Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images

Size: px
Start display at page:

Download "Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images"

Transcription

1 Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images Fumio YAMAZAKI/ Hajime MITOMI/ Yalkun YUSUF/ Masashi MATSUOKA/ Earthquake Disaster Mitigation Research Center, NIED, Hyogo, Japan Abstract To evaluate seismic risk in an urban area, building inventory is necessary. However, a large amount of time and effort is required to develop building inventory by field surveys. Thus an easier method to develop building inventory is being sought with the aid of remote sensing technologies. For the first step to evaluate seismic vulnerability of Metro Manila, land use classification was carried out and the expansion of urban areas was studied using time series satellite imagery from Landsat. The densely built-up areas estimated from Landsat were compared with the GIS data, based on the aerial photographs of A high-resolution satellite image from IKONOS was also employed for microscopic urban modeling of Metro Mania. Using the normalized vegetation index and the texture of the image, a detailed classification of urban areas with respect to the density and height of buildings is being sought. Although this study is still preliminary, some conclusions on possible applications and limitation of satellite remote sensing will be drawn within EQTAP Phase II. Key Words: building inventory, built environment, remote sensing, Metro Manila, Landsat, IKONOS Background and Objectives Seismic risk in an urban area is closely related to the structure, material and dimension of buildings and their spatial distribution. Hence it is important to study these characteristics of buildings in order to evaluate seismic vulnerability of an area, for disaster mitigation planning and pre- and post-event damage assessments. Building inventory in an urban area can be obtained by a field survey. However, a large amount of time and efforts is required. Thus an easier method to develop building inventory is being sought. Satellite remote sensing, which can easily monitor a large area, could provide effective information to develop building inventory, if it is able to capture the built environment in urban areas. Multi-spectral characteristics show the difference of reflectance from the materials on the earth surface. Many researchers have already proposed algorithms to classify the features on the earth surface in the fields of natural environment mapping, such as for forests and agricultural lands. However, few studies are found in built environment mapping, although the technology was used to evaluate the thermal environments in urban areas 1). In this study, the classification for understanding seismic vulnerability in Metro Manila was attempted using Landsat and IKONOS satellite images. Satellite Imagery and GIS data for Metro Manila Satellite images from Landsat-5 2) and IKONOS 3) were used in this study. Multi-spectral sensor of Landsat-5, Thematic Mapper (TM), has seven bands between visible and thermal infrared. Spatial resolution of its image except for the thermal infrared band is 30m on ground. Three Landsat 1

2 images, acquired on January 25, 1989, January 26, 1992 and January 16, 2000, were employed in the land use classification analysis. IKONOS, the first high-resolution commercial satellite, can take multi-spectral images of visible and near infrared regions with ground resolution of 4m. The ground resolution of its panchromatic band is 1m. The pansharpened IKONOS image with ground resolution of 1m, which was made by combining the multi-spectral and panchromatic images, was used in this study for Metro Manila. The acquisition date of the IKONOS image is September 28, The GIS data for Metro Manila, produced in 1986 based on aerial photographs for land use and building information, were also used in the study. Parameters Used for Land-Cover Classification Land cover classification was carried out by using NDVI (Normalized Differential Vegetation Index 4) ) defined by NIR R NDVI = (1) NIR + R where R and NIR represent the digital numbers of band 3 (visible) and band 4 (near infrared) of Landsat-TM, respectively. Vegetated areas yield high values in NDVI because they have relatively high near-ir reflectance and low visible reflectance. To remove the influence from the sunlight and atmosphere, the modification of digital numbers was carried out using the mean value and standard deviation of each image. After this correction, the NDVI was calculated for the three Landsat images. The urban areas in Metro Manila were classified by the level slice method 4) using two indices, NDVI and the texture for the uniformity of digital numbers in a local area. The angular second moment 4), Ta in equation (2) derived from a co-occurrence matrix 4), was used as the texture for the uniformity. m 1 m 1 { P( k, l) } Ta = (2) m= 0 m= 0 2 An co-occurrence probability 4) P(k, l) means the probability that a pixel value l appears in a relative position δ=(r, θ) from the reference pixel value k, where r and θ of δ are the relative distance and direction from the reference pixel, respectively. This matrix is called the cooccurrence matrix, because the column k and row l in the matrix represents the co-occurrence probability of the pixel values. m is a grade of an object image used in calculating the matrix. Before the matrix was calculated, the object image was converted to 4-bits. Therefore, m is equal to 16. The angular second moment, Ta, was calculated for the condition of r=1, which indicates neighboring eight pixels around a reference pixel and four directions of 0 or 180, 45 or 225, 90 or 270, and 135 or 315 degrees. The maximum value for the directions was defined as the representative value of the texture. A window size used for the texture analysis on the uniformity in a local area was 15x15 pixels for the Landsat image and 51x51 pixels for the IKONOS image. If the texture in a local area is uniform, the angular second moment has a relatively large value. Macroscopic Land Use Classification using Landsat Images Using the Landsat-TM images of Metro Manila for the three time instants, the distribution of NDVI was calculated as shown in Figure 1. In the figure, the areas with NDVI larger than 0.06 is considered as vegetation and equal to or less than 0.06 is considered as urbanized areas. A rapid expansion of urbanized area is clearly observed in this 11-year period. It is noticed that along the Valley (Marikina) Fault system, rapid urbanization is dominant. In this area, the farmlands have been converted to the residential areas. Considering the very short distance to the fault system, the seismic risk of the newly developed areas is considered to be high. It is observed from this figure that the total area of urbanization in Metro Manila is almost equal to that of vegetation in It 2

3 is expected that the urban land-use will top vegetation very soon in Metro Manila considering the recent rapid urbanization. As the next step of macroscopic analysis using Landsat data, the urbanization areas were further classified into congested (densely built-up) areas and non-congested areas. Using all the seven bands of Landsat data and employing six land cover classes (congested, non-congested, vegetation, bare ground, water, cloud cover), the maximum likelihood classification 4) was carried out and the result is shown in Figure 2. In the figure, red pixels represent the highly built-up areas. It is considered that seismic vulnerability of urbanized areas is dependent of the density of the areas, and that high-density areas might be the most important target of disaster mitigation planning. Microscopic Urban Classification using IKONOS Image Using IKONOS data, the classification of built environment in Old Manila was carried out. Each training data of 4,000 pixels was randomly selected from the typical area designated as an inscribed circle, such as a dense area with low-rise buildings, an upscale residential area, an area with midheight buildings (such as a southern part of Chinatown), and a highly urbanized area with high-rise buildings, and so on. The edge intensity was derived from the Prewitt filter 4), after the image was fabricated from the method to obtain the brightness signal for NTSC, which is one of the image transmitting systems used for television. Then, the cumulative relative frequency of the edge intensity for the dense area with low-rise small buildings was converted to 4-bits data, by means of dividing an accumulated ratio into 16 equal parts. The angular second moment, Ta, was calculated from the 4-bits edge intensity. As a result, it is found that a high-density area with low-rise buildings has small Ta value, representing the degree of built-up density. The classification category for the IKONOS image was determined as shown in Figure 3 (a) based on a scatter diagram for NDVI and Ta for training data. Then the level slice classification was carried out and the result is shown in Figure 4. It is seen in the figure that many high-density areas with low-rise buildings exist in the east and southeast of Old Manila, such as Pandacan and San Andres. Commercial areas with moderate size buildings locate in the south of Chinatown. The houses in upscale residential areas are surrounded by vegetation. On the whole, the result is relatively in good agreement with the actual built environment, except for the areas affected by clouds. In particular, there are very dense areas with low-rise buildings in the southeast of Old Manila, such as Tondo. In order to get the complete result of the classification for the entire Metro Manila, the latest Landsat data was also employed for the urban classification. First, the principal component analysis 4) for six bands excluding the thermal infrared band was performed. Then, an image of the first principal component (converted to 4-bits) was used to calculate the co-occurrence matrix and Ta. For the level slice classification, the category shown in Figure 3 (b) was determined based on scatter diagram of all the training data selected by 20x20 pixels. The Ta values for the densely built-up areas are found to be large because the texture in the 4-bits image of the first principal component is relatively uniform. Upscale residential areas and highly urbanized areas have small Ta values. The Ta values for commercial areas such as Chinatown have an intermediate value between that for dense low-rise building areas and that of high-rise building areas. The result of the urban classification using the Landsat image is shown in Figure 5. Very dense areas with low-rise buildings are mainly found along Pasig River, such as Old Manila, Caloocan City etc. The result for upscale residential areas and highly urbanized areas such as Makati and Mandaluyong, seems to be relatively in good agreement with the actual situation. Comparing Figure 3 (a) and (b), the value of angular second moment representing the texture changes with the spatial resolution of satellite images. The IKONOS image with 1 meter resolution can capture small texture thus high density areas have small Ta values while Landsat image with 30 meter resolution cannot capture this small texture thus the high density areas have large Ta values. Development of Digital Tools for Remote Sensing and GIS Analysis of remote sensing imagery requires the knowledge on remote sensing and some skills of using remote sensing software, e.g. ENVI. Even you can use such software, the software will not 3

4 provide you intermediate analysis results in a visible form. The results of remote sensing data processing must often be superposed on existing GIS maps and other spatial data. However, usual remote sensing software is not very convenient to do such tasks. Hence in this EQTAP project, a new digital tool, handling both remote sensing images and GIS data consistently, is being developed. This RS/GIS tool can be considered as a part of EQTAP Tool Box, which will available to EQTAP members through Internet in the near future. Figure 6 shows the overlapped image of the GIS information (land-use) with the Landsat imagery of By overlapping the satellite image with the GIS data, users can recognize changes by visual inspection in macroscopic manner. By this RS/GIS tool, the users can also obtain spatial information from an existing GIS database. Figure 7 shows the distribution of building story in Chinatown area of Metro Manila. As the current stage of Manila case study, we have analyzed the land use and building density distribution using the Landsat and IKONOS images. It is important to verify the results of classification. As a next step, a correlation analysis will be carried out between the classification results and GIS data on the density and structure of buildings in Metro Manila, such as shown Figure 8. The building inventory thus developed will be used for seismic vulnerability assessment of Metro Manila. Conclusions The macroscopic and microscopic land use classifications were attempted for understanding the urban structure of Metro Manila. According to the macroscopic analysis using Landsat images of three time periods, it is found out that Metro Manila has sprawled out in a high speed during the period between 1989 and It is noted that new developments are seen along the high seismic risk zone along the Valley (Marikina) Fault system. The land cover classification in a smaller scale was further conducted using IKONOS and Landsat images. Based on this analysis, the built environment in Old Manila was classified into four categories: very densely built-up areas, upscale residential areas with vegetation, areas with moderate size buildings, and highly urbanized areas with high-rise buildings. Relatively good agreement with the actual condition was observed, comparing the result with GIS data and field observations. An application tool to handle both GIS data and remote sensing data was developed for its use in risk management studies. Although this study for Metro Manila is still preliminary, some conclusions on possible applications and limitation of satellite remote sensing will be drawn within EQTAP Phase II. References 1) Ohmachi, T. and Roman, R. E.: Metro Manila, in search of a sustainable future, University of the Philippines Press, 388p, ) Homepage of NASA for Landsat: 3) Homepage of Spaceimaging: 4) Takagi, M. and Shimoda, H.: Handbook of image analysis, University of Tokyo Press, 775p, 1991 (in Japanese). 4

5 Figure 1. Expansion of urban areas identified by Landsat images in 1989, 1992 and 2000 using NDVI. Figure 2. Distribution of densely built-up areas (red) for Metro Manila estimated from Landsat images in 1989, 1992 and

6 Angular Second Moment (51x Non-Categorized Area Buildings with Large Size Mid-Height Buildings Highly Dense (Low-Rise Buildings) Very Highly Dense (Low-Rise Buildings) NDVI Vegetation (a) Category for IKONOS image Angular Second Moment (15x Non-Categorized Area Highly Urbanized Area Highly Dense Area with Low-Rise Buildings Dense Area with Low-Rise Buildings Mid-Height Buildings Upscale Residential Area NDVI Others (including Vegetation) (b) Category for Landsat image Figure 3. Urban classification in terms of NDVI and texture used for level slice method Figure 4. Result of microscopic classification in Old Manila using pansharpened IKONOS image. Orange and yellow: dense areas with low-rise buildings, light blue: mid-height buildings (mainly commercial areas); blue: areas with large-size buildings and others; green: vegetation area. 6

7 Figure 5. Result of urban classification for Metro Manila using Landsat image; deep and light orange: dense areas with low-rise buildings; yellow: low-rise and mid-height buildings (mixture of commercial and residential areas); blue: highly urbanized areas with high-rise buildings; light blue: upscale residential area; green: others including vegetation area. Figure 6. GIS information (land-use) overlapped with the Landsat imagery (1989). 7

8 Figure 7. Number of stories of buildings in Chinatown area, Old Manila. Figure 8. Areas to compare the classification results with the GIS data 8

Detection and Animation of Damage Using Very High-Resolution Satellite Data Following the 2003 Bam, Iran, Earthquake

Detection and Animation of Damage Using Very High-Resolution Satellite Data Following the 2003 Bam, Iran, Earthquake Detection and Animation of Damage Using Very High-Resolution Satellite Data Following the 2003 Bam, Iran, Earthquake Tuong Thuy Vu, a M.EERI, Masashi Matsuoka, a M.EERI, and Fumio Yamazaki, b M.EERI The

More information

USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES

USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES Fumio Yamazaki 1, Daisuke Suzuki 2 and Yoshihisa Maruyama 3 ABSTRACT : 1 Professor, Department of Urban Environment Systems, Chiba University,

More information

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI Introduction and Objectives The present study is a correlation

More information

Building Damage Mapping of the 2006 Central Java, Indonesia Earthquake Using High-Resolution Satellite Images

Building Damage Mapping of the 2006 Central Java, Indonesia Earthquake Using High-Resolution Satellite Images 4th International Workshop on Remote Sensing for Post-Disaster Response, 25-26 Sep. 2006, Cambridge, UK Building Damage Mapping of the 2006 Central Java, Indonesia Earthquake Using High-Resolution Satellite

More information

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching.

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching. Remote Sensing Objectives This unit will briefly explain display of remote sensing image, geometric correction, spatial enhancement, spectral enhancement and classification of remote sensing image. At

More information

Multi-level detection of damaged buildings from high-resolution optical satellite images

Multi-level detection of damaged buildings from high-resolution optical satellite images Multi-level detection of damaged buildings from high-resolution optical satellite images T. Thuy Vu a, Masashi Matsuoka b, Fumio Yamazaki a a Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522,

More information

Remote Sensing Technology for Earthquake Damage Detection

Remote Sensing Technology for Earthquake Damage Detection Workshop on Application of Remote Sensing to Disaster Response September 12, 2003, Irvine, CA, USA Remote Sensing Technology for Earthquake Damage Detection Fumio Yamazaki 1,2, Ken-ichi Kouchi 1, Masayuki

More information

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD Şahin, H. a*, Oruç, M. a, Büyüksalih, G. a a Zonguldak Karaelmas University, Zonguldak, Turkey - (sahin@karaelmas.edu.tr,

More information

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns)

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns) Spectral Signatures % REFLECTANCE VISIBLE NEAR INFRARED Vegetation Soil Water.5. WAVELENGTH (microns). Spectral Reflectance of Urban Materials 5 Parking Lot 5 (5=5%) Reflectance 5 5 5 5 5 Wavelength (nm)

More information

Introduction. Introduction. Introduction. Introduction. Introduction

Introduction. Introduction. Introduction. Introduction. Introduction Identifying habitat change and conservation threats with satellite imagery Extinction crisis Volker Radeloff Department of Forest Ecology and Management Extinction crisis Extinction crisis Conservationists

More information

* Tokai University Research and Information Center

* Tokai University Research and Information Center Effects of tial Resolution to Accuracies for t HRV and Classification ta Haruhisa SH Kiyonari i KASA+, uji, and Toshibumi * Tokai University Research and nformation Center 2-28-4 Tomigaya, Shi, T 151,

More information

Using Freely Available. Remote Sensing to Create a More Powerful GIS

Using Freely Available. Remote Sensing to Create a More Powerful GIS Using Freely Available Government Data and Remote Sensing to Create a More Powerful GIS All rights reserved. ENVI, E3De, IAS, and IDL are trademarks of Exelis, Inc. All other marks are the property of

More information

Remote Sensing for Rangeland Applications

Remote Sensing for Rangeland Applications Remote Sensing for Rangeland Applications Jay Angerer Ecological Training June 16, 2012 Remote Sensing The term "remote sensing," first used in the United States in the 1950s by Ms. Evelyn Pruitt of the

More information

USE OF OPTICAL SATELLITE IMAGES FOR THE RECOGNITION OF AREAS DAMAGED BY EARTHQUAKES ABSTRACT

USE OF OPTICAL SATELLITE IMAGES FOR THE RECOGNITION OF AREAS DAMAGED BY EARTHQUAKES ABSTRACT USE OF OPTICAL SATELLITE IMAGES FOR THE RECOGNITION OF AREAS DAMAGED BY EARTHQUAKES Miguel Estrada 1, Masashi Matsuoka 2, Fumio Yamazaki 3 ABSTRACT After an earthquake occurs, it is vital to identify hard-hit

More information

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010 APCAS/10/21 April 2010 Agenda Item 8 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION Siem Reap, Cambodia, 26-30 April 2010 The Use of Remote Sensing for Area Estimation by Robert

More information

Use of digital aerial camera images to detect damage to an expressway following an earthquake

Use of digital aerial camera images to detect damage to an expressway following an earthquake Use of digital aerial camera images to detect damage to an expressway following an earthquake Yoshihisa Maruyama & Fumio Yamazaki Department of Urban Environment Systems, Chiba University, Chiba, Japan.

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego 1 Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana Geob 373 Remote Sensing Dr Andreas Varhola, Kathry De Rego Zhu an Lim (14292149) L2B 17 Apr 2016 2 Abstract Montana

More information

Texture Analysis for Correcting and Detecting Classification Structures in Urban Land Uses i

Texture Analysis for Correcting and Detecting Classification Structures in Urban Land Uses i Texture Analysis for Correcting and Detecting Classification Structures in Urban Land Uses i Metropolitan area case study Spain Bahaaeddin IZ Alhaddadª, Malcolm C. Burnsª and Josep Roca Claderaª ª Centre

More information

Image interpretation I and II

Image interpretation I and II Image interpretation I and II Looking at satellite image, identifying different objects, according to scale and associated information and to communicate this information to others is what we call as IMAGE

More information

Introduction to Remote Sensing Part 1

Introduction to Remote Sensing Part 1 Introduction to Remote Sensing Part 1 A Primer on Electromagnetic Radiation Digital, Multi-Spectral Imagery The 4 Resolutions Displaying Images Corrections and Enhancements Passive vs. Active Sensors Radar

More information

White Paper. Medium Resolution Images and Clutter From Landsat 7 Sources. Pierre Missud

White Paper. Medium Resolution Images and Clutter From Landsat 7 Sources. Pierre Missud White Paper Medium Resolution Images and Clutter From Landsat 7 Sources Pierre Missud Medium Resolution Images and Clutter From Landsat7 Sources Page 2 of 5 Introduction Space technologies have long been

More information

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry Satellite Imagery and Remote Sensing DeeDee Whitaker SW Guilford High EES & Chemistry whitakd@gcsnc.com Outline What is remote sensing? How does remote sensing work? What role does the electromagnetic

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Remote sensing in archaeology from optical to lidar Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Introduction Optical remote sensing Systems Search for

More information

Lesson 9: Multitemporal Analysis

Lesson 9: Multitemporal Analysis Lesson 9: Multitemporal Analysis Lesson Description Multitemporal change analyses require the identification of features and measurement of their change through time. In this lesson, we will examine vegetation

More information

Statistical Analysis of SPOT HRV/PA Data

Statistical Analysis of SPOT HRV/PA Data Statistical Analysis of SPOT HRV/PA Data Masatoshi MORl and Keinosuke GOTOR t Department of Management Engineering, Kinki University, Iizuka 82, Japan t Department of Civil Engineering, Nagasaki University,

More information

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur.

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur. Basics of Remote Sensing Some literature references Franklin, SE 2001 Remote Sensing for Sustainable Forest Management Lewis Publishers 407p Lillesand, Kiefer 2000 Remote Sensing and Image Interpretation

More information

DISTINGUISHING URBAN BUILT-UP AND BARE SOIL FEATURES FROM LANDSAT 8 OLI IMAGERY USING DIFFERENT DEVELOPED BAND INDICES

DISTINGUISHING URBAN BUILT-UP AND BARE SOIL FEATURES FROM LANDSAT 8 OLI IMAGERY USING DIFFERENT DEVELOPED BAND INDICES DISTINGUISHING URBAN BUILT-UP AND BARE SOIL FEATURES FROM LANDSAT 8 OLI IMAGERY USING DIFFERENT DEVELOPED BAND INDICES Mark Daryl C. Janiola (1), Jigg L. Pelayo (1), John Louis J. Gacad (1) (1) Central

More information

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS REMOTE SENSING Topic 10 Fundamentals of Digital Multispectral Remote Sensing Chapter 5: Lillesand and Keifer Chapter 6: Avery and Berlin MULTISPECTRAL SCANNERS Record EMR in a number of discrete portions

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser Including Introduction to Remote Sensing Concepts Based on: igett Remote Sensing Concept Modules and GeoTech

More information

CHAPTER 7: Multispectral Remote Sensing

CHAPTER 7: Multispectral Remote Sensing CHAPTER 7: Multispectral Remote Sensing REFERENCE: Remote Sensing of the Environment John R. Jensen (2007) Second Edition Pearson Prentice Hall Overview of How Digital Remotely Sensed Data are Transformed

More information

Image interpretation and analysis

Image interpretation and analysis Image interpretation and analysis Grundlagen Fernerkundung, Geo 123.1, FS 2014 Lecture 7a Rogier de Jong Michael Schaepman Why are snow, foam, and clouds white? Why are snow, foam, and clouds white? Today

More information

GE 113 REMOTE SENSING

GE 113 REMOTE SENSING GE 113 REMOTE SENSING Topic 8. Image Classification and Accuracy Assessment Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering College of Engineering and Information

More information

Lecture 13: Remotely Sensed Geospatial Data

Lecture 13: Remotely Sensed Geospatial Data Lecture 13: Remotely Sensed Geospatial Data A. The Electromagnetic Spectrum: The electromagnetic spectrum (Figure 1) indicates the different forms of radiation (or simply stated light) emitted by nature.

More information

REMOTE SENSING INTERPRETATION

REMOTE SENSING INTERPRETATION REMOTE SENSING INTERPRETATION Jan Clevers Centre for Geo-Information - WU Remote Sensing --> RS Sensor at a distance EARTH OBSERVATION EM energy Earth RS is a tool; one of the sources of information! 1

More information

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS Fundamentals of Remote Sensing Pranjit Kr. Sarma, Ph.D. Assistant Professor Department of Geography Mangaldai College Email: prangis@gmail.com Ph. No +91 94357 04398 Remote Sensing Remote sensing is defined

More information

Automated speed detection of moving vehicles from remote sensing images

Automated speed detection of moving vehicles from remote sensing images Safety, Reliability and Risk of Structures, Infrastructures and Engineering Systems Furuta, Frangopol & Shinozuka (eds) 2010 Taylor & Francis Group, London, ISBN 978-0-415-47557-0 Automated speed detection

More information

NRS 415 Remote Sensing of Environment

NRS 415 Remote Sensing of Environment NRS 415 Remote Sensing of Environment 1 High Oblique Perspective (Side) Low Oblique Perspective (Relief) 2 Aerial Perspective (See What s Hidden) An example of high spatial resolution true color remote

More information

AN ASSESSMENT OF SHADOW ENHANCED URBAN REMOTE SENSING IMAGERY OF A COMPLEX CITY - HONG KONG

AN ASSESSMENT OF SHADOW ENHANCED URBAN REMOTE SENSING IMAGERY OF A COMPLEX CITY - HONG KONG AN ASSESSMENT OF SHADOW ENHANCED URBAN REMOTE SENSING IMAGERY OF A COMPLEX CITY - HONG KONG Cheuk-Yan Wan*, Bruce A. King, Zhilin Li The Department of Land Surveying and Geo-Informatics, The Hong Kong

More information

Present and future of marine production in Boka Kotorska

Present and future of marine production in Boka Kotorska Present and future of marine production in Boka Kotorska First results from satellite remote sensing for the breeding areas of filter feeders in the Bay of Kotor INTRODUCTION Environmental monitoring is

More information

Aral Sea profile Selection of area 24 February April May 1998

Aral Sea profile Selection of area 24 February April May 1998 250 km Aral Sea profile 1960 1960 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 2010? Selection of area Area of interest Kzyl-Orda Dried seabed 185 km Syrdarya river Aral Sea Salt

More information

GIS Data Collection. Remote Sensing

GIS Data Collection. Remote Sensing GIS Data Collection Remote Sensing Data Collection Remote sensing Introduction Concepts Spectral signatures Resolutions: spectral, spatial, temporal Digital image processing (classification) Other systems

More information

366 Glossary. Popular method for scale drawings in a computer similar to GIS but without the necessity for spatial referencing CEP

366 Glossary. Popular method for scale drawings in a computer similar to GIS but without the necessity for spatial referencing CEP 366 Glossary GISci Glossary ASCII ASTER American Standard Code for Information Interchange Advanced Spaceborne Thermal Emission and Reflection Radiometer Computer Aided Design Circular Error Probability

More information

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition Module 3 Introduction to GIS Lecture 8 GIS data acquisition GIS workflow Data acquisition (geospatial data input) GPS Remote sensing (satellites, UAV s) LiDAR Digitized maps Attribute Data Management Data

More information

Land Cover Type Changes Related to. Oil and Natural Gas Drill Sites in a. Selected Area of Williams County, ND

Land Cover Type Changes Related to. Oil and Natural Gas Drill Sites in a. Selected Area of Williams County, ND Land Cover Type Changes Related to Oil and Natural Gas Drill Sites in a Selected Area of Williams County, ND FR 3262/5262 Lab Section 2 By: Andrew Kernan Tyler Kaebisch Introduction: In recent years, there

More information

MONITORING OF FOREST DAMAGE CAUSED BY GYPSY MOTH IN HUNGARY USING ENVISAT MERIS DATA ( )

MONITORING OF FOREST DAMAGE CAUSED BY GYPSY MOTH IN HUNGARY USING ENVISAT MERIS DATA ( ) MONITORING OF FOREST DAMAGE CAUSED BY GYPSY MOTH IN HUNGARY USING ENVISAT DATA (2005-2006) G. Nádor, I. László, Zs. Suba, G. Csornai Remote Sensing Centre, Institute of Geodesy Cartography and Remote Sensing

More information

Application of Satellite Imagery for Rerouting Electric Power Transmission Lines

Application of Satellite Imagery for Rerouting Electric Power Transmission Lines Application of Satellite Imagery for Rerouting Electric Power Transmission Lines T. LUEMONGKOL 1, A. WANNAKOMOL 2 & T. KULWORAWANICHPONG 1 1 Power System Research Unit, School of Electrical Engineering

More information

Detecting Land Cover Changes by extracting features and using SVM supervised classification

Detecting Land Cover Changes by extracting features and using SVM supervised classification Detecting Land Cover Changes by extracting features and using SVM supervised classification ABSTRACT Mohammad Mahdi Mohebali MSc (RS & GIS) Shahid Beheshti Student mo.mohebali@gmail.com Ali Akbar Matkan,

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post Remote Sensing Odyssey 7 Jun 2012 Benjamin Post Definitions Applications Physics Image Processing Classifiers Ancillary Data Data Sources Related Concepts Outline Big Picture Definitions Remote Sensing

More information

Remote Sensing Platforms

Remote Sensing Platforms Types of Platforms Lighter-than-air Remote Sensing Platforms Free floating balloons Restricted by atmospheric conditions Used to acquire meteorological/atmospheric data Blimps/dirigibles Major role - news

More information

Interpreting land surface features. SWAC module 3

Interpreting land surface features. SWAC module 3 Interpreting land surface features SWAC module 3 Interpreting land surface features SWAC module 3 Different kinds of image Panchromatic image True-color image False-color image EMR : NASA Echo the bat

More information

AUTOMATIC DETECTION OF HEDGES AND ORCHARDS USING VERY HIGH SPATIAL RESOLUTION IMAGERY

AUTOMATIC DETECTION OF HEDGES AND ORCHARDS USING VERY HIGH SPATIAL RESOLUTION IMAGERY AUTOMATIC DETECTION OF HEDGES AND ORCHARDS USING VERY HIGH SPATIAL RESOLUTION IMAGERY Selim Aksoy Department of Computer Engineering, Bilkent University, Bilkent, 06800, Ankara, Turkey saksoy@cs.bilkent.edu.tr

More information

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec )

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Windows version With Teacher Notes Earth Observation

More information

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES H. Topan*, G. Büyüksalih*, K. Jacobsen ** * Karaelmas University Zonguldak, Turkey ** University of Hannover, Germany htopan@karaelmas.edu.tr,

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 1 Patrick Olomoshola, 2 Taiwo Samuel Afolayan 1,2 Surveying & Geoinformatic Department, Faculty of Environmental Sciences, Rufus Giwa Polytechnic, Owo. Nigeria Abstract: This paper

More information

Unsupervised Classification

Unsupervised Classification Unsupervised Classification Using SAGA Tutorial ID: IGET_RS_007 This tutorial has been developed by BVIEER as part of the IGET web portal intended to provide easy access to geospatial education. This tutorial

More information

RGB colours: Display onscreen = RGB

RGB colours:  Display onscreen = RGB RGB colours: http://www.colorspire.com/rgb-color-wheel/ Display onscreen = RGB DIGITAL DATA and DISPLAY Myth: Most satellite images are not photos Photographs are also 'images', but digital images are

More information

Summary. Introduction. Remote Sensing Basics. Selecting a Remote Sensing Product

Summary. Introduction. Remote Sensing Basics. Selecting a Remote Sensing Product K. Dalsted, J.F. Paris, D.E. Clay, S.A. Clay, C.L. Reese, and J. Chang SSMG-40 Selecting the Appropriate Satellite Remote Sensing Product for Precision Farming Summary Given the large number of satellite

More information

Due Date: September 22

Due Date: September 22 Geography 309 Lab 1 Page 1 LAB 1: INTRODUCTION TO REMOTE SENSING Due Date: September 22 Objectives To familiarize yourself with: o remote sensing resources on the Internet o some remote sensing sensors

More information

EXAMPLES OF OBJECT-ORIENTED CLASSIFICATION PERFORMED ON HIGH-RESOLUTION SATELLITE IMAGES

EXAMPLES OF OBJECT-ORIENTED CLASSIFICATION PERFORMED ON HIGH-RESOLUTION SATELLITE IMAGES EXAMPLES OF OBJECT-ORIENTED CLASSIFICATION... 349 Stanisław Lewiński, Karol Zaremski EXAMPLES OF OBJECT-ORIENTED CLASSIFICATION PERFORMED ON HIGH-RESOLUTION SATELLITE IMAGES Abstract: Information about

More information

Remote Sensing Platforms

Remote Sensing Platforms Remote Sensing Platforms Remote Sensing Platforms - Introduction Allow observer and/or sensor to be above the target/phenomena of interest Two primary categories Aircraft Spacecraft Each type offers different

More information

Spatial Analyst is an extension in ArcGIS specially designed for working with raster data.

Spatial Analyst is an extension in ArcGIS specially designed for working with raster data. Spatial Analyst is an extension in ArcGIS specially designed for working with raster data. 1 Do you remember the difference between vector and raster data in GIS? 2 In Lesson 2 you learned about the difference

More information

Satellite Remote Sensing: Earth System Observations

Satellite Remote Sensing: Earth System Observations Satellite Remote Sensing: Earth System Observations Land surface Water Atmosphere Climate Ecosystems 1 EOS (Earth Observing System) Develop an understanding of the total Earth system, and the effects of

More information

Module 11 Digital image processing

Module 11 Digital image processing Introduction Geo-Information Science Practical Manual Module 11 Digital image processing 11. INTRODUCTION 11-1 START THE PROGRAM ERDAS IMAGINE 11-2 PART 1: DISPLAYING AN IMAGE DATA FILE 11-3 Display of

More information

Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat

Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat Using SAGA GIS and Quantum GIS Tutorial ID: IGET_CT_003 This tutorial has been developed by BVIEER as

More information

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications )

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Why is this important What are the major approaches Examples of digital image enhancement Follow up exercises

More information

Introduction of Satellite Remote Sensing

Introduction of Satellite Remote Sensing Introduction of Satellite Remote Sensing Spatial Resolution (Pixel size) Spectral Resolution (Bands) Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands)

More information

Image interpretation. Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary.

Image interpretation. Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary. Image interpretation Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary. 50 1 N 110 7 W Milestones in the History of Remote Sensing 19 th century

More information

Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec )

Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec ) Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Windows version With Teacher Notes

More information

Photogrammetry. Lecture 4 September 7, 2005

Photogrammetry. Lecture 4 September 7, 2005 Photogrammetry Lecture 4 September 7, 2005 What is Photogrammetry Photogrammetry is the art and science of making accurate measurements by means of aerial photography: Analog photogrammetry (using films:

More information

The Role of Urban Development Patterns in Mitigating the Effects of Tsunami Run-up: Final Report

The Role of Urban Development Patterns in Mitigating the Effects of Tsunami Run-up: Final Report J-RAPID Final Symposium Sendai, Japan The Role of Urban Development Patterns in Mitigating the Effects of Tsunami Run-up: Final Report March 6, 2013 Fumio Yamazaki, Chiba University, Japan and Ronald T.

More information

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs Basic Digital Image Processing A Basic Introduction to Digital Image Processing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland,

More information

Image transformations

Image transformations Image transformations Digital Numbers may be composed of three elements: Atmospheric interference (e.g. haze) ATCOR Illumination (angle of reflection) - transforms Albedo (surface cover) Image transformations

More information

PROCEEDINGS - AAG MIDDLE STATES DIVISION - VOL. 21, 1988

PROCEEDINGS - AAG MIDDLE STATES DIVISION - VOL. 21, 1988 PROCEEDINGS - AAG MIDDLE STATES DIVISION - VOL. 21, 1988 SPOTTING ONEONTA: A COMPARISON OF SPOT 1 AND landsat 1 IN DETECTING LAND COVER PATTERNS IN A SMALL URBAN AREA Paul R. Baumann Department of Geography

More information

USING MULTISPECTRAL SATELLITE IMAGES FOR UP-DATING VECTOR DATA IN A GEODATABASE

USING MULTISPECTRAL SATELLITE IMAGES FOR UP-DATING VECTOR DATA IN A GEODATABASE JOURNAL OF APPLIED ENGINEERING SCIENCES VOL. 1(14), issue 4_2011 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 USING MULTISPECTRAL SATELLITE IMAGES FOR VAIS Manuel Bucharest University, e-mail:

More information

to Geospatial Technologies

to Geospatial Technologies What s in a Pixel? A Primer for Remote Sensing What s in a Pixel Development UNH Cooperative Extension Geospatial Technologies Training Center Shane Bradt UConn Cooperative Extension Geospatial Technology

More information

Advanced Techniques in Urban Remote Sensing

Advanced Techniques in Urban Remote Sensing Advanced Techniques in Urban Remote Sensing Manfred Ehlers Institute for Geoinformatics and Remote Sensing (IGF) University of Osnabrueck, Germany mehlers@igf.uni-osnabrueck.de Contents Urban Remote Sensing:

More information

Visualizing a Pixel. Simulate a Sensor s View from Space. In this activity, you will:

Visualizing a Pixel. Simulate a Sensor s View from Space. In this activity, you will: Simulate a Sensor s View from Space In this activity, you will: Measure and mark pixel boundaries Learn about spatial resolution, pixels, and satellite imagery Classify land cover types Gain exposure to

More information

Black Dot shows actual Point location

Black Dot shows actual Point location 207 Plate 1 Use of scanned archive aerial photographs, digital photogrammetry and GIS to plot river channel erosion along the Afon Trannon, Wales (part of the study by Mount et al 2000, 2003). Plate 2

More information

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning Lecture 6: Multispectral Earth Resource Satellites The University at Albany Fall 2018 Geography and Planning Outline SPOT program and other moderate resolution systems High resolution satellite systems

More information

Automated GIS data collection and update

Automated GIS data collection and update Walter 267 Automated GIS data collection and update VOLKER WALTER, S tuttgart ABSTRACT This paper examines data from different sensors regarding their potential for an automatic change detection approach.

More information

APPLICATION OF HIGH-RESOLUTION SATELLITE IMAGERRY FOR DETECTION OF DISASTER DAMAGES AND DISASTER MONITORING -THROUGH THE PRODUCE OF INTERPRETATION CHARACTERSTICS CARDS OF SATELLITE IMAGERIES FOR DISASTER

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

Building Damage Mapping of the 2003 Bam, Iran, Earthquake Using Envisat/ASAR Intensity Imagery

Building Damage Mapping of the 2003 Bam, Iran, Earthquake Using Envisat/ASAR Intensity Imagery Building Damage Mapping of the 2003 Bam, Iran, Earthquake Using Envisat/ASAR Intensity Imagery Masashi Matsuoka, a M.EERI, and Fumio Yamazaki, b M.EERI A strong earthquake occurred beneath the city of

More information

2017 REMOTE SENSING EVENT TRAINING STRATEGIES 2016 SCIENCE OLYMPIAD COACHING ACADEMY CENTERVILLE, OH

2017 REMOTE SENSING EVENT TRAINING STRATEGIES 2016 SCIENCE OLYMPIAD COACHING ACADEMY CENTERVILLE, OH 2017 REMOTE SENSING EVENT TRAINING STRATEGIES 2016 SCIENCE OLYMPIAD COACHING ACADEMY CENTERVILLE, OH This presentation was prepared using draft rules. There may be some changes in the final copy of the

More information

In late April of 1986 a nuclear accident damaged a reactor at the Chernobyl nuclear

In late April of 1986 a nuclear accident damaged a reactor at the Chernobyl nuclear CHERNOBYL NUCLEAR POWER PLANT ACCIDENT Long Term Effects on Land Use Patterns Project Introduction: In late April of 1986 a nuclear accident damaged a reactor at the Chernobyl nuclear power plant in Ukraine.

More information

Enhancement of Multispectral Images and Vegetation Indices

Enhancement of Multispectral Images and Vegetation Indices Enhancement of Multispectral Images and Vegetation Indices ERDAS Imagine 2016 Description: We will use ERDAS Imagine with multispectral images to learn how an image can be enhanced for better interpretation.

More information

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0 CanImage (Landsat 7 Orthoimages at the 1:50 000 Scale) Standards and Specifications Edition 1.0 Centre for Topographic Information Customer Support Group 2144 King Street West, Suite 010 Sherbrooke, QC

More information

Remote Sensing. Measuring an object from a distance. For GIS, that means using photographic or satellite images to gather spatial data

Remote Sensing. Measuring an object from a distance. For GIS, that means using photographic or satellite images to gather spatial data Remote Sensing Measuring an object from a distance For GIS, that means using photographic or satellite images to gather spatial data Remote Sensing measures electromagnetic energy reflected or emitted

More information

The techniques with ERDAS IMAGINE include:

The techniques with ERDAS IMAGINE include: The techniques with ERDAS IMAGINE include: 1. Data correction - radiometric and geometric correction 2. Radiometric enhancement - enhancing images based on the values of individual pixels 3. Spatial enhancement

More information

Application of Satellite Image Processing to Earth Resistivity Map

Application of Satellite Image Processing to Earth Resistivity Map Application of Satellite Image Processing to Earth Resistivity Map KWANCHAI NORSANGSRI and THANATCHAI KULWORAWANICHPONG Power System Research Unit School of Electrical Engineering Suranaree University

More information

TRACS A-B-C Acquisition and Processing and LandSat TM Processing

TRACS A-B-C Acquisition and Processing and LandSat TM Processing TRACS A-B-C Acquisition and Processing and LandSat TM Processing Mark Hess, Ocean Imaging Corp. Kevin Hoskins, Marine Spill Response Corp. TRACS: Level A AIRCRAFT Ocean Imaging Corporation Multispectral/TIR

More information

Image Fusion. Pan Sharpening. Pan Sharpening. Pan Sharpening: ENVI. Multi-spectral and PAN. Magsud Mehdiyev Geoinfomatics Center, AIT

Image Fusion. Pan Sharpening. Pan Sharpening. Pan Sharpening: ENVI. Multi-spectral and PAN. Magsud Mehdiyev Geoinfomatics Center, AIT 1 Image Fusion Sensor Merging Magsud Mehdiyev Geoinfomatics Center, AIT Image Fusion is a combination of two or more different images to form a new image by using certain algorithms. ( Pohl et al 1998)

More information

An NDVI image provides critical crop information that is not visible in an RGB or NIR image of the same scene. For example, plants may appear green

An NDVI image provides critical crop information that is not visible in an RGB or NIR image of the same scene. For example, plants may appear green Normalized Difference Vegetation Index (NDVI) Spectral Band calculation that uses the visible (RGB) and near-infrared (NIR) bands of the electromagnetic spectrum NDVI= + An NDVI image provides critical

More information

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, Copyright by the authors - Licensee IPA- Under Creative Commons license 3.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, Copyright by the authors - Licensee IPA- Under Creative Commons license 3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, 2016 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4402 Normalised difference water

More information

FUNDAMENTALS OF DIGITAL IMAGES

FUNDAMENTALS OF DIGITAL IMAGES FUNDAMENTALS OF DIGITAL IMAGES Lecture Image Data Structures Common Data Structures to Store Multiband Data BIL band interleaved by line BSQ band sequential BIP band interleaved by pixel Example Band Band

More information

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes A condensed overview George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) The art and science

More information