lithium Triborate (LiB 3 O 5, LBO) Introductions s Laser s NLO s Birefringent s AO and EO s Lithium Triborate (LiB 3 O 5, ) Introductions Banner Union provide the high quality Broad transparency range from 160nm to 2600nm; High optical homogeneity (δn

More information

Single-shot depth-section imaging through chromatic slit-scan confocal microscopy

Single-shot depth-section imaging through chromatic slit-scan confocal microscopy Single-shot depth-section imaging through chromatic slit-scan confocal microscopy Paul C. Lin, Pang-Chen Sun, Lijun Zhu, and Yeshaiahu Fainman A chromatic confocal microscope constructed with a white-light

More information

880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser

880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser 880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser The goal of this lab is to give you experience aligning a laser and getting it to lase more-or-less from scratch. There is no write-up

More information

High-Coherence Wavelength Swept Light Source

High-Coherence Wavelength Swept Light Source Kenichi Nakamura, Masaru Koshihara, Takanori Saitoh, Koji Kawakita [Summary] Optical technologies that have so far been restricted to the field of optical communications are now starting to be applied

More information