EXERCISE 1 - REMOTE SENSING: SENSORS WITH DIFFERENT RESOLUTION

Size: px
Start display at page:

Download "EXERCISE 1 - REMOTE SENSING: SENSORS WITH DIFFERENT RESOLUTION"

Transcription

1 EXERCISE 1 - REMOTE SENSING: SENSORS WITH DIFFERENT RESOLUTION Program: ArcView 3.x 1. Copy the folder FYS_FA with its whole contents from: Kursdata: L:\FA\FYS_FA to C:\Tempdata 2. Open the folder and double click at the file: spysat.apr 3. You have now entered the GIS software ArcView. In this environment it is possible to view, analyse and print satellite images as well as other types of geographical data (e.g. digital maps). 4. Maximize the ArcView window by clicking up right 5. We now start with exercise 1. Maximize the window entitled Exercise Check the box to the left of jan88.tif 7. What do you see? 8. This is a low-resolution satellite image. What features can you identify? 9. Click the 5th button from the left in the lower row ( ). This is the zoom tool. Use it to zoom in and out ( happens when you zoom to the maximum? ) in the image. What 10. How big are the picture elements (in miles), by using the tool 8th from left ( left corner. ), lower row. The distance is displayed in the lower 11. Use the zoom out button to zoom out until you see the whole of Africa again. 12. Mark the bow in front of apr88.tif. What happens? Mark and unmark to see differences. Do the same with jul88.tif and okt88.tif. Why do the images change, and what can they be used for? 13. Close the Exercise 1 window. Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

2 14. We now start Exercise 2. Maximize the window entitled Exercise You are now looking at a satellite image with a resolution of 30 by 30 meters. 16. Type in the scale window (top right). What does this mean? 17. Use the pan tool ( ) to move around in the image. Can you see any signs of human activity? From where do you think the image is? 18. Can you find rivers, roads and cultivated fields? 19. Use the zoom tool to zoom to full extent. Zoom in the lower left corner. What do you think this is? 20. Close the window 21. Open Exercise Maximize the window. 23. The resolution of this satellite image is also 30 x 30 meters. 24. Where do you think humans are living in this area? 25. Type in the scale window. 26. Use the pan tool to move around in the image. Can you see any signs of human activity? From what part of the earth do you think the image is? 27. Can you find rivers, roads and cultivated fields? 28. Use the zoom tool to zoom to full extent. Zoom in on the spot that is located a little bit to the right of the two lakes. What do you think this is? 29. Close the window 30. Open Exercise Maximize the window. 32. Try to find Lund and investigate what you can see in this resolution. Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

3 33. Can you find Sturrup (the airport)? 34. Have a look on other cities and airports as well you may try Copenhagen or Stockholm. 35. Close the window 36. Open Exercise Maximize the window. 38. Why do you think this image look strange? 39. What information can you get? 40. What is the resolution? 41. Where do you think you are in the world? 42. Now check the box next to the layer IR-colour. 43. Zoom in and taka a close look at the data? 44. Which are the smallest objects you can find in the image? 45. Try to locate rivers, roads and buildings. 46. Identify an object and tro to zoom in as much as possible, at what level is the zooming useless? 47. Check the third box ( next to the layer: Black and White ). 48. Try to locate rivers, roads and buildings. 49. Identify an object and try to zoom in as much as possible, at what level is the zooming useless? 50. Find some buildings and zoom in as much as possible (but you must still be able to identify the objects). 51. Uncheck the layer Black and White. What happens? 52. What is the resolution for the third image do you think? 53. The first image in this exercise was a satellite image of mediumlow resolution, the second an air photo with 2 m resolution and the third a 1 m resolution air photo. 54. Close the window. 55. Open Exercise 6. Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

4 56. Maximize the window. 57. Explore the image and determine what are the smallest objects you can identify. For what purposes would this image be useful? 58. Now mark the second image in this exercise. 59. Explore the information content of the image. 60. Can you identify aircraft type at the airport? 61. This is 1 m resolution commercially availably satellite data. Current spy satellites may have resolutions of less than m. Imagine this and think back on exercise 5 where you saw the difference between 1 and 2 m resolution data! 62. Close the program ArcView. Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

5 Exercise 2 Introduction to Multi-spectral Remote Sensing 1 Programs: IDRISI32 / MS Excel Objectives: The exercise introduces satellite-based remote sensing and is divided into two parts. Tasks in part 1 include: Exploring images captured by different sensors/platforms; Introducing the concept of false color composites Exploring reflectance values. While part 2 includes: Developing training sites (main land use/ land cover classes); Calculating the spectral signatures of main land use classes; Performing a number of supervised classifications; Performing a radiometric correction (calculation of at-satellite reflectance ). Data: The data used for this exercises includes images from the following sensors: NOAA AVHRR Landsat MSS Landsat TM Spot X Aerial photographs PART 1 all data for part 1 are in the folder SENSORS 1. Getting Started - You can start IDRISI32 through Start > Programs > Idrisi32 > Idrisi32. 1 This practical exercise contains modified parts of the Introductory Image Processing Exercises from the IDRISI Tutorial (J. Ronald Eastman, 1999) Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

6 Once IDRISI is launched, the first step is to specify where the input data is located in the computer, and where the output data (new files created during the exercises) are to be saved. This is known in IDRISI as the Working Folder. Normally, the Working Folder is the same for both the input and output data. - Click onto the File menu and choose the Data Paths option. In the new dialogue box for Project environment, click on browse to specify your Main working folder. Choose C:\Tempdata\FYS_FA 2. Loading and Exploring Images a) NOAA-AVHRR Images The first satellite images you will look at are from the AVHRR (Advanced Very High Resolution Radiometer) sensor, mounted on a NOAA satellite. The pixel resolution is approx. 1 km. AVHRR sensors record information in 5 bands, of which the band 1 (red) captures the wavelengths between μm, and band 2 (NIR) between μm. - From the Display menu, choose Display Launcher. - With File type to be displayed set to Raster files, select the image NOAARED (red band) by clicking the small icon to the right of the file name box. Make sure the autoscale, title and legend are OFF, and select Grey Scale as the Palette fill. Notice that the contrast is very low, and almost the entire image is dark grey. The Grey Scale palette ranges from black (0) to white (255). To see why the contrast is so low, we can explore the range of reflectance values in greater detail by looking at an histogram of all pixel values. - Choose Analysis > Database Query > HISTO, and select NOAARED as the Input filename and click OK (Ignore the warning message by clicking again OK). The horizontal axis of the histogram may be interpreted as if it were the Grey Palette (0 = black, 255 = white). The vertical axis shows how many pixels in the image have that value. Almost all pixel values range between 25 and 75 (with a mean of 35), and this clearly Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

7 explains why the contrast was so low (Grey scale ranges from 0 to 255). - Close the histogram window. - You can increase the contrast in Layer Properties of the Composer window. The autoscale option will accomplish a simple linear stretch for display purposes. When autoscaling is used. the minimum value in the image is displayed with the lowest color in the palette and the maximum with the highest. Activate autoscale and change the Display Min and Display max values to what you believe is reasonable. You will now explore reflectance values at different locations in the image. - You can have the reflectance value of a given pixel by clicking on it with the cursor inquiry mode. 2.1) What are average reflectance values in the red part of the electromagnetic spectrum for(i.e. the NOAARED image): Water: South Sweden (mainly agricultural land): Småland (mainly coniferous forest): Clouds: - Now do the same but looking at the near infra-red (NIR) part of the electromagnetic spectrum (image NOAANIR; choose Grey Scale as Palette fill) 2.2) What are average reflectance values in the NIR part of the electromagnetic spectrum for: Water: South Sweden (mainly agricultural land): Småland (mainly coniferous forest): Clouds: Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

8 Now think about the spectral reflectance signature of green vegetation by looking at the values you wrote above and the Figure below. - Now display the image NOAAKVOT, but this time using Quantitative (Standard IDRISI Palette) as Palette fill and activate (turn on) autoscale and Legend. This is a so-called simple vegetation index, created by simply dividing the NIR band with the red band. The result was then scaled to have values between The red wavelength region is exploited by pigments in the leaves, namely chlorophylls, to undergo photosynthesis. Conversely, the high reflection in the NIR is induced by internal leaf structure and leaf components. It is common practice to combine reflectances in these two bands into an index that exploits these differences and is therefore sensitive to vegetation amounts. You can now clearly see the differences in vegetation cover between Southern Skåne and Småland. 2.3 ) What is the smallest object you think you can see on NOAA images? (Tip: you can zoom in using ) 2.4) Can you see man-made objects or features on the images. If so, what? Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

9 2.5) Look at the Island Öland in the Baltic Sea, why do you think there is such a distinct difference between the south and north part of the island? What does this imply? b) Landsat MSS Images - Now load the image MSS_FCC. This is a so-called False color composite (FCC) over the Helsingborg area, from the sensor MSS (Multispectral Scanner) mounted on a Landsat satellite. The pixel size is 80 m. It is called false color composite because the colors displayed do not represent the colors we see with our eyes. On this image, the green wavelengths are presented in blue, the red in green and the NIR in red. This is done to allow us to see the NIR wavelengths. On a false color composite (FCC) image: Green wavelengths blue on image Red wavelengths green on image NIR wavelengths red on image This color scheme makes it very easy to see the vegetated areas, which are red on the image. 2.6) Which areas are the reddest? What type of vegetation is there? 2.7) Locate an area near Söderåsen which you think is a deciduous (leave) forest. By clicking on the image, you can get the pixel values for all three bands (R:G:B). Note approx. the values in all three bands. Do the same for coniferous forest and areas dominated by agricultural land. Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

10 2.8) Can you see man-made features in the landscape? Approx. how big are they? c) Landsat TM Images - Load the image TM_FCC. This is a FCC image from the TM (Thematic Mapper) sensor, also mounted on Landsat satellites, with a resolution of 30 m. You partly see Söderåsen and agricultural land to the South. 2.9) Try to locate the same area you studied in the MSS image. What are the biggest differences? 2.10) Locate roads with different sizes. How wide do you think they are in reality? Is it possible to see on the image roads smaller than the pixel size (resolution)? If so, how can this be possible? 2.11) The possibility to see roads depends greatly on the conditions. In what type of landscape is it easiest to see the roads, and where do they disappear? Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

11 d) SPOT Images - Load the image SPOT_FCC. This is a also a FCC image from the European SPOT satellite over Helsingborg, with a resolution of 20 m. 2.12) Notice the differences in colors between the city-centre and the outer residential areas (suburbs), where houses have gardens. Why are the colors different? 2.13) At what period of the year (month/season) do you think the image was taken and why? (TIPS: look at the agricultural fields) e) Aerial Photographs - Load the image REV_FCC, which is a FCC aerial photograph showing an area outside Revingehed. 2.14) Try to estimate the resolution of this image (pixel) size. The widest tractor tracks are about 3m wide. - Close all images in IDRISI. PART 2 all data used for Part 2 are in the folder H_BY Don t forget to change your Main working folder to specify the location of your new data! (File > Data Paths) Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

12 For the second part of the exercise, you will be using part of a Landsat TM scene over the area of Hörby, Skåne. You will first create what are known as training sites for the main landuse classes, to thereafter automatically explore spectral signatures for these landuse classes. Once the spectral signatures are calculated, you will then classify the image using a number of algorithms. In the last part of the exercises, you will calculate the at-satellite reflectance by transforming digital numbers (0-255) to reflectance values (%). 3. Training Site Development Training sites are areas (selection of pixels) that represent a specific landuse or land cover class. For example, you will identify areas in the image that represent water, and then select a number of pixels (by digitizing) which are to be representative for that class. Training sites should be as homogenous as possible, and many training sites (polygons) can be created for the same landuse class. Each known landuse class will be assigned a unique integer number. The classes you should identify and the training sites you will create (with their unique number) are as follows: 1 deciduous forest (leave trees) * 2 coniferous forest (pine, spruce, ect) * 3 agricultural fields with vegetation 4 agricultural fields without vegetation (bare soil) 5 urban (built-up) areas 6 water without visible traces of algae 7 water with visible traces of algae blooming or other particles * Tip: look back at question 2.7 to know how you can differ coniferous forests with deciduous forests one of them appears darker mainly due to lower reflectance in the NIR. You will base your training sites on a FCC image (TM_FCC). - Display TM_FCC You will use the on-screen digitizing features to digitize polygons around your training sites. On-screen digitizing in IDRISI is made available through the following toolbar icons: Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

13 Digitize Delete Feature Save Digitized Data You can use the navigation buttons at the bottom of Composer to focus (pan/zoom in or out). - Select the Digitize icon from the toolbar, and enter TRAININGSITES as the name of the layer to be created. Then enter the feature identifier (number) for the class you want to begin with. Press OK. The vector polygon layer TRAININGSITES is automatically added to the composition and is listed on Composer. The cursor will now appear as the digitizing icon in the image. - Move the cursor to the starting point for the boundary of your training site and press the left mouse button. Then move to the next point along the boundary and press the left mouse button again. To finish digitizing a polygon, press the right mouse button. - You can save your digitized work at any time by pressing the Saved Digitize Data icon on the toolbar. If you make a mistake and wish to delete a polygon, select the Delete Feature icon, select the polygon you wish to delete and press delete on the keyboard. Any number of training sites, or polygons, with the same ID number may be created for each cover type, but there should be an adequate number of pixels for each cover type for statistical characterization. For this exercise, aim to have at least 100 pixels for each training set, a number of approximately 3-4 training sites should for each cover type should cover this. - Create all the trainingsites in the same vector layer (a question will appear before you begin to digitize a new polygon. Choose to Add features to the currently active vector layer. Press OK. - Check the ID-value in the window that appears make sure it is the ID-number for the cover type that you are going to digitize. - Continue until you have training sites for each cover class. - SAVE! Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

14 4. Signature Development Once you have a training site vector file, you are ready to create the signature file. - Run MAKESIG from the Analysis > Image Processing > Signature Development menu. - Choose Vector as the training site file type and enter TRAININGSITES as the file defining the training sites. Click the Enter Signature Filenames button. A separate signature file will be created for each identifier (class) in the vector file. Enter the name for each identifier shown (example 1 = forest). When you have entered all file names, click OK. - Indicate that 6 bands of imagery will be processed by pressing the up arrow on the spin button. Click the pick list button in the first box, and choose TM1. In the second box, choose TM2, and so on until all six boxes represent an image. MAKESIG automatically creates a spectral signature group file that contains all the signature file names. To compare these signatures, you can graph them. - Run SIGCOMP from the Analysis > Image Processing > Signature Development menu. Choose to use a signature group file and choose TRAININGSITES. Display them by their means. 4.1) Which band seems to be the best to differentiate the landuse classes? 5. Supervised Classification There are possible algorithms (statistical techniques) for classifying images. When the classification is based on training sites selected by the user, it is said to be a supervised classification. There are also unsupervised classification schemes, where the classes are uniquely based on statistics and the number of classes to be made. Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

15 Some of the possible algorithms in IDRISI are: - Minimum distance to means classifier - Maximum likelihood classifier - Parallelepiped classifier All of the classifiers may be found under Analysis > Image Processing > Hard Classifiers. (Read in the help to know more about these techniques) - Run first MINDIS (the minimum distance to means) and indicate that you will use raw distances and an infinite maximum search distance. Click on the Signature Group button and choose the TRAININGSITES signature group file. Give an appropriate output name and click the next button. By default, all bands are to be included in the classification. Click OK. - Now try MAXLIKE (maximum likelihood). Here, the distributions of reflectance values are described by a probability density function developed on the basis of Bayesian statistics. Choose to use equal prior probabilities for each signature. Choose again the signature group TRAININGSITES. The input grid will then automatically fill. Choose to classify all pixels, and use all bands in the classification. - Now try the PIPED (parallelepiped) classification defined by the min/max values, as using all bands. As you can see, the results differ importantly depending on the algorithm used. It is therefore important to select accurately the training areas. In this case, the urban areas, for example, most probably include pixels with high-ranging reflectance values in most bands, making this (or these) training sites rather poor. - To see the range of the reflectance values of the urban training sites, display them graphically with Analysis > Image Processing > Signature Development > SIGCOMP, and choose the filename urban only, displayed by minimum, maximum and mean. 4.2) Which classes are the most difficult to classify (classified wrongly), and why? Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

16 6. Performing a Radiometric Correction (calculating the at-satellite reflectance ) The Landsat TM (Thematic Mapper) sensors record the reflectance by allocating a value between 0 and 255 to each pixel (1 byte per pixel). These values are known as the digital numbers (DN). The brightness values (DN) recorded by the sensor are a function of atmospheric properties, target properties and location, as well as sun angle and solar irradiance during the time of sensing. If mosaics of satellite images are made, or if images from different time periods and/or locations are to be compared to each other, the differences in sun angle and solar irradiance should be corrected. Also, the distance between the Sun and the Earth varies in time (ex: seasons), which consequently effects solar irradiance. A common method to correct these differences and take in consideration the above factors is to calculate the at-satellite reflectance, which is a unitless value between 0 and 1 representing the percentage of reflectance reaching the sensor. Sun angle correction is applied by calculating pixel brightness values assuming the sun at zenith on each date of sensing. The easiest way to calculate this is with MS Excel. The first step is to convert the digital numbers (0-255) to a spectral radiance (mwcm -2 sr -1 μm -1 ), using formula 1. L L maxi L min i = L min i + DN (1) DN max i Li = Spectral radiance (mwcm -2 sr -1 μm -1 ) (i = band) Lmin i = Min. spectral radiance (mwcm -2 sr -1 μm -1 ). (Sensor response that gives DN min ) Lmax i = Max. spectral radiance (mwcm -2 sr -1 μm -1 ). (Sensor response that gives DN max ) DN = Digital number (0-255 for Landsat TM) DN max = Maximum digital number (255 for Landsat TM) Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

17 - In Excel, start by making a column with all digital values from 0 to Using the values in Table 1, calculate thereafter the spectral radiance and the at-satellite reflectance in other columns, do this for three spectral bands (of your own choice). Table 1: Spectral radiances, Lmin and Lmax in mwcm -2 sr -1 μm -1, and Esun in mw/(cm 2 μm) for the Landsat 7ETM+ satellite image. Band Band Lmin i Lmax i DNmax Esun i width (μm) TM TM TM TM TM TM With the spectral radiance known, the at-satellite reflectance can be calculated with formula 2. Formula 2: Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

18 2 π Li d ppλ = (2) Esun cos( Θ) i ppλ = Unitless effective at-satellite reflectance (% of energy reaching sensor) Li = Spectral radiance (mwcm -2 sr -1 μm -1 ) calculated with formula 1. d = Earth-Sun distance in astronomical units (from astronomical almanac) Esuni = Mean solar exoatmospheric spectral irradiance in mw/(cm 2 μm) Θ = Solar zenith angle in degrees Θ The distance between the Earth and the Sun varies in time, but can be roughly approximated to 1. The solar zenith angle is the angle between the vertical and the position of the Sun, while the solar height is the angle between the ground (horiziontal) and the Sun. The solar height for the Landsat image is 49.31º. * NOTE: Excel uses by default angles in radians, and not degrees! - Once the calculations are completed, you must find the relation (equation) required to transform the DN numbers (0-255) to atsatellite reflectances (%). This can be done by, for example, plotting (XY scatter plot) all DN numbers on the X-axis and all at-satellite reflectance values on the Y-axis, and extracting the equation (right click on mouse on the points in graph, choose add trendline, in the trendline menu, select display equation on chart under options). The trend is linear. Write down the Equations below: TM1 TM2 Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

19 TM3 TM4 TM5 TM7 With these equations you are now able to transform the digital numbers (recorded by the satellite) in each band into reflectance values. WELL DONE! Extra resources: The following sites provide interesting learning material/tutorials regarding remote sensing: The Canada Centre for Remote Sensing: NASA: Jean-Nicolas Poussart, Nov Modified by Emilie Stroh Nov

Exercise 4-1 Image Exploration

Exercise 4-1 Image Exploration Exercise 4-1 Image Exploration With this exercise, we begin an extensive exploration of remotely sensed imagery and image processing techniques. Because remotely sensed imagery is a common source of data

More information

Module 11 Digital image processing

Module 11 Digital image processing Introduction Geo-Information Science Practical Manual Module 11 Digital image processing 11. INTRODUCTION 11-1 START THE PROGRAM ERDAS IMAGINE 11-2 PART 1: DISPLAYING AN IMAGE DATA FILE 11-3 Display of

More information

Enhancement of Multispectral Images and Vegetation Indices

Enhancement of Multispectral Images and Vegetation Indices Enhancement of Multispectral Images and Vegetation Indices ERDAS Imagine 2016 Description: We will use ERDAS Imagine with multispectral images to learn how an image can be enhanced for better interpretation.

More information

GEOG432: Remote sensing Lab 3 Unsupervised classification

GEOG432: Remote sensing Lab 3 Unsupervised classification GEOG432: Remote sensing Lab 3 Unsupervised classification Goal: This lab involves identifying land cover types by using agorithms to identify pixels with similar Digital Numbers (DN) and spectral signatures

More information

Satellite image classification

Satellite image classification Satellite image classification EG2234 Earth Observation Image Classification Exercise 29 November & 6 December 2007 Introduction to the practical This practical, which runs over two weeks, is concerned

More information

GEOG432: Remote sensing Lab 3 Unsupervised classification

GEOG432: Remote sensing Lab 3 Unsupervised classification GEOG432: Remote sensing Lab 3 Unsupervised classification Goal: This lab involves identifying land cover types by using agorithms to identify pixels with similar Digital Numbers (DN) and spectral signatures

More information

RGB colours: Display onscreen = RGB

RGB colours:  Display onscreen = RGB RGB colours: http://www.colorspire.com/rgb-color-wheel/ Display onscreen = RGB DIGITAL DATA and DISPLAY Myth: Most satellite images are not photos Photographs are also 'images', but digital images are

More information

RADIOMETRIC CALIBRATION

RADIOMETRIC CALIBRATION 1 RADIOMETRIC CALIBRATION Lecture 10 Digital Image Data 2 Digital data are matrices of digital numbers (DNs) There is one layer (or matrix) for each satellite band Each DN corresponds to one pixel 3 Digital

More information

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego 1 Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana Geob 373 Remote Sensing Dr Andreas Varhola, Kathry De Rego Zhu an Lim (14292149) L2B 17 Apr 2016 2 Abstract Montana

More information

The (False) Color World

The (False) Color World There s more to the world than meets the eye In this activity, your group will explore: The Value of False Color Images Different Types of Color Images The Use of Contextual Clues for Feature Identification

More information

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching.

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching. Remote Sensing Objectives This unit will briefly explain display of remote sensing image, geometric correction, spatial enhancement, spectral enhancement and classification of remote sensing image. At

More information

Unsupervised Classification

Unsupervised Classification Unsupervised Classification Using SAGA Tutorial ID: IGET_RS_007 This tutorial has been developed by BVIEER as part of the IGET web portal intended to provide easy access to geospatial education. This tutorial

More information

AmericaView EOD 2016 page 1 of 16

AmericaView EOD 2016 page 1 of 16 Remote Sensing Flood Analysis Lesson Using MultiSpec Online By Larry Biehl Systems Manager, Purdue Terrestrial Observatory (biehl@purdue.edu) v Objective The objective of these exercises is to analyze

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

Land Remote Sensing Lab 4: Classication and Change Detection Assigned: October 15, 2017 Due: October 27, Classication

Land Remote Sensing Lab 4: Classication and Change Detection Assigned: October 15, 2017 Due: October 27, Classication Name: Land Remote Sensing Lab 4: Classication and Change Detection Assigned: October 15, 2017 Due: October 27, 2017 In this lab, you will generate several gures. Please sensibly name these images, save

More information

8. EDITING AND VIEWING COORDINATES, CREATING SCATTERGRAMS AND PRINCIPAL COMPONENTS ANALYSIS

8. EDITING AND VIEWING COORDINATES, CREATING SCATTERGRAMS AND PRINCIPAL COMPONENTS ANALYSIS Editing and viewing coordinates, scattergrams and PCA 8. EDITING AND VIEWING COORDINATES, CREATING SCATTERGRAMS AND PRINCIPAL COMPONENTS ANALYSIS Aim: To introduce you to (i) how you can apply a geographical

More information

Due Date: September 22

Due Date: September 22 Geography 309 Lab 1 Page 1 LAB 1: INTRODUCTION TO REMOTE SENSING Due Date: September 22 Objectives To familiarize yourself with: o remote sensing resources on the Internet o some remote sensing sensors

More information

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur.

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur. Basics of Remote Sensing Some literature references Franklin, SE 2001 Remote Sensing for Sustainable Forest Management Lewis Publishers 407p Lillesand, Kiefer 2000 Remote Sensing and Image Interpretation

More information

Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat

Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat Using SAGA GIS and Quantum GIS Tutorial ID: IGET_CT_003 This tutorial has been developed by BVIEER as

More information

Lecture 13: Remotely Sensed Geospatial Data

Lecture 13: Remotely Sensed Geospatial Data Lecture 13: Remotely Sensed Geospatial Data A. The Electromagnetic Spectrum: The electromagnetic spectrum (Figure 1) indicates the different forms of radiation (or simply stated light) emitted by nature.

More information

Viewing Landsat TM images with Adobe Photoshop

Viewing Landsat TM images with Adobe Photoshop Viewing Landsat TM images with Adobe Photoshop Reformatting images into GeoTIFF format Of the several formats in which Landsat TM data are available, only a few formats (primarily TIFF or GeoTIFF) can

More information

Quantifying Land Cover Changes in Maine

Quantifying Land Cover Changes in Maine Quantifying Land Cover Changes in Maine! STUDENT HANDOUT Introduction Change detection tools enable us to compare satellite data from different times to assess damage from natural disasters, characterize

More information

Applications of satellite and airborne image data to coastal management. Part 2

Applications of satellite and airborne image data to coastal management. Part 2 Applications of satellite and airborne image data to coastal management Part 2 You have used the cursor to investigate the pixels making up the image EIRE4.BMP and seen how the brightnesses of sea, land

More information

Mod. 2 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur

Mod. 2 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur Histograms of gray values for TM bands 1-7 for the example image - Band 4 and 5 show more differentiation than the others (contrast=the ratio of brightest to darkest areas of a landscape). - Judging from

More information

BV NNET User manual. V0.2 (Draft) Rémi Lecerf, Marie Weiss

BV NNET User manual. V0.2 (Draft) Rémi Lecerf, Marie Weiss BV NNET User manual V0.2 (Draft) Rémi Lecerf, Marie Weiss 1. Introduction... 2 2. Installation... 2 3. Prerequisites... 2 3.1. Image file format... 2 3.2. Retrieving atmospheric data... 3 3.2.1. Using

More information

Basic Hyperspectral Analysis Tutorial

Basic Hyperspectral Analysis Tutorial Basic Hyperspectral Analysis Tutorial This tutorial introduces you to visualization and interactive analysis tools for working with hyperspectral data. In this tutorial, you will: Analyze spectral profiles

More information

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI Introduction and Objectives The present study is a correlation

More information

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS Fundamentals of Remote Sensing Pranjit Kr. Sarma, Ph.D. Assistant Professor Department of Geography Mangaldai College Email: prangis@gmail.com Ph. No +91 94357 04398 Remote Sensing Remote sensing is defined

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

Remote Sensing Instruction Laboratory

Remote Sensing Instruction Laboratory Laboratory Session 217513 Geographic Information System and Remote Sensing - 1 - Remote Sensing Instruction Laboratory Assist.Prof.Dr. Weerakaset Suanpaga Department of Civil Engineering, Faculty of Engineering

More information

1. Start a bit about Linux

1. Start a bit about Linux GEOG432/632 Fall 2017 Lab 1 Display, Digital numbers and Histograms 1. Start a bit about Linux Login to the linux environment you already have in order to view this webpage Linux enables both a command

More information

Interpreting land surface features. SWAC module 3

Interpreting land surface features. SWAC module 3 Interpreting land surface features SWAC module 3 Interpreting land surface features SWAC module 3 Different kinds of image Panchromatic image True-color image False-color image EMR : NASA Echo the bat

More information

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser Including Introduction to Remote Sensing Concepts Based on: igett Remote Sensing Concept Modules and GeoTech

More information

REMOTE SENSING INTERPRETATION

REMOTE SENSING INTERPRETATION REMOTE SENSING INTERPRETATION Jan Clevers Centre for Geo-Information - WU Remote Sensing --> RS Sensor at a distance EARTH OBSERVATION EM energy Earth RS is a tool; one of the sources of information! 1

More information

GE 113 REMOTE SENSING

GE 113 REMOTE SENSING GE 113 REMOTE SENSING Topic 8. Image Classification and Accuracy Assessment Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering College of Engineering and Information

More information

Raster is faster but vector is corrector

Raster is faster but vector is corrector Account not required Raster is faster but vector is corrector The old GIS adage raster is faster but vector is corrector comes from the two different fundamental GIS models: vector and raster. Each of

More information

Introduction. Introduction. Introduction. Introduction. Introduction

Introduction. Introduction. Introduction. Introduction. Introduction Identifying habitat change and conservation threats with satellite imagery Extinction crisis Volker Radeloff Department of Forest Ecology and Management Extinction crisis Extinction crisis Conservationists

More information

QGIS LAB SERIES GST 101: Introduction to Geospatial Technology Lab 6: Understanding Remote Sensing and Analysis

QGIS LAB SERIES GST 101: Introduction to Geospatial Technology Lab 6: Understanding Remote Sensing and Analysis QGIS LAB SERIES GST 101: Introduction to Geospatial Technology Lab 6: Understanding Remote Sensing and Analysis Objective Explore and Understand How to Display and Analyze Remotely Sensed Imagery Document

More information

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010 APCAS/10/21 April 2010 Agenda Item 8 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION Siem Reap, Cambodia, 26-30 April 2010 The Use of Remote Sensing for Area Estimation by Robert

More information

Remote Sensing And Gis Application in Image Classification And Identification Analysis.

Remote Sensing And Gis Application in Image Classification And Identification Analysis. Quest Journals Journal of Research in Environmental and Earth Science Volume 3~ Issue 5 (2017) pp: 55-66 ISSN(Online) : 2348-2532 www.questjournals.org Research Paper Remote Sensing And Gis Application

More information

Files Used in This Tutorial. Background. Calibrating Images Tutorial

Files Used in This Tutorial. Background. Calibrating Images Tutorial In this tutorial, you will calibrate a QuickBird Level-1 image to spectral radiance and reflectance while learning about the various metadata fields that ENVI uses to perform calibration. This tutorial

More information

8th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

8th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING Urban Mapping Practical Sebastian van der Linden, Akpona Okujeni, Franz Schug Humboldt Universität zu Berlin Instructions for practical Summary The Urban Mapping Practical introduces students to the work

More information

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0 CanImage (Landsat 7 Orthoimages at the 1:50 000 Scale) Standards and Specifications Edition 1.0 Centre for Topographic Information Customer Support Group 2144 King Street West, Suite 010 Sherbrooke, QC

More information

Image interpretation I and II

Image interpretation I and II Image interpretation I and II Looking at satellite image, identifying different objects, according to scale and associated information and to communicate this information to others is what we call as IMAGE

More information

Remote Sensing for Rangeland Applications

Remote Sensing for Rangeland Applications Remote Sensing for Rangeland Applications Jay Angerer Ecological Training June 16, 2012 Remote Sensing The term "remote sensing," first used in the United States in the 1950s by Ms. Evelyn Pruitt of the

More information

This week we will work with your Landsat images and classify them using supervised classification.

This week we will work with your Landsat images and classify them using supervised classification. GEPL 4500/5500 Lab 4: Supervised Classification: Part I: Selecting Training Sets Due: 4/6/04 This week we will work with your Landsat images and classify them using supervised classification. There are

More information

Spatial Analyst is an extension in ArcGIS specially designed for working with raster data.

Spatial Analyst is an extension in ArcGIS specially designed for working with raster data. Spatial Analyst is an extension in ArcGIS specially designed for working with raster data. 1 Do you remember the difference between vector and raster data in GIS? 2 In Lesson 2 you learned about the difference

More information

* Tokai University Research and Information Center

* Tokai University Research and Information Center Effects of tial Resolution to Accuracies for t HRV and Classification ta Haruhisa SH Kiyonari i KASA+, uji, and Toshibumi * Tokai University Research and nformation Center 2-28-4 Tomigaya, Shi, T 151,

More information

GEO/EVS 425/525 Unit 3 Composite Images and The ERDAS Imagine Map Composer

GEO/EVS 425/525 Unit 3 Composite Images and The ERDAS Imagine Map Composer GEO/EVS 425/525 Unit 3 Composite Images and The ERDAS Imagine Map Composer This unit involves two parts, both of which will enable you to present data more clearly than you might have thought possible.

More information

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec )

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Windows version With Teacher Notes Earth Observation

More information

GST 101: Introduction to Geospatial Technology Lab Series. Lab 6: Understanding Remote Sensing and Aerial Photography

GST 101: Introduction to Geospatial Technology Lab Series. Lab 6: Understanding Remote Sensing and Aerial Photography GST 101: Introduction to Geospatial Technology Lab Series Lab 6: Understanding Remote Sensing and Aerial Photography Document Version: 2013-07-30 Organization: Del Mar College Author: Richard Smith Copyright

More information

EE/GP140-The Earth From Space- Winter 2008 Handout #16 Lab Exercise #3

EE/GP140-The Earth From Space- Winter 2008 Handout #16 Lab Exercise #3 EE/GP140-The Earth From Space- Winter 2008 Handout #16 Lab Exercise #3 Topic 1: Color Combination. We will see how all colors can be produced by combining red, green, and blue in different proportions.

More information

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec )

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Macintosh version Earth Observation Day Tutorial

More information

Seasonal Progression of the Normalized Difference Vegetation Index (NDVI)

Seasonal Progression of the Normalized Difference Vegetation Index (NDVI) Seasonal Progression of the Normalized Difference Vegetation Index (NDVI) For this exercise you will be using a series of six SPOT 4 images to look at the phenological cycle of a crop. The images are SPOT

More information

White paper brief IdahoView Imagery Services: LISA 1 Technical Report no. 2 Setup and Use Tutorial

White paper brief IdahoView Imagery Services: LISA 1 Technical Report no. 2 Setup and Use Tutorial White paper brief IdahoView Imagery Services: LISA 1 Technical Report no. 2 Setup and Use Tutorial Keith T. Weber, GISP, GIS Director, Idaho State University, 921 S. 8th Ave., stop 8104, Pocatello, ID

More information

Lecture 2. Electromagnetic radiation principles. Units, image resolutions.

Lecture 2. Electromagnetic radiation principles. Units, image resolutions. NRMT 2270, Photogrammetry/Remote Sensing Lecture 2 Electromagnetic radiation principles. Units, image resolutions. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

More information

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks)

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks) Final Examination Introduction to Remote Sensing Time: 1.5 hrs Max. Marks: 50 Note: Attempt all questions. Section-I (50 x 1 = 50 Marks) 1... is the technology of acquiring information about the Earth's

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES

MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES 1. Introduction Digital image processing involves manipulation and interpretation of the digital images so

More information

CHAPTER 7: Multispectral Remote Sensing

CHAPTER 7: Multispectral Remote Sensing CHAPTER 7: Multispectral Remote Sensing REFERENCE: Remote Sensing of the Environment John R. Jensen (2007) Second Edition Pearson Prentice Hall Overview of How Digital Remotely Sensed Data are Transformed

More information

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs Basic Digital Image Processing A Basic Introduction to Digital Image Processing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland,

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS REMOTE SENSING Topic 10 Fundamentals of Digital Multispectral Remote Sensing Chapter 5: Lillesand and Keifer Chapter 6: Avery and Berlin MULTISPECTRAL SCANNERS Record EMR in a number of discrete portions

More information

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns)

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns) Spectral Signatures % REFLECTANCE VISIBLE NEAR INFRARED Vegetation Soil Water.5. WAVELENGTH (microns). Spectral Reflectance of Urban Materials 5 Parking Lot 5 (5=5%) Reflectance 5 5 5 5 5 Wavelength (nm)

More information

TimeSync V3 User Manual. January Introduction

TimeSync V3 User Manual. January Introduction TimeSync V3 User Manual January 2017 Introduction TimeSync is an application that allows researchers and managers to characterize and quantify disturbance and landscape change by facilitating plot-level

More information

AT-SATELLITE REFLECTANCE: A FIRST ORDER NORMALIZATION OF LANDSAT 7 ETM+ IMAGES

AT-SATELLITE REFLECTANCE: A FIRST ORDER NORMALIZATION OF LANDSAT 7 ETM+ IMAGES AT-SATELLITE REFLECTANCE: A FIRST ORDER NORMALIZATION OF LANDSAT 7 ETM+ IMAGES Chengquan Huang*, Limin Yang, Collin Homer, Bruce Wylie, James Vogelman and Thomas DeFelice Raytheon ITSS, EROS Data Center

More information

INTRODUCTION TO SNAP TOOLBOX

INTRODUCTION TO SNAP TOOLBOX INTRODUCTION TO SNAP TOOLBOX EXERCISE 1 (Exploring S2 data) Data: Sentinel-2A Level 1C: S2A_MSIL1C_20180303T170201_N0206_R069_T14QNG_20180303T221319.SAFE 1. Open file 1.1. File / Open Product 1.2. Browse

More information

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD Şahin, H. a*, Oruç, M. a, Büyüksalih, G. a a Zonguldak Karaelmas University, Zonguldak, Turkey - (sahin@karaelmas.edu.tr,

More information

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY Ahmed Elsharkawy 1,2, Mohamed Elhabiby 1,3 & Naser El-Sheimy 1,4 1 Dept. of Geomatics Engineering, University of Calgary

More information

Satellite Remote Sensing: Earth System Observations

Satellite Remote Sensing: Earth System Observations Satellite Remote Sensing: Earth System Observations Land surface Water Atmosphere Climate Ecosystems 1 EOS (Earth Observing System) Develop an understanding of the total Earth system, and the effects of

More information

Remote sensing image correction

Remote sensing image correction Remote sensing image correction Introductory readings remote sensing http://www.microimages.com/documentation/tutorials/introrse.pdf 1 Preprocessing Digital Image Processing of satellite images can be

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Remote sensing in archaeology from optical to lidar Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Introduction Optical remote sensing Systems Search for

More information

Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec )

Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec ) Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Windows version With Teacher Notes

More information

366 Glossary. Popular method for scale drawings in a computer similar to GIS but without the necessity for spatial referencing CEP

366 Glossary. Popular method for scale drawings in a computer similar to GIS but without the necessity for spatial referencing CEP 366 Glossary GISci Glossary ASCII ASTER American Standard Code for Information Interchange Advanced Spaceborne Thermal Emission and Reflection Radiometer Computer Aided Design Circular Error Probability

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Remote Sensing Defined Remote Sensing is: The art and science of

More information

Visualizing a Pixel. Simulate a Sensor s View from Space. In this activity, you will:

Visualizing a Pixel. Simulate a Sensor s View from Space. In this activity, you will: Simulate a Sensor s View from Space In this activity, you will: Measure and mark pixel boundaries Learn about spatial resolution, pixels, and satellite imagery Classify land cover types Gain exposure to

More information

GIS Data Collection. Remote Sensing

GIS Data Collection. Remote Sensing GIS Data Collection Remote Sensing Data Collection Remote sensing Introduction Concepts Spectral signatures Resolutions: spectral, spatial, temporal Digital image processing (classification) Other systems

More information

MRLC 2001 IMAGE PREPROCESSING PROCEDURE

MRLC 2001 IMAGE PREPROCESSING PROCEDURE MRLC 2001 IMAGE PREPROCESSING PROCEDURE The core dataset of the MRLC 2001 database consists of Landsat 7 ETM+ images. Image selection is based on vegetation greenness profiles defined by a multi-year normalized

More information

Introduction to Remote Sensing Part 1

Introduction to Remote Sensing Part 1 Introduction to Remote Sensing Part 1 A Primer on Electromagnetic Radiation Digital, Multi-Spectral Imagery The 4 Resolutions Displaying Images Corrections and Enhancements Passive vs. Active Sensors Radar

More information

Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images

Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images Fumio YAMAZAKI/ yamazaki@edm.bosai.go.jp Hajime MITOMI/ mitomi@edm.bosai.go.jp Yalkun YUSUF/ yalkun@edm.bosai.go.jp

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

Present and future of marine production in Boka Kotorska

Present and future of marine production in Boka Kotorska Present and future of marine production in Boka Kotorska First results from satellite remote sensing for the breeding areas of filter feeders in the Bay of Kotor INTRODUCTION Environmental monitoring is

More information

GE 113 REMOTE SENSING. Topic 7. Image Enhancement

GE 113 REMOTE SENSING. Topic 7. Image Enhancement GE 113 REMOTE SENSING Topic 7. Image Enhancement Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering College of Engineering and Information Technology Caraga State

More information

Data Sources. The computer is used to assist the role of photointerpretation.

Data Sources. The computer is used to assist the role of photointerpretation. Data Sources Digital Image Data - Remote Sensing case: data of the earth's surface acquired from either aircraft or spacecraft platforms available in digital format; spatially the data is composed of discrete

More information

Remote Sensing in Daily Life. What Is Remote Sensing?

Remote Sensing in Daily Life. What Is Remote Sensing? Remote Sensing in Daily Life What Is Remote Sensing? First time term Remote Sensing was used by Ms Evelyn L Pruitt, a geographer of US in mid 1950s. Minimal definition (not very useful): remote sensing

More information

IKONOS High Resolution Multispectral Scanner Sensor Characteristics

IKONOS High Resolution Multispectral Scanner Sensor Characteristics High Spatial Resolution and Hyperspectral Scanners IKONOS High Resolution Multispectral Scanner Sensor Characteristics Launch Date View Angle Orbit 24 September 1999 Vandenberg Air Force Base, California,

More information

Image interpretation and analysis

Image interpretation and analysis Image interpretation and analysis Grundlagen Fernerkundung, Geo 123.1, FS 2014 Lecture 7a Rogier de Jong Michael Schaepman Why are snow, foam, and clouds white? Why are snow, foam, and clouds white? Today

More information

F2 - Fire 2 module: Remote Sensing Data Classification

F2 - Fire 2 module: Remote Sensing Data Classification F2 - Fire 2 module: Remote Sensing Data Classification F2.1 Task_1: Supervised and Unsupervised classification examples of a Landsat 5 TM image from the Center of Portugal, year 2005 F2.1 Task_2: Burnt

More information

Dirty REMOTE SENSING Lecture 3: First Steps in classifying Stuart Green Earthobservation.wordpress.com

Dirty REMOTE SENSING Lecture 3: First Steps in classifying Stuart Green Earthobservation.wordpress.com Dirty REMOTE SENSING Lecture 3: First Steps in classifying Stuart Green Earthobservation.wordpress.com Stuart.Green@Teagasc.ie You have your image, but is it any good? Is it full of cloud? Is it the right

More information

ILLUMINATION CORRECTION OF LANDSAT TM DATA IN SOUTH EAST NSW

ILLUMINATION CORRECTION OF LANDSAT TM DATA IN SOUTH EAST NSW ILLUMINATION CORRECTION OF LANDSAT TM DATA IN SOUTH EAST NSW Elizabeth Roslyn McDonald 1, Xiaoliang Wu 2, Peter Caccetta 2 and Norm Campbell 2 1 Environmental Resources Information Network (ERIN), Department

More information

At-Satellite Reflectance: A First Order Normalization Of Landsat 7 ETM+ Images

At-Satellite Reflectance: A First Order Normalization Of Landsat 7 ETM+ Images University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications of the US Geological Survey US Geological Survey 21 At-Satellite Reflectance: A First Order Normalization Of

More information

Stratigraphy Modeling Boreholes and Cross. Become familiar with boreholes and borehole cross sections in GMS

Stratigraphy Modeling Boreholes and Cross. Become familiar with boreholes and borehole cross sections in GMS v. 10.3 GMS 10.3 Tutorial Stratigraphy Modeling Boreholes and Cross Sections Become familiar with boreholes and borehole cross sections in GMS Objectives Learn how to import borehole data, construct a

More information

CHANGE DETECTION USING OPTICAL DATA IN SNAP

CHANGE DETECTION USING OPTICAL DATA IN SNAP CHANGE DETECTION USING OPTICAL DATA IN SNAP EXERCISE 1 (Water change detection) Data: Sentinel-2A Level 2A: S2A_MSIL2A_20170101T082332_N0204_R121_T34HCH_20170101T084543.SAFE S2A_MSIL2A_20180116T082251_N0206_R121_T34HCH_20180116T120458.SAFE

More information

Lab 3: Introduction to Image Analysis with ArcGIS 10

Lab 3: Introduction to Image Analysis with ArcGIS 10 Lab 3: Introduction to Image Analysis with ArcGIS 10 Peter E. Price TerraView 2010 Peter E. Price All rights reserved. Revised 03/2011. Revised for Geob 373 by BK Feb 7, 2017. V9 The information contained

More information

7. RECTIFICATION (GEOMETRIC CORRECTION) OF IMAGES AND RESAMPLING

7. RECTIFICATION (GEOMETRIC CORRECTION) OF IMAGES AND RESAMPLING Rectification of images and resampling 7. RECTIFICATION (GEOMETRIC CORRECTION) OF IMAGES AND RESAMPLING Aim: To introduce you to methods of rectifying images and linking them to geographical coordinate

More information

LAB 2: Sampling & aliasing; quantization & false contouring

LAB 2: Sampling & aliasing; quantization & false contouring CEE 615: Digital Image Processing Spring 2016 1 LAB 2: Sampling & aliasing; quantization & false contouring A. SAMPLING: Observe the effects of the sampling interval near the resolution limit. The goal

More information

Introduction to image processing for remote sensing: Practical examples

Introduction to image processing for remote sensing: Practical examples Università degli studi di Roma Tor Vergata Corso di Telerilevamento e Diagnostica Elettromagnetica Anno accademico 2010/2011 Introduction to image processing for remote sensing: Practical examples Dr.

More information

Creating a Colour Composite from MERIS L1 Data

Creating a Colour Composite from MERIS L1 Data LearnEO! Bilko Tutorial T2.4 www.learn-eo.org/tutorial/ Creating a Colour Composite from MERIS L1 Data Required resources MER_FR 1PNEPA20080812_095210_~.N1 - Envisat MERIS Full Resolution Level 1 data

More information

Geo/SAT 2 TROPICAL WET REALMS OF CENTRAL AFRICA, PART II

Geo/SAT 2 TROPICAL WET REALMS OF CENTRAL AFRICA, PART II Geo/SAT 2 TROPICAL WET REALMS OF CENTRAL AFRICA, PART II Paul R. Baumann Professor of Geography (Emeritus) State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2009 Paul

More information