Files Used in This Tutorial. Background. Calibrating Images Tutorial

Size: px
Start display at page:

Download "Files Used in This Tutorial. Background. Calibrating Images Tutorial"

Transcription

1 In this tutorial, you will calibrate a QuickBird Level-1 image to spectral radiance and reflectance while learning about the various metadata fields that ENVI uses to perform calibration. This tutorial uses ENVI 5.3. You can use versions 5.1 or later, but the steps may vary slightly. Files Used in This Tutorial The tutorial data files are available in a single ZIP file from our website. Extract this file to a local directory. Go to the folder named rigorous_ortho\ _01_p008_mul. Files _01_P008_ MUL\05JUL*.TIL Description QuickBird Level-1 multispectral imagery for Phoenix, AZ from 11 July 2005 QuickBird files are courtesy of DigitalGlobe. Background Calibrating imagery is a common pre-processing step for remote sensing analysts who need to extract data and create scientific products from images. Calibration attempts to compensate for radiometric errors from sensor defects, variations in scan angle, and system noise to produce an image that represents true spectral radiance at the sensor. ENVI's Radiometric Calibration tool provides options to calibrate imagery to radiance, reflectance, or brightness temperatures. See the "Radiometric Calibration" topic in ENVI Help for more information on how each option is computed. The available calibration options depend on what metadata is included with the imagery. Most vendors distribute a metadata file or ephemeris data along with the image data. Note: It is important to select the correct metadata file (using the File > Open menu option) when opening data from various satellite sensors so that ENVI reads the required calibration parameters. Refer to the following table: Page 1 of 12

2 Sensor Radiance Calibration Options Reflectance Brightness Temperature Metadata File to Open ALOS AVNIR- HDR*.txt 2 and PRISM Level-1B2 data AlSat-2A.dim DMC DIMAP.dim EO-1 ALI Use the File > Open As > Optical Sensors > EO-1 > HDF4 menu option and select a *_HDF.L1G file. A *_ MTL.L1G file must be in the same directory. EO-1 Hyperion Level-1R Use the File > Open As > Optical Sensors > EO-1 > HDF menu option and select an.l1r file. Calibration metadata is hard-coded into the application and not read from any metadata files. Gaofen-1 Use the File > Open As > Optical Sensors > CRESDA > GF-1 menu option and select an.xml file. GeoEye-1.til IKONOS metadata.txt KOMPSAT-3 *_aux.xml Landsat TM, *_MTL.txt, *WO.txt, *.met ETM+, and Landsat-8 OLI/TIRS data OrbView-3.tif Page 2 of 12

3 Sensor Radiance Calibration Options Reflectance Brightness Temperature Pleiades DIM*.xml Primary or Ortho (single or mosaic) QuickBird.til RapidEye Level-1B and -3A (TIFF, NITF) ResourceSat- 2 *_metadata.xml.h5 Sentinel-2 *.xml Sentinel-3 *.xml SPOT DIMAP DIM*.xml SSOT DIMAP METADATA.DIM TripleSat *.xml UrtheCast *.xml Theia WorldView.til Ziyuan-1-02C Metadata File to Open A NITF/NSIF license is required to open NITF files. Use the File > Open As > Optical Sensors > CRESDA > ZY-1-02C menu option. Select from the following files: *.orientation.xml opens the MUX-PAN data product with metadata, *-MUX.xml opens multispectral data with metadata, *-PAN.xml opens panchromatic data with metadata, and *.xml opens the HRC data product (images with two parallel cameras) with metadata. Page 3 of 12

4 Sensor Radiance Calibration Options Reflectance Brightness Temperature Metadata File to Open Ziyuan-3A Use the File > Open As > Optical Sensors > CRESDA > ZY-3 menu option. Select from the following files: *.orientation.xml opens the TLC data product (images with nadir, forward, backward view) with metadata, *.xml opens multispectral data with metadata, *-NAD.xml opens TLC nadir-view data with metadata. To open QuickBird or WorldView data, select the image file. ENVI will read the necessary metadata from the accompanying *.IMD file. Open a QuickBird Image and View Its Metadata 1. Start ENVI. 2. From the menu bar, select File > Open. A file selection dialog appears. 3. Navigate to the folder where you saved the tutorial data and select the file 05JUL M1BS _01_P008.til. Click Open. 4. In the Layer Manager, right-click on the filename and select View Metadata. 5. Click the Spectral category on the left side of the Metadata Viewer. This shows several metadata fields related to calibration. ENVI needs gain and offset values in units of W/ (m 2 * µm * sr) to calibrate imagery to radiance. You can see these values under the Gains and Offsets columns. The gains and offsets are already in the correct units in this image. If they are not in the correct units, you can use the Scale Factor field (discussed in the calibration steps below) to scale the calibrated image to the correct units. Page 4 of 12

5 6. Select the Image Parameters category. You can see the values for Sun Azimuth and Sun Elevation that were derived from the QuickBird metadata. 7. Select the Time category. The Acquisition Time for this scene is listed in Coordinated Universal Time (UTC). The Sun Azimuth, Sun Elevation, and Acquisition Time are used in combination with the various fields under the Spectral category when calibrating the image to reflectance. 8. Close the Metadata Viewer. Calibrate the Image to Radiance 1. From the Toolbox, select Radiometric Correction > Radiometric Calibration. The File Selection dialog appears, with the QuickBird file already selected. 2. Click OK. The Radiometric Calibration dialog appears. 3. Leave the default options as-is. You will create a floating-point radiance image (BSQ interleave) in units of W/(m 2 * µm * sr). Keeping the Scale Factor at 1.00 ensures the units will remain the same as the original gain and offset values. 4. The Appy FLAASH Settings button is for users who will subsequently perform atmospheric correction using the FLAASH tool. You can skip this step for the tutorial, but here is some background information if you plan to use FLAASH in the future: The use of FLAASH requires a separate Atmospheric Correction Module: QUAC and FLAASH license. FLAASH requires input imagery to meet the following criteria: The image must be calibrated to radiance in units of µw/(cm 2 * nm* sr). The input image can be floating-point, long integer (4-byte signed), or integer (2- byte signed or unsigned). The image can be in band-interleaved-by-line (BIL) or band-interleaved-by-pixel (BIP) format. Page 5 of 12

6 Clicking the FLAASH Settings button will create a radiance image in BIL, floating-point format. It will apply a scale factor of 0.1 to the radiance image to get it in units of µw/ (cm 2 * nm* sr). Clicking this button prevents you from having to separately convert the interleave of the radiance image and figuring out the appropriate scale factor for use with FLAASH. When you start FLAASH, select the radiance image that you just created with the Radiometric Calibration tool. When the Radiance Scale Factors dialog appears, leave the default value of 1 for the Single Scale Factor field. 5. Click the Browse button next to Output Filename, and save the radiance image as qb_radiance.dat in a directory of your choice. 6. Ensure that the Display Result check box is selected. 7. Click OK. When processing is complete, the calibrated radiance image is displayed. 8. To visually compare the original and calibrated images, toggle the qb_radiance.dat layer off and on in the Layer Manager. 9. With both layers selected in the Layer Manager, click the Cursor Value icon in the main toolbar. 10. The On demand updates button in the Cursor Value dialog is enabled by default. Click it to turn off the red probe. 11. Move the cursor around the radiance image, and look for the "Data" values that are reported for the radiance (floating-point) and original (integer) image. The following figure shows an example where the calibrated image is displayed in true color: Page 6 of 12

7 Band 3 is assigned to the red channel Band 2 is assigned to the green channel Band 1 is assigned to the blue channel For the current pixel location in this screen capture, the calibrated image has a radiance value of W/(m 2 * µm * sr) in the red band, while the original image has a raw DN value of 546 in the red band. 12. Close the Cursor Value dialog. Another way to quickly verify the radiance values is to display a spectral profile: 1. Uncheck the original QuickBird image (05JUL*) in the Layer Manager so that only the calibrated image is displayed. 2. Click the Spectral Profile button in the main toolbar. 3. Click anywhere inside the image to display a plot of radiance values for the selected pixel location. You can use a spectral profile to help identify features of interest: The following example shows a pixel that represents soil. The radiance values peak in the red wavelength region (~ 660 nm). Page 7 of 12

8 The next example shows a pixel that represents water. The radiance values peak in the blue wavelength region (~ 485 nm). Page 8 of 12

9 Page 9 of 12

10 The next example shows a pixel that represents vegetation. The radiance values peak in the near-infrared wavelength region (~ 900 nm). 5. When you are finished, close the Spectral Profile dialog. 6. Right-click on each layer name in the Layer Manager, and select Remove. Calibrate the Image to Reflectance Next, you will calibrate the QuickBird image to top-of-atmosphere reflectance. This image has all the metadata needed to calibrate to reflectance: Gains Offsets Page 10 of 12

11 Solar irradiance Solar elevation Acquisition time Follow these steps: 1. From the Toolbox, select Radiometric Correction > Radiometric Calibration. 2. In the File Selection dialog, select the original QuickBird image (05JUL*), then click OK. 3. In the Radiometric Calibration dialog, change the Calibration Type to Reflectance. 4. Leave the other options at their default values. 5. Click the Browse button next to Output Filename, and save the reflectance image as qb_reflectance.dat in a directory of your choice. 6. Ensure that the Display Result check box is selected. 7. Click OK. When processing is complete, the reflectance image is displayed. 8. Click the Cursor Value icon in the main toolbar. 9. Look at the "Data" values for each band in the Cursor Value dialog and verify that the values are less than 1.0. Reflectance values theoretically range from 0 to 1, but since no surface is a true reflector of solar radiation, the brightest features typically have a maximum value of 0.7 to Close the Cursor Value dialog. 11. Click the Spectral Profile button in the main toolbar. 12. Click anywhere inside the image to display a plot of reflectance values for the current pixel location. The following figure shows an example of a pixel that represents water. Reflectance values range from 0.04 to 0.09 across all four bands, with the lowest value (0.04) in the near-infrared wavelength region: Page 11 of 12

12 13. When you are finished, exit ENVI. For more information on the topics covered in this tutorial, see the "Radiometric Calibration" topic in ENVI Help, or click the help button in the Radiometric Calibration tool. Copyright Notice: ENVI is a registered trademark of Harris Corporation. QUAC and FLAASH are registered trademarks of Spectral Sciences, Inc. Page 12 of 12

Atmospheric Correction (including ATCOR)

Atmospheric Correction (including ATCOR) Technical Specifications Atmospheric Correction (including ATCOR) The data obtained by optical satellite sensors with high spatial resolution has become an invaluable tool for many groups interested in

More information

BV NNET User manual. V0.2 (Draft) Rémi Lecerf, Marie Weiss

BV NNET User manual. V0.2 (Draft) Rémi Lecerf, Marie Weiss BV NNET User manual V0.2 (Draft) Rémi Lecerf, Marie Weiss 1. Introduction... 2 2. Installation... 2 3. Prerequisites... 2 3.1. Image file format... 2 3.2. Retrieving atmospheric data... 3 3.2.1. Using

More information

Impact toolbox. ZIP/DN to TOA reflectance. Principles and tutorial

Impact toolbox. ZIP/DN to TOA reflectance. Principles and tutorial Impact toolbox ZIP/DN to TOA reflectance Principles and tutorial ZIP/DN to TOA reflectance principles RapidEye, Landsat and Sentinel 2 are distributed by their owner in a specific format. The file itself

More information

Basic Hyperspectral Analysis Tutorial

Basic Hyperspectral Analysis Tutorial Basic Hyperspectral Analysis Tutorial This tutorial introduces you to visualization and interactive analysis tools for working with hyperspectral data. In this tutorial, you will: Analyze spectral profiles

More information

ATCOR Workflow for IMAGINE 2018

ATCOR Workflow for IMAGINE 2018 ATCOR Workflow for IMAGINE 2018 Version 1.1 User Manual Mai 2018 ATCOR Workflow for IMAGINE Page 2/73 The ATCOR trademark is owned by DLR German Aerospace Center D-82234 Wessling, Germany URL: www.dlr.de

More information

Lab 1 Introduction to ENVI

Lab 1 Introduction to ENVI Remote sensing for agricultural applications: principles and methods (2013-2014) Instructor: Prof. Tao Cheng (tcheng@njau.edu.cn) Nanjing Agricultural University Lab 1 Introduction to ENVI April 1 st,

More information

ATCOR Workflow for IMAGINE 2016

ATCOR Workflow for IMAGINE 2016 ATCOR Workflow for IMAGINE 2016 Version 1.0 Step-by-Step Guide January 2017 ATCOR Workflow for IMAGINE Page 2/24 The ATCOR trademark is owned by DLR German Aerospace Center D-82234 Wessling, Germany URL:

More information

Satellite Ortho Suite

Satellite Ortho Suite Technical Specifications Satellite Ortho Suite The Satellite Ortho Suite includes rigorous and rational function models developed to compensate for distortions and produce orthorectified satellite images

More information

Geomatica OrthoEngine v10.2 Tutorial DEM Extraction of WorldView-1 Data

Geomatica OrthoEngine v10.2 Tutorial DEM Extraction of WorldView-1 Data Geomatica OrthoEngine v10.2 Tutorial DEM Extraction of WorldView-1 Data WorldView 1, launched on September 18, 2007, offers a panchromatic imagery at a very high resolution of 50 cm at nadir. The key benefits

More information

Evaluation of FLAASH atmospheric correction. Note. Note no SAMBA/10/12. Authors. Øystein Rudjord and Øivind Due Trier

Evaluation of FLAASH atmospheric correction. Note. Note no SAMBA/10/12. Authors. Øystein Rudjord and Øivind Due Trier Evaluation of FLAASH atmospheric correction Note Note no Authors SAMBA/10/12 Øystein Rudjord and Øivind Due Trier Date 16 February 2012 Norsk Regnesentral Norsk Regnesentral (Norwegian Computing Center,

More information

PLANET IMAGERY PRODUCT SPECIFICATIONS PLANET.COM

PLANET IMAGERY PRODUCT SPECIFICATIONS PLANET.COM PLANET IMAGERY PRODUCT SPECIFICATIONS SUPPORT@PLANET.COM PLANET.COM LAST UPDATED JANUARY 2018 TABLE OF CONTENTS LIST OF FIGURES 3 LIST OF TABLES 4 GLOSSARY 5 1. OVERVIEW OF DOCUMENT 7 1.1 Company Overview

More information

Atmospheric / Topographic Correction for Satellite Imagery. (ATCOR-2/3 Tutorial, Version 1.2, April 2016)

Atmospheric / Topographic Correction for Satellite Imagery. (ATCOR-2/3 Tutorial, Version 1.2, April 2016) Atmospheric / Topographic Correction for Satellite Imagery (ATCOR-2/3 Tutorial, Version 1.2, April 2016) R. Richter 1 and D. Schläpfer 2 1 DLR - German Aerospace Center, D - 82234 Wessling, Germany 2 ReSe

More information

Landsat 8 Pansharpen and Mosaic Geomatica 2015 Tutorial

Landsat 8 Pansharpen and Mosaic Geomatica 2015 Tutorial Landsat 8 Pansharpen and Mosaic Geomatica 2015 Tutorial On February 11, 2013, Landsat 8 was launched adding to the constellation of Earth imaging satellites. It is the seventh satellite to reach orbit

More information

Files Used in this Tutorial

Files Used in this Tutorial Burn Indices Tutorial This tutorial shows how to create various burn index images from Landsat 8 imagery, using the May 2014 San Diego County wildfires as a case study. You will learn how to perform the

More information

FUNDAMENTALS OF DIGITAL IMAGES

FUNDAMENTALS OF DIGITAL IMAGES FUNDAMENTALS OF DIGITAL IMAGES Lecture Image Data Structures Common Data Structures to Store Multiband Data BIL band interleaved by line BSQ band sequential BIP band interleaved by pixel Example Band Band

More information

Module 11 Digital image processing

Module 11 Digital image processing Introduction Geo-Information Science Practical Manual Module 11 Digital image processing 11. INTRODUCTION 11-1 START THE PROGRAM ERDAS IMAGINE 11-2 PART 1: DISPLAYING AN IMAGE DATA FILE 11-3 Display of

More information

Geomatica OrthoEngine v10.2 Tutorial DEM Extraction of GeoEye-1 Data

Geomatica OrthoEngine v10.2 Tutorial DEM Extraction of GeoEye-1 Data Geomatica OrthoEngine v10.2 Tutorial DEM Extraction of GeoEye-1 Data GeoEye 1, launched on September 06, 2008 is the highest resolution commercial earth imaging satellite available till date. GeoEye-1

More information

Ground Truth for Calibrating Optical Imagery to Reflectance

Ground Truth for Calibrating Optical Imagery to Reflectance Visual Information Solutions Ground Truth for Calibrating Optical Imagery to Reflectance The by: Thomas Harris Whitepaper Introduction: Atmospheric Effects on Optical Imagery Remote sensing of the Earth

More information

Enhancement of Multispectral Images and Vegetation Indices

Enhancement of Multispectral Images and Vegetation Indices Enhancement of Multispectral Images and Vegetation Indices ERDAS Imagine 2016 Description: We will use ERDAS Imagine with multispectral images to learn how an image can be enhanced for better interpretation.

More information

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing Mads Olander Rasmussen (mora@dhi-gras.com) 01. Introduction to Remote Sensing DHI What is remote sensing? the art, science, and technology

More information

CHARACTERISTICS OF VERY HIGH RESOLUTION OPTICAL SATELLITES FOR TOPOGRAPHIC MAPPING

CHARACTERISTICS OF VERY HIGH RESOLUTION OPTICAL SATELLITES FOR TOPOGRAPHIC MAPPING CHARACTERISTICS OF VERY HIGH RESOLUTION OPTICAL SATELLITES FOR TOPOGRAPHIC MAPPING K. Jacobsen Leibniz University Hannover, Institute of Photogrammetry and Geoinformation jacobsen@ipi.uni-hannover.de Commission

More information

RADIOMETRIC CALIBRATION

RADIOMETRIC CALIBRATION 1 RADIOMETRIC CALIBRATION Lecture 10 Digital Image Data 2 Digital data are matrices of digital numbers (DNs) There is one layer (or matrix) for each satellite band Each DN corresponds to one pixel 3 Digital

More information

Satellite Imagery Characteristics, Uses and Delivery to GIS Systems. Wayne Middleton April 2014

Satellite Imagery Characteristics, Uses and Delivery to GIS Systems. Wayne Middleton April 2014 Satellite Imagery Characteristics, Uses and Delivery to GIS Systems Wayne Middleton April 2014 About Geoimage Founded in Brisbane 1988 Leading Independent company Specialists in satellite imagery and geospatial

More information

v References Nexus RS Workshop (English Version) August 2018 page 1 of 44

v References Nexus RS Workshop (English Version) August 2018 page 1 of 44 v References NEXUS Remote Sensing Workshop August 6, 2018 Intro to Remote Sensing using MultiSpec By Larry Biehl Systems Manager, Purdue Terrestrial Observatory (biehl@purdue.edu) MultiSpec Introduction

More information

Lesson 3: Working with Landsat Data

Lesson 3: Working with Landsat Data Lesson 3: Working with Landsat Data Lesson Description The Landsat Program is the longest-running and most extensive collection of satellite imagery for Earth. These datasets are global in scale, continuously

More information

INTRODUCTION TO SNAP TOOLBOX

INTRODUCTION TO SNAP TOOLBOX INTRODUCTION TO SNAP TOOLBOX EXERCISE 1 (Exploring S2 data) Data: Sentinel-2A Level 1C: S2A_MSIL1C_20180303T170201_N0206_R069_T14QNG_20180303T221319.SAFE 1. Open file 1.1. File / Open Product 1.2. Browse

More information

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec )

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Macintosh version Earth Observation Day Tutorial

More information

ENVI 5.3 Release Notes

ENVI 5.3 Release Notes ENVI 5.3 Release Notes Revised 30 June 2015 Supported Platforms New Features Known Issues Fixed Issues Backward-Compatibility Notes Please visit the Help Articles section of the Exelis website (www.exelisvis.com)

More information

Using the Chip Database

Using the Chip Database Using the Chip Database TUTORIAL A chip database is a collection of image chips or subsetted images where each image has a GCP associated with it. A chip database can be useful when orthorectifying different

More information

Exercise 4-1 Image Exploration

Exercise 4-1 Image Exploration Exercise 4-1 Image Exploration With this exercise, we begin an extensive exploration of remotely sensed imagery and image processing techniques. Because remotely sensed imagery is a common source of data

More information

Radiometric Use of WorldView-3 Imagery. Technical Note. 1 WorldView-3 Instrument. 1.1 WorldView-3 Relative Radiance Response

Radiometric Use of WorldView-3 Imagery. Technical Note. 1 WorldView-3 Instrument. 1.1 WorldView-3 Relative Radiance Response Radiometric Use of WorldView-3 Imagery Technical Note Date: 2016-02-22 Prepared by: Michele Kuester This technical note discusses the radiometric use of WorldView-3 imagery. The first two sections briefly

More information

ENVI Classic Tutorial: Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) Classification 2

ENVI Classic Tutorial: Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) Classification 2 ENVI Classic Tutorial: Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) Classification Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) Classification 2 Files

More information

Topographic mapping from space K. Jacobsen*, G. Büyüksalih**

Topographic mapping from space K. Jacobsen*, G. Büyüksalih** Topographic mapping from space K. Jacobsen*, G. Büyüksalih** * Institute of Photogrammetry and Geoinformation, Leibniz University Hannover ** BIMTAS, Altunizade-Istanbul, Turkey KEYWORDS: WorldView-1,

More information

Supported Satellite Optical Sensors

Supported Satellite Optical Sensors Geomatica 2017 Sensor List This document contains detailed information about format support provided in Geomatica for satellite optical, radar and aerial sensors. Supported Satellite Optical Sensors Valid

More information

Geomatica OrthoEngine v10.2 Tutorial Orthorectifying ALOS PRISM Data Rigorous and RPC Modeling

Geomatica OrthoEngine v10.2 Tutorial Orthorectifying ALOS PRISM Data Rigorous and RPC Modeling Geomatica OrthoEngine v10.2 Tutorial Orthorectifying ALOS PRISM Data Rigorous and RPC Modeling ALOS stands for Advanced Land Observing Satellite and was developed by the Japan Aerospace Exploration Agency

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Popular Remote Sensing Sensors & their Selection Michiel Damen (September 2011) damen@itc.nl 1 Overview Low resolution

More information

Aral Sea profile Selection of area 24 February April May 1998

Aral Sea profile Selection of area 24 February April May 1998 250 km Aral Sea profile 1960 1960 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 2010? Selection of area Area of interest Kzyl-Orda Dried seabed 185 km Syrdarya river Aral Sea Salt

More information

Managing Imagery and Raster Data. Peter Becker

Managing Imagery and Raster Data. Peter Becker Managing Imagery and Raster Data Peter Becker ArcGIS is a Comprehensive Imagery Platform Empowering you to make informed decisions System of Engagement System of Insight Extract Information from Imagery

More information

EXERCISE 1 - REMOTE SENSING: SENSORS WITH DIFFERENT RESOLUTION

EXERCISE 1 - REMOTE SENSING: SENSORS WITH DIFFERENT RESOLUTION EXERCISE 1 - REMOTE SENSING: SENSORS WITH DIFFERENT RESOLUTION Program: ArcView 3.x 1. Copy the folder FYS_FA with its whole contents from: Kursdata: L:\FA\FYS_FA to C:\Tempdata 2. Open the folder and

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

Downloading and formatting remote sensing imagery using GLOVIS

Downloading and formatting remote sensing imagery using GLOVIS Downloading and formatting remote sensing imagery using GLOVIS Students will become familiarized with the characteristics of LandSat, Aerial Photos, and ASTER medium resolution imagery through the USGS

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE

PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE LAST UPDATED OCTOBER 2016 SALES@PLANET.COM PLANET.COM Table of Contents LIST OF FIGURES 3 LIST OF TABLES 3 GLOSSARY 5 1. OVERVIEW OF DOCUMENT

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

Benchtop System Quick Start

Benchtop System Quick Start Benchtop System Quick Start Release 5.2 Resonon Inc. Dec 11, 2018 CONTENTS 1 System Overview 1 2 Basic Data Acquisition 3 2.1 Data Modes................................................ 3 2.2 Start The

More information

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec )

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Windows version With Teacher Notes Earth Observation

More information

Downloading Imagery & LIDAR

Downloading Imagery & LIDAR Downloading Imagery & LIDAR 333 Earth Explorer The USGS is a great source for downloading many different GIS data products for the entire US and Canada and much of the world. Below are instructions for

More information

Introduction of Satellite Remote Sensing

Introduction of Satellite Remote Sensing Introduction of Satellite Remote Sensing Spatial Resolution (Pixel size) Spectral Resolution (Bands) Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands)

More information

ENVI Orthorectification Module

ENVI Orthorectification Module Visual Information Solutions ENVI Orthorectification Module Orthorectify Your Imagery Quickly and Easily. Rigorous Orthorectification. Simple Workflow. Trusted Method. The Need for Orthorectification Satellite

More information

White Paper. Medium Resolution Images and Clutter From Landsat 7 Sources. Pierre Missud

White Paper. Medium Resolution Images and Clutter From Landsat 7 Sources. Pierre Missud White Paper Medium Resolution Images and Clutter From Landsat 7 Sources Pierre Missud Medium Resolution Images and Clutter From Landsat7 Sources Page 2 of 5 Introduction Space technologies have long been

More information

Image Change Tutorial

Image Change Tutorial Image Change Tutorial In this tutorial, you will use the Image Change workflow to compare two images of an area over Indonesia that was impacted by the December 26, 2004 tsunami. The first image is a before

More information

Remote Sensing Instruction Laboratory

Remote Sensing Instruction Laboratory Laboratory Session 217513 Geographic Information System and Remote Sensing - 1 - Remote Sensing Instruction Laboratory Assist.Prof.Dr. Weerakaset Suanpaga Department of Civil Engineering, Faculty of Engineering

More information

Importing and processing gel images

Importing and processing gel images BioNumerics Tutorial: Importing and processing gel images 1 Aim Comprehensive tools for the processing of electrophoresis fingerprints, both from slab gels and capillary sequencers are incorporated into

More information

Lab 3: Image Enhancements I 65 pts Due > Canvas by 10pm

Lab 3: Image Enhancements I 65 pts Due > Canvas by 10pm Geo 448/548 Spring 2016 Lab 3: Image Enhancements I 65 pts Due > Canvas by 3/11 @ 10pm For this lab, you will learn different ways to calculate spectral vegetation indices (SVIs). These are one category

More information

Planet Labs Inc 2017 Page 2

Planet Labs Inc 2017 Page 2 SKYSAT IMAGERY PRODUCT SPECIFICATION: ORTHO SCENE LAST UPDATED JUNE 2017 SALES@PLANET.COM PLANET.COM Disclaimer This document is designed as a general guideline for customers interested in acquiring Planet

More information

White paper brief IdahoView Imagery Services: LISA 1 Technical Report no. 2 Setup and Use Tutorial

White paper brief IdahoView Imagery Services: LISA 1 Technical Report no. 2 Setup and Use Tutorial White paper brief IdahoView Imagery Services: LISA 1 Technical Report no. 2 Setup and Use Tutorial Keith T. Weber, GISP, GIS Director, Idaho State University, 921 S. 8th Ave., stop 8104, Pocatello, ID

More information

GeoEye-1 Radiance at Aperture and Planetary Reflectance

GeoEye-1 Radiance at Aperture and Planetary Reflectance GeoEye-1 Radiance at Aperture and Planetary Reflectance Nancy E. Podger, William B. Colwell, Martin H. Taylor 1 GeoEye-1 Radiance at Aperture and Planetary Reflectance Nancy E. Podger, William B. Colwell,

More information

Remote Sensing Platforms

Remote Sensing Platforms Types of Platforms Lighter-than-air Remote Sensing Platforms Free floating balloons Restricted by atmospheric conditions Used to acquire meteorological/atmospheric data Blimps/dirigibles Major role - news

More information

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning Lecture 6: Multispectral Earth Resource Satellites The University at Albany Fall 2018 Geography and Planning Outline SPOT program and other moderate resolution systems High resolution satellite systems

More information

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY Ahmed Elsharkawy 1,2, Mohamed Elhabiby 1,3 & Naser El-Sheimy 1,4 1 Dept. of Geomatics Engineering, University of Calgary

More information

Consumer digital CCD cameras

Consumer digital CCD cameras CAMERAS Consumer digital CCD cameras Leica RC-30 Aerial Cameras Zeiss RMK Zeiss RMK in aircraft Vexcel UltraCam Digital (note multiple apertures Lenses for Leica RC-30. Many elements needed to minimize

More information

Some Basic Concepts of Remote Sensing. Lecture 2 August 31, 2005

Some Basic Concepts of Remote Sensing. Lecture 2 August 31, 2005 Some Basic Concepts of Remote Sensing Lecture 2 August 31, 2005 What is remote sensing Remote Sensing: remote sensing is science of acquiring, processing, and interpreting images and related data that

More information

Riparian Buffer Mapper. User Manual

Riparian Buffer Mapper. User Manual () User Manual Copyright 2007 All Rights Reserved Table of Contents Introduction...- 3 - System Requirements...- 5 - Installation and Configuration...- 5 - Getting Started...- 6 - Using the Viewer...-

More information

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns)

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns) Spectral Signatures % REFLECTANCE VISIBLE NEAR INFRARED Vegetation Soil Water.5. WAVELENGTH (microns). Spectral Reflectance of Urban Materials 5 Parking Lot 5 (5=5%) Reflectance 5 5 5 5 5 Wavelength (nm)

More information

Dirty REMOTE SENSING Lecture 3: First Steps in classifying Stuart Green Earthobservation.wordpress.com

Dirty REMOTE SENSING Lecture 3: First Steps in classifying Stuart Green Earthobservation.wordpress.com Dirty REMOTE SENSING Lecture 3: First Steps in classifying Stuart Green Earthobservation.wordpress.com Stuart.Green@Teagasc.ie You have your image, but is it any good? Is it full of cloud? Is it the right

More information

Using QuickBird Imagery in ESRI Software Products

Using QuickBird Imagery in ESRI Software Products Using QuickBird Imagery in ESRI Software Products TABLE OF CONTENTS 1. Introduction...2 Purpose Scope Image Stretching Color Guns 2. Imagery Usage Instructions...4 ArcView 3.x...4 ArcGIS...7 i Using QuickBird

More information

REMOTE SENSING INTERPRETATION

REMOTE SENSING INTERPRETATION REMOTE SENSING INTERPRETATION Jan Clevers Centre for Geo-Information - WU Remote Sensing --> RS Sensor at a distance EARTH OBSERVATION EM energy Earth RS is a tool; one of the sources of information! 1

More information

AmericaView EOD 2016 page 1 of 16

AmericaView EOD 2016 page 1 of 16 Remote Sensing Flood Analysis Lesson Using MultiSpec Online By Larry Biehl Systems Manager, Purdue Terrestrial Observatory (biehl@purdue.edu) v Objective The objective of these exercises is to analyze

More information

Geomatica OrthoEngine V10.3 Tutorial. Orthorectifying AVNIR-2 Data Rigorous and RPC Modeling

Geomatica OrthoEngine V10.3 Tutorial. Orthorectifying AVNIR-2 Data Rigorous and RPC Modeling Geomatica OrthoEngine V10.3 Tutorial Orthorectifying AVNIR-2 Data Rigorous and RPC Modeling AVNIR-2 stands for Advanced Visible and Near Infrared Radiometer Type 2. It is a successor of AVNIR-1 and is

More information

MultiSpec Exercise: Creating Vegetation Indices Images

MultiSpec Exercise: Creating Vegetation Indices Images MultiSpec Exercise: Creating Vegetation Indices Images Requirements: MultiSpec application and ag020522_dpac_cd.lan. One can create images that represent algebraic combinations of the original channels

More information

Geomatica OrthoEngine Orthorectifying SPOT6 data

Geomatica OrthoEngine Orthorectifying SPOT6 data Geomatica OrthoEngine Orthorectifying SPOT6 data On September 9, 2012, SPOT 6 was launched adding to the constellation of Earthimaging satellites designed to provide 1.5m high-resolution data. The architecture

More information

Seasonal Progression of the Normalized Difference Vegetation Index (NDVI)

Seasonal Progression of the Normalized Difference Vegetation Index (NDVI) Seasonal Progression of the Normalized Difference Vegetation Index (NDVI) For this exercise you will be using a series of six SPOT 4 images to look at the phenological cycle of a crop. The images are SPOT

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs Basic Digital Image Processing A Basic Introduction to Digital Image Processing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland,

More information

A Comparison of DG AComp, FLAASH and QUAC Atmospheric Compensation Algorithms Using WorldView-2 Imagery

A Comparison of DG AComp, FLAASH and QUAC Atmospheric Compensation Algorithms Using WorldView-2 Imagery A Comparison of DG AComp, FLAASH and QUAC Atmospheric Compensation Algorithms Using WorldView-2 Imagery Michael J. Smith Department of Civil Engineering Master s Report University of Colorado Spring 2015

More information

DigitalGlobe High Resolution Satellite Imagery

DigitalGlobe High Resolution Satellite Imagery DigitalGlobe High Resolution Satellite Imagery KIAN KANG, SALES MANAGER, SOUTH EAST ASIA & TAIWAN See a better world. DigitalGlobe Overview Over 1,300 employees spanning the globe H E A D Q UA R T E R

More information

Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat

Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat Assessment of Spatiotemporal Changes in Vegetation Cover using NDVI in The Dangs District, Gujarat Using SAGA GIS and Quantum GIS Tutorial ID: IGET_CT_003 This tutorial has been developed by BVIEER as

More information

RADIOMETRIC AND GEOMETRIC CHARACTERISTICS OF PLEIADES IMAGES

RADIOMETRIC AND GEOMETRIC CHARACTERISTICS OF PLEIADES IMAGES RADIOMETRIC AND GEOMETRIC CHARACTERISTICS OF PLEIADES IMAGES K. Jacobsen a, H. Topan b, A.Cam b, M. Özendi b, M. Oruc b a Leibniz University Hannover, Institute of Photogrammetry and Geoinformation, Germany;

More information

8th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

8th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING Urban Mapping Practical Sebastian van der Linden, Akpona Okujeni, Franz Schug Humboldt Universität zu Berlin Instructions for practical Summary The Urban Mapping Practical introduces students to the work

More information

EVALUATION OF PLEIADES-1A TRIPLET ON TRENTO TESTFIELD

EVALUATION OF PLEIADES-1A TRIPLET ON TRENTO TESTFIELD EVALUATION OF PLEIADES-1A TRIPLET ON TRENTO TESTFIELD D. Poli a, F. Remondino b, E. Angiuli c, G. Agugiaro b a Terra Messflug GmbH, Austria b 3D Optical Metrology Unit, Fondazione Bruno Kessler, Trento,

More information

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf(

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf( GMAT x600 Remote Sensing / Earth Observation Types of Sensor Systems (1) Outline Image Sensor Systems (i) Line Scanning Sensor Systems (passive) (ii) Array Sensor Systems (passive) (iii) Antenna Radar

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur.

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur. Basics of Remote Sensing Some literature references Franklin, SE 2001 Remote Sensing for Sustainable Forest Management Lewis Publishers 407p Lillesand, Kiefer 2000 Remote Sensing and Image Interpretation

More information

1. What values did you use for bands 2, 3 & 4? Populate the table below. Compile the relevant data for the additional bands in the data below:

1. What values did you use for bands 2, 3 & 4? Populate the table below. Compile the relevant data for the additional bands in the data below: Graham Emde GEOG3200: Remote Sensing Lab # 3: Atmospheric Correction Introduction: This lab teachs how to use INDRISI to correct for atmospheric haze in remotely sensed imagery. There are three models

More information

ENVI Orthorectification Module

ENVI Orthorectification Module ENVI Orthorectification Module Orthorectify your imagery quickly and easily. CREASO - your partner for visual information solutions Rigorous Orthorectification. Simple Workflow. Trusted Method. The Need

More information

The (False) Color World

The (False) Color World There s more to the world than meets the eye In this activity, your group will explore: The Value of False Color Images Different Types of Color Images The Use of Contextual Clues for Feature Identification

More information

PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE

PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE LAST UPDATED FEBRUARY 2017 SALES@PLANET.COM PLANET.COM Table of Contents LIST OF FIGURES 3 LIST OF TABLES 3 GLOSSARY 5 1. OVERVIEW OF DOCUMENT

More information

1. What is SENSE Batch

1. What is SENSE Batch 1. What is SENSE Batch 1.1. Introduction SENSE Batch is processing software for thermal images and sequences. It is a modern software which automates repetitive tasks with thermal images. The most important

More information

Remote sensing image correction

Remote sensing image correction Remote sensing image correction Introductory readings remote sensing http://www.microimages.com/documentation/tutorials/introrse.pdf 1 Preprocessing Digital Image Processing of satellite images can be

More information

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser Including Introduction to Remote Sensing Concepts Based on: igett Remote Sensing Concept Modules and GeoTech

More information

FEDERAL SPACE AGENCY SOVZOND JSC компания «Совзонд»

FEDERAL SPACE AGENCY SOVZOND JSC компания «Совзонд» FEDERAL SPACE AGENCY Resurs-DK.satellite SOVZOND JSC SPECIFICATIONS Launch date June 15, 2006 Carrier vehicle Soyuz Orbit Elliptical Altitude 360-604 km Revisit frequency (at nadir) 6 days Inclination

More information

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES H. Topan*, G. Büyüksalih*, K. Jacobsen ** * Karaelmas University Zonguldak, Turkey ** University of Hannover, Germany htopan@karaelmas.edu.tr,

More information

Using Freely Available. Remote Sensing to Create a More Powerful GIS

Using Freely Available. Remote Sensing to Create a More Powerful GIS Using Freely Available Government Data and Remote Sensing to Create a More Powerful GIS All rights reserved. ENVI, E3De, IAS, and IDL are trademarks of Exelis, Inc. All other marks are the property of

More information

GeoBase Raw Imagery Data Product Specifications. Edition

GeoBase Raw Imagery Data Product Specifications. Edition GeoBase Raw Imagery 2005-2010 Data Product Specifications Edition 1.0 2009-10-01 Government of Canada Natural Resources Canada Centre for Topographic Information 2144 King Street West, suite 010 Sherbrooke,

More information

1. Theory of remote sensing and spectrum

1. Theory of remote sensing and spectrum 1. Theory of remote sensing and spectrum 7 August 2014 ONUMA Takumi Outline of Presentation Electromagnetic wave and wavelength Sensor type Spectrum Spatial resolution Spectral resolution Mineral mapping

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

8. EDITING AND VIEWING COORDINATES, CREATING SCATTERGRAMS AND PRINCIPAL COMPONENTS ANALYSIS

8. EDITING AND VIEWING COORDINATES, CREATING SCATTERGRAMS AND PRINCIPAL COMPONENTS ANALYSIS Editing and viewing coordinates, scattergrams and PCA 8. EDITING AND VIEWING COORDINATES, CREATING SCATTERGRAMS AND PRINCIPAL COMPONENTS ANALYSIS Aim: To introduce you to (i) how you can apply a geographical

More information

IKONOS High Resolution Multispectral Scanner Sensor Characteristics

IKONOS High Resolution Multispectral Scanner Sensor Characteristics High Spatial Resolution and Hyperspectral Scanners IKONOS High Resolution Multispectral Scanner Sensor Characteristics Launch Date View Angle Orbit 24 September 1999 Vandenberg Air Force Base, California,

More information

LPIS Orthoimagery An assessment of the Bing imagery for LPIS purpose

LPIS Orthoimagery An assessment of the Bing imagery for LPIS purpose LPIS Orthoimagery An assessment of the Bing imagery for LPIS purpose Slavko Lemajić Wim Devos, Pavel Milenov GeoCAP Action - MARS Unit - JRC Ispra Tallinn, 24 th November 2011 Outline JRC`s Ortho specifications

More information

Lecture 2. Electromagnetic radiation principles. Units, image resolutions.

Lecture 2. Electromagnetic radiation principles. Units, image resolutions. NRMT 2270, Photogrammetry/Remote Sensing Lecture 2 Electromagnetic radiation principles. Units, image resolutions. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

More information