THE USE OF CCD IMAGE LINE SENSORS IN VIDEO AND COMPUTER SYSTEMS. Luděk Bartoněk 1,JiříKeprt 2

Size: px
Start display at page:

Download "THE USE OF CCD IMAGE LINE SENSORS IN VIDEO AND COMPUTER SYSTEMS. Luděk Bartoněk 1,JiříKeprt 2"

Transcription

1 acta univ. palacki. olomuc., fac. rer. nat. ( ), physica 40 41, THE USE OF CCD IMAGE LINE SENSORS IN VIDEO AND COMPUTER SYSTEMS Luděk Bartoněk 1,JiříKeprt 2 1) Department of Experimental Physics, Natural Science Faculty of Palacký University, Svobody 26, Olomouc, Czech Republic 2) Joint Laboratory of Optics of Palacký University and Physical Institute of Academy of Sciences of Czech Republic, 17. listopadu 50, Olomouc, Czech Republic (Received February 13, 2002; accepted March 4, 2002) KEY WORDS: CCD line sensor, PSD sensor, parallel interface EPP able (IEEE1284), hybrid A/D converter WSH 570. ABSTRACT: This paper presents a way for practical use of the CCD linear image sensor (B/W) for scanning of light in some optical applications (spectroscopy). Communication of the equipment (detector CCD) with computer is realized by the help of parallel interface of personal computer (PC) without additive interface card. In final part of this contribution is presented a design of measuring circuit (interface) for sensor ILX511 with A/D converter, the type WSH570. The use of the line detector is demonstrated on detection of optical spectrum of mercury lamp. 1 Introduction Measurement of luminosity is a question all the time very actual. Trend of concurrently time is to take measurements in co-operation with computing system. The wiring diagram of measuring circuit is based on the use of suitable detector which signal is proportional to luminous intensity. The signal is further digitized and by the help of interface is stored in the memory for the next processing. Whole equipment may be engineered in the form of suitable board (card), which is placed into computer. In our case we created the interface of CCD detector ILX511 (Sony) connected with personal computer (PC) by the help of standard parallel port (the part of their equipment), so that no additional interface cards are needed. The control is made by direct port accesses and without any special drives or libraries. 87

2 2 Position Sensing Detectors For determination of objects position it is most advantageous to use positional 1D or 2D detectors. Position Sensing Detectors PSD (Fig. 1) are silicon photodiodes that provide an analog output directly proportional to the position of a light spot on the detector active area. The PSD allows you to monitor simultaneously the position and light intensity. The position resolution of a PSD is the minimum detectable displacement of a spot of light on the detector surface. The position resolution of ON-TRAK PSD s have been proven better than one part in a million [1]. 2.1 Theory of Operation Figure 1: The block diagram of Position Sensing Detector The Position Sensing Detector consists of n-type silicon substrate with two resistive layers separated by a p-n junction. The front side has an ion implanted p-type resistive layer with two contacts at opposite ends. The back side has an ion implanted n-type resistive layer with two contacts at opposite ends placed orthogonally to the contacts on the front side. On a single axis PSD the electrodes are placed at opposite ends of the p-type resistive layer. A light spot within the spectral range of silicon will generate a photocurrent which flows from the incident point through the resistive layers to the electrodes. The resistivity of the ion implanted layer is extremely uniform so the photogenerated current at each electrode is inversely proportional to the distance between the incident spot of light and electrodes. The one-dimension PSD detector (1D), his equivalent circuit and spectral range, they are displayed in Fig. 2 and Fig. 3. The photoelectric current generated by the incident light flows through the device and can be seen as an input bias current divided into two output currents, Y1 and Y2. The relationship between these two output currents gives the light spot position through the formula P osition = Y 1 Y 2 : L (1) Y 1 + Y 2 2 where L is equal to the length of the PSD. With this equation the intensity of the incident light spot does not affect the calculation of the light spot position. 88

3 Figure 2: One-dim. PSD equivalent circuit, Ip = Photocurrent generated by incident light, D = Ideal diode, PN junction of PSD, C = Junction capacitance, Rsh = Shunt resistance, Rp = Position resistance Figure 3: Spectral range of PSD 3 Charge Couple Devices (CCD) At present for measuring of luminosity are very widespread sensors in solid state on basis CCD (Charge Couple Devices). CCD structure was discovered in the year 1969 and in comparison with vacuum pick-up tube they have first of all small mass, high lifetime and reliability, small input power and also simple technology of production [2]. Charge coupled device (CCD) is created by rows of simple structure MIS (metal insulator semiconductor) created on common semiconductor substrate so that tapes of metal electrode of sensor are formed into lines (at 1D) or into regular matrix (2D). 3.1 Study of CCD Transmission of a charge in CCD structure we can introduce for instance by onedimensional shift of the electrical charge. At circuit we consider 8 electrodes where every third is accessible to relevant point of source clock how is illustration et pictures 4, 5, 6. 89

4 Figure 4: Storage of the information in points 1, 4, 7 In starting position are connected electrodes 1, 4, 7 with voltage, which storage of the charge R2 U stor = U 2 : (2) On all the others electrodes it is voltage U 1,where U 1 <U stor : (3) The silicon tablet is grounded. We suppose, that in spatially defined depletion region 1 and 7 are the charge clusters and in spatially defined depletion region 4 there are not (Fig. 4). At following time we will connect voltage to electrodes 2, 5 and 8 for record of information U rec = U 3 ;(U 3 >U 2 ) (4) so that the clusters of charge begin walk up from structure 1 to structure 2 and from structure 7 into structure 8. At structure 4 there is not any shift (Fig. 5). Figure 5: Transfer the information by means of CCD structure In further time there will be on electrodes 2, 5, 8 the voltage U stor and on others electrodes occurs storage cycle of information (Fig. 6). The information (charge clusters) are preserved and shifted about one position. Thereby the charge is transferred. Figure 6: Storage of the information in point 2, 5, 8 If we place charge detector on CCD element below electrode 8, in first time we can shift the charge on this detector and read charge from CCD element 7. For further 90

5 displacement it is possible to read the charge from element 6 etc. till there will be read the charges from the whole structure. 4 Description of CCD linear Sensor ILX511 The ILX511 is a rectangular reduction type of CCD linear image sensor designed for bar code POS hand scanner and optical measuring equipment use (Fig. 7a, b). Figure 7: CCD linear sensor ILX511 from Sony a) plastic cases ILX511 package outline, b)frontview It has a build-in timing generator, clock-drives and sample-and-hold circuit, ensure single 5 V power supply for easy use. Number of effective pixels is Pixel size is 14μm x 200μm ultra-high sensitivity. The plastic cases of microchip circuit have 22 pins DIP, maximum clock frequency is 2MHz. Course of driving signal of ILX511 is on the Fig. 8. Figure 8: Clock timing diagram of ILX511 Price of this type is Euro/unit. Perspective, up March 2003, firm SONY intend to replace the type ILX511 by the new sensor ILX554A with pixel sizes 14μm x56μm[3]. The new price should be 19,75 Euro/unit. Circuit of ILX511 contains: Output amplifier, S/H circuit, CCD analog shift register, clock-drivers, clock pulse generator (Fig. 9). 91

6 4.1 Interface Figure 9: Inside circuit block diagram of sensor ILX511 For right function of sensor it is necessary to ensure its right timing pulse. Figure 10: Block diagram of interface In Fig. 10 it is a block diagram of controller for sensor ILX511. Signal from the sensor is modified (low-pass filter) and is feed into 8-bit A/D converter. Output of converter is connected with EPP port. Programmatic logic manages the activity of the whole controller. 92

7 5 Design of ILX511 interface PC with hybrid converter type of WS570 In Fig. 11a there is demonstrated the application circuit of the sensor ILX511 without S/H mode. Schema of A/D converter of the type VSH570 is describe in Fig. 11b. Figure 11a: Application circuit (without S/H mode) Figure 11b: Inside circuit block diagram of hybrid A/D converter type of WSH570 The WSH570 (Fig. 11b) is anagogic numerical 8-bit approximation converter for instrument application with unipolar or bipolar input and parallel or serial exit. Converter contains source of referential voltage, D/A converter, comparator, register of approximation and clock register. Supply voltage is in interval < 18V; U;+18V >, conversion time is 5μs [4]. 5.1 Standard parallel port PC Difference in the port modes according to standards SPP, EPP or ECP is in extensive possibility of two-way communication by the help of data bit D0 D7. That is reached by the help of change hardware structure of terminal parts of these connections. 93

8 Figure 12: Data pin SPP Figure 13: Data pin EPP and ECP In Fig. 12 and Fig. 13 there is a circuit of end parts data bit of parallel port according to specifications EPP and ECP. The diagram shows entrance data into input register [5], [6]. By this way it can be possible to set the port in mode reading so that there is can be written the value of logical A s. That transistor stapling logical level 0 stay unbuttoned and over terminator resistance it is possible to read logical level of transmission from outside. Data can be recorded and read on data port after the operation of data setting into enter mode (log.1) by addition of 5. bit location on address 378H+2. 6 The use of CCD linear sensor in spectroscopy As an example of the use of linear CCD sensor is its application in spectroscopy. If we put a transparent holographic grating (HG)in convergent beam of light (Fig. 14) we can see on the scale (in a focus plane F of the convergent beam) spectra of the light (rainbows) in visible range from violet and blue across green and yellow to orange and red. Figure 14: Diffraction of a convergent beam of light on a holographic grating (HG) 94

9 Figure 15: Spectral sensitivity of the line sensor ILX511 If we replace in our visible spectrum (as the source of light we used a metal filament lamp) the shade by our CCD linear sensor, we can see the sensitivity of the elements (pixels) of the sensor on different compounds (colors) of the white light (Fig. 15). As it is well known and it is clear from Fig. 15, the elements of CCD sensors are more sensitive on the red part of the spectrum. In Fig. 15 there is shown an example of a continuous spectrum. More important in the praxis is the case of a line pattern spectrum. If we use as the source of light a quicksilver (mercury) lamp then linear CCD sensor can detect the line pattern spectrum. The most important lines of this spectrum are visible from the spectrograph demonstrated in Fig. 16. Figure 16: The measured spectrum of a mercury lamp 95

10 7 Conclusion From the record of spectrum of a metal filament lamp it is clear that linear sensor ILX511 is very sensitive especially in the area of reds colors. That s why for the recored linearity of the whole spectrum it is necessary to smooth the sensitivity of the sensor by suitable software. Whole arrangement interface over concurrently port PC computer enables communication of the detector and computer in very short time (> 10ms/ row). SOUHRN POUŽITÍ CCD OBRAZOVÝCH ŘÁDKOVÝCH SNÍMAČŮ VE VIDEO A POČÍTAČOVÝCH SYSTÉMECH Tento článek představuje čtenáři CCD lineární snímač (B/W) pro skenování světelného signálu s ohledem na použití ve vybraných optických aplikacích (spektroskopie). Komunikace zařízení (detektor CCD) s počítačem je realizována pomocí paralelního rozhraní osobního počítače (PC) bez přídavné karty rozhraní. V konečné části tohoto příspěvku je uveden návrh měřicího zapojení (interface) pro sensor ILX511 s A/D převodníkem typu WSH570. Použití řádkového detektoru je demonstrováno na příkladu záznamu čarového optického spektra rtuťové výbojky. 8 References [1] SiTek PSD (Position Sensing Detectors) 2001, [2] Cenkl, B.: Užití CCD prvků při snímání a digitalizaci obrazové informace počítačem, DP, PřF UP [3] EURECA Messtechnik GmbH, Am Feldgarten 3D Köln, GERMANY [4] Tesla ELTOS, katalog I., TISK Brno [5] Řehák, J.: HW server. Ruská 106 Praha , [6] Kainka, B.: Využití rozhraní PC, měření, řízení a regulace pomocí standardních portů PC, HEL Ostrava

CCD linear image sensor ILX 511 arrangement for a technical spectrometer

CCD linear image sensor ILX 511 arrangement for a technical spectrometer Optica Applicata, Vol. XXXIII, No. 2-3, 2003 CCD linear image sensor ILX 511 arrangement for a technical spectrometer L ud k. B arton k ', M i K eprt2 'Department of Experimental Physics, Faculty of Natural

More information

PSD Characteristics. Position Sensing Detectors

PSD Characteristics. Position Sensing Detectors PSD Characteristics Position Sensing Detectors Silicon photodetectors are commonly used for light power measurements in a wide range of applications such as bar-code readers, laser printers, medical imaging,

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Feature Article JY Division I nformation Optical Spectroscopy Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region Raymond Pini, Salvatore Atzeni Abstract Multichannel

More information

Photons and solid state detection

Photons and solid state detection Photons and solid state detection Photons represent discrete packets ( quanta ) of optical energy Energy is hc/! (h: Planck s constant, c: speed of light,! : wavelength) For solid state detection, photons

More information

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation

Spectroscopy in the UV and Visible: Instrumentation. Spectroscopy in the UV and Visible: Instrumentation Spectroscopy in the UV and Visible: Instrumentation Typical UV-VIS instrument 1 Source - Disperser Sample (Blank) Detector Readout Monitor the relative response of the sample signal to the blank Transmittance

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

Components of Optical Instruments. Chapter 7_III UV, Visible and IR Instruments

Components of Optical Instruments. Chapter 7_III UV, Visible and IR Instruments Components of Optical Instruments Chapter 7_III UV, Visible and IR Instruments 1 Grating Monochromators Principle of operation: Diffraction Diffraction sources: grooves on a reflecting surface Fabrication:

More information

HR2000+ Spectrometer. User-Configured for Flexibility. now with. Spectrometers

HR2000+ Spectrometer. User-Configured for Flexibility. now with. Spectrometers Spectrometers HR2000+ Spectrometer User-Configured for Flexibility HR2000+ One of our most popular items, the HR2000+ Spectrometer features a high-resolution optical bench, a powerful 2-MHz analog-to-digital

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you are to measure I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). The emission intensity as a function of the diode

More information

Optical In-line Control of Web Coating Processes

Optical In-line Control of Web Coating Processes AIMCAL Europe 2012 Peter Lamparter Web Coating Conference Carl Zeiss MicroImaging GmbH 11-13 June / Prague, Czech Republic Carl-Zeiss-Promenade 10 07745 Jena, Germany p.lamparter@zeiss.de +49 3641 642221

More information

Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Grating Rotation

Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Grating Rotation Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Rotation By: Michael Case and Roy Grayzel, Acton Research Corporation Introduction The majority of modern spectrographs and scanning

More information

A Measurement of the Photon Detection Efficiency of Silicon Photomultipliers

A Measurement of the Photon Detection Efficiency of Silicon Photomultipliers A Measurement of the Photon Detection Efficiency of Silicon Photomultipliers A. N. Otte a,, J. Hose a,r.mirzoyan a, A. Romaszkiewicz a, M. Teshima a, A. Thea a,b a Max Planck Institute for Physics, Föhringer

More information

Experimental Analysis of Luminescence in Printed Materials

Experimental Analysis of Luminescence in Printed Materials Experimental Analysis of Luminescence in Printed Materials A. D. McGrath, S. M. Vaezi-Nejad Abstract - This paper is based on a printing industry research project nearing completion [1]. While luminescent

More information

ILX pixel CCD Linear Image Sensor (B/W)

ILX pixel CCD Linear Image Sensor (B/W) VOUT VGG 8 Internal Structure Output amplifier S/H circuit 22 2 2 7 6 4 3 2 D3 D4 D32 S S2 S3 S246 S247 S248 D33 D34 D3 D36 D37 D38 Clock plse generator/ Sample-and-hold pulse generator Readout gate CCD

More information

EE 392B: Course Introduction

EE 392B: Course Introduction EE 392B Course Introduction About EE392B Goals Topics Schedule Prerequisites Course Overview Digital Imaging System Image Sensor Architectures Nonidealities and Performance Measures Color Imaging Recent

More information

LAB V. LIGHT EMITTING DIODES

LAB V. LIGHT EMITTING DIODES LAB V. LIGHT EMITTING DIODES 1. OBJECTIVE In this lab you will measure the I-V characteristics of Infrared (IR), Red and Blue light emitting diodes (LEDs). Using a photodetector, the emission intensity

More information

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC

Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC Chromatic X-Ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC R. Bellazzini a,b, G. Spandre a*, A. Brez a, M. Minuti a, M. Pinchera a and P. Mozzo b a INFN Pisa

More information

ILX pixel CCD Linear Image Sensor (B/W)

ILX pixel CCD Linear Image Sensor (B/W) -pixel CCD Linear Image Seor (B/W) ILX6 Description The ILX6 is a reduction type CCD linear seor developed for high resolution facsimiles and copiers. This seor reads A-size documents at a deity of DPI

More information

Fastest high definition Raman imaging. Fastest Laser Raman Microscope RAMAN

Fastest high definition Raman imaging. Fastest Laser Raman Microscope RAMAN Fastest high definition Raman imaging Fastest Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Observation A New Generation in Raman Observation RAMAN-11 developed by Nanophoton was newly created by

More information

ANALYSIS OF ELECTRON CURRENT INSTABILITY IN E-BEAM WRITER. Jan BOK, Miroslav HORÁČEK, Stanislav KRÁL, Vladimír KOLAŘÍK, František MATĚJKA

ANALYSIS OF ELECTRON CURRENT INSTABILITY IN E-BEAM WRITER. Jan BOK, Miroslav HORÁČEK, Stanislav KRÁL, Vladimír KOLAŘÍK, František MATĚJKA ANALYSIS OF ELECTRON CURRENT INSTABILITY IN E-BEAM WRITER Jan BOK, Miroslav HORÁČEK, Stanislav KRÁL, Vladimír KOLAŘÍK, František MATĚJKA Institute of Scientific Instruments of the ASCR, v. v.i., Královopolská

More information

Chemistry Instrumental Analysis Lecture 7. Chem 4631

Chemistry Instrumental Analysis Lecture 7. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 7 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

7926-pixel CCD Linear Image Sensor (B/W) For the availability of this product, please contact the sales office.

7926-pixel CCD Linear Image Sensor (B/W) For the availability of this product, please contact the sales office. ILX8A 796-pixel CCD Linear Image Seor (B/W) For the availability of this product, please contact the sales office. Description The ILX8A is a reduction type CCD linear seor 4 pin DIP (Ceramic) developed

More information

Gamma Spectrometer Initial Project Proposal

Gamma Spectrometer Initial Project Proposal Gamma Spectrometer Initial Project Proposal Group 9 Aman Kataria Johnny Klarenbeek Dean Sullivan David Valentine Introduction There are currently two main types of gamma radiation detectors used for gamma

More information

The HPD DETECTOR. Michele Giunta. VLVnT Workshop "Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea"

The HPD DETECTOR. Michele Giunta. VLVnT Workshop Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea The HPD DETECTOR VLVnT Workshop "Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea" In this presentation: The HPD working principles The HPD production CLUE Experiment

More information

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Lawrence Berkeley National Laboratory M. Battaglia, L. Glesener (UC Berkeley & LBNL), D. Bisello, P. Giubilato (LBNL & INFN Padova), P.

More information

The Study on the Method of Eliminating Errors of PSD

The Study on the Method of Eliminating Errors of PSD Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com The Study on the Method of Eliminating Errors of PSD Changjun ZHOU, * Wei WANG, Hongxiao CHAO, Lina HONG, Xin CAO, Pengfei ZHANG, Lingyue

More information

I D = I so e I. where: = constant T = junction temperature [K] I so = inverse saturating current I = photovoltaic current

I D = I so e I. where: = constant T = junction temperature [K] I so = inverse saturating current I = photovoltaic current H7. Photovoltaics: Solar Power I. INTRODUCTION The sun is practically an endless source of energy. Most of the energy used in the history of mankind originated from the sun (coal, petroleum, etc.). The

More information

Cameras CS / ECE 181B

Cameras CS / ECE 181B Cameras CS / ECE 181B Image Formation Geometry of image formation (Camera models and calibration) Where? Radiometry of image formation How bright? What color? Examples of cameras What is a Camera? A camera

More information

Fast Laser Raman Microscope RAMAN

Fast Laser Raman Microscope RAMAN Fast Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Fast Raman Imaging A New Generation of Raman Microscope RAMAN-11 developed by Nanophoton was created by combining confocal laser microscope technology

More information

Mössbauer ~ Spectrometer. Following to our long-term experiences, we offer complete Mössbauer spectroscopy instrumental support

Mössbauer ~ Spectrometer. Following to our long-term experiences, we offer complete Mössbauer spectroscopy instrumental support www.mossbauer-spectrometers.com Mössbauer ~ Spectrometer Following to our long-term experiences, we offer complete Mössbauer spectroscopy instrumental support Mössbauer ~ Spectrometer > Mössbauer spectroscopy

More information

Ultra-high resolution 14,400 pixel trilinear color image sensor

Ultra-high resolution 14,400 pixel trilinear color image sensor Ultra-high resolution 14,400 pixel trilinear color image sensor Thomas Carducci, Antonio Ciccarelli, Brent Kecskemety Microelectronics Technology Division Eastman Kodak Company, Rochester, New York 14650-2008

More information

Low Power Sensor Concepts

Low Power Sensor Concepts Low Power Sensor Concepts Konstantin Stefanov 11 February 2015 Introduction The Silicon Pixel Tracker (SPT): The main driver is low detector mass Low mass is enabled by low detector power Benefits the

More information

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE NON-AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified Photodetector. This user s guide will help answer any questions you may have regarding the safe use and optimal operation

More information

C.Z. INDUSTRY AND TECHNOLOGY. CO., LTD

C.Z. INDUSTRY AND TECHNOLOGY. CO., LTD C.Z. INDUSTRY AND TECHNOLOGY. CO., LTD UV COATED CCD CCD: 3648-Pixel ccd 2048-Pixel ccd CATALOGE CONTENTS 1.Product information........... 2.Performance.......... 3.UV CCD Comparing Spectral Response Curve

More information

UV/EUV CONTINUOUS POSITION SENSOR

UV/EUV CONTINUOUS POSITION SENSOR UV/EUV CONTINUOUS POSITION SENSOR ODD-SXUV-DLPSD FEATURES Submicron position resolution Stable response after exposure to UV/EUV 5 mm x 5 mm active area TO-8 windowless package RoHS ELECTRO-OPTICAL CHARACTERISTICS

More information

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Application Note AN004: Fiber Coupling Improvement Introduction AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Industrial lasers used for cutting, welding, drilling,

More information

Lecture 8 Optical Sensing. ECE 5900/6900 Fundamentals of Sensor Design

Lecture 8 Optical Sensing. ECE 5900/6900 Fundamentals of Sensor Design ECE 5900/6900: Fundamentals of Sensor Design Lecture 8 Optical Sensing 1 Optical Sensing Q: What are we measuring? A: Electromagnetic radiation labeled as Ultraviolet (UV), visible, or near,mid-, far-infrared

More information

Photodiode Characteristics and Applications

Photodiode Characteristics and Applications Photodiode Characteristics and Applications Silicon photodiodes are semiconductor devices responsive to highenergy particles and photons. Photodiodes operate by absorption of photons or charged particles

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Basic Components of Spectroscopic. Instrumentation

Basic Components of Spectroscopic. Instrumentation Basic Components of Spectroscopic Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia

More information

ORTEC. Research Applications. Pulse-Height, Charge, or Energy Spectroscopy. Detectors. Processing Electronics

ORTEC. Research Applications. Pulse-Height, Charge, or Energy Spectroscopy. Detectors. Processing Electronics ORTEC Spectroscopy systems for ORTEC instrumentation produce pulse height distributions of gamma ray or alpha energies. MAESTRO-32 (model A65-B32) is the software included with most spectroscopy systems

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Photodetectors Introduction Most important characteristics Photodetector

More information

Mini-spectrometer from a DVD and folded paper

Mini-spectrometer from a DVD and folded paper Mini-spectrometer from a DVD and folded paper Writing up experiences with an open-source transmission grating spectrometer from DVD, paper and camera. A very effective gadget to get hands-on training in

More information

Guide to SPEX Optical Spectrometer

Guide to SPEX Optical Spectrometer Guide to SPEX Optical Spectrometer GENERAL DESCRIPTION A spectrometer is a device for analyzing an input light beam into its constituent wavelengths. The SPEX model 1704 spectrometer covers a range from

More information

ASTABLE MULTIVIBRATOR

ASTABLE MULTIVIBRATOR 555 TIMER ASTABLE MULTIIBRATOR MONOSTABLE MULTIIBRATOR 555 TIMER PHYSICS (LAB MANUAL) PHYSICS (LAB MANUAL) 555 TIMER Introduction The 555 timer is an integrated circuit (chip) implementing a variety of

More information

The Performance Improvement of a Linear CCD Sensor Using an Automatic Threshold Control Algorithm for Displacement Measurement

The Performance Improvement of a Linear CCD Sensor Using an Automatic Threshold Control Algorithm for Displacement Measurement The Performance Improvement of a Linear CCD Sensor Using an Automatic Threshold Control Algorithm for Displacement Measurement Myung-Kwan Shin*, Kyo-Soon Choi*, and Kyi-Hwan Park** Department of Mechatronics,

More information

Fast Laser Raman Microscope RAMAN

Fast Laser Raman Microscope RAMAN Fast Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Fast Raman Imaging A New Generation of Raman Microscope RAMAN-11 developed by Nanophoton was created by combining confocal laser microscope technology

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

Diode Sensor Lab. Dr. Lynn Fuller

Diode Sensor Lab. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Diode Sensor Lab Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax

More information

Figure Responsivity (A/W) Figure E E-09.

Figure Responsivity (A/W) Figure E E-09. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

CMOS Based Compact Spectrometer

CMOS Based Compact Spectrometer CMOS Based Compact Spectrometer Mr. Nikhil Kulkarni Ms. Shriya Siraskar Ms. Mitali Shah. Department of Electronics and Department of Electronics and Department of Electronics and Telecommunication Engineering

More information

Novel laser power sensor improves process control

Novel laser power sensor improves process control Novel laser power sensor improves process control A dramatic technological advancement from Coherent has yielded a completely new type of fast response power detector. The high response speed is particularly

More information

Light gathering Power: Magnification with eyepiece:

Light gathering Power: Magnification with eyepiece: Telescopes Light gathering Power: The amount of light that can be gathered by a telescope in a given amount of time: t 1 /t 2 = (D 2 /D 1 ) 2 The larger the diameter the smaller the amount of time. If

More information

IGPG Car Wash Round Robin Test Procedure

IGPG Car Wash Round Robin Test Procedure 1. Scope The intension of this round robin test is to investigate whether the car wash test described in ISO 20566 and used to validate the abrasion performance of exterior car body parts is suitable as

More information

EE 43 Smart Dust Lab: Experiment Guide

EE 43 Smart Dust Lab: Experiment Guide Smart Dust Motes EE 43 Smart Dust Lab: Experiment Guide The motes that you ll use are contained in translucent plastic boxes that measure 1.5 x 2.5 x 0.6 cubic inches. There is an insulated antenna (inside

More information

PICO MASTER 200. UV direct laser writer for maskless lithography

PICO MASTER 200. UV direct laser writer for maskless lithography PICO MASTER 200 UV direct laser writer for maskless lithography 4PICO B.V. Jan Tinbergenstraat 4b 5491 DC Sint-Oedenrode The Netherlands Tel: +31 413 490708 WWW.4PICO.NL 1. Introduction The PicoMaster

More information

Circuit Components Lesson 4 From: Emergency Management Ontario

Circuit Components Lesson 4 From: Emergency Management Ontario 4.1 Amplifier Fundamentals The role of a amplifier is to produce an output which is an enlarged reproduction of the features of the signal fed into the input. The increase in signal by an amplifier is

More information

Improving the Collection Efficiency of Raman Scattering

Improving the Collection Efficiency of Raman Scattering PERFORMANCE Unparalleled signal-to-noise ratio with diffraction-limited spectral and imaging resolution Deep-cooled CCD with excelon sensor technology Aberration-free optical design for uniform high resolution

More information

Period 3 Solutions: Electromagnetic Waves Radiant Energy II

Period 3 Solutions: Electromagnetic Waves Radiant Energy II Period 3 Solutions: Electromagnetic Waves Radiant Energy II 3.1 Applications of the Quantum Model of Radiant Energy 1) Photon Absorption and Emission 12/29/04 The diagrams below illustrate an atomic nucleus

More information

University of Wisconsin Chemistry 524 Spectroscopic Components *

University of Wisconsin Chemistry 524 Spectroscopic Components * University of Wisconsin Chemistry 524 Spectroscopic Components * In journal articles, presentations, and textbooks, chemical instruments are often represented as block diagrams. These block diagrams highlight

More information

An Introduction to CCDs. The basic principles of CCD Imaging is explained.

An Introduction to CCDs. The basic principles of CCD Imaging is explained. An Introduction to CCDs. The basic principles of CCD Imaging is explained. Morning Brain Teaser What is a CCD? Charge Coupled Devices (CCDs), invented in the 1970s as memory devices. They improved the

More information

Figure Figure E E-09. Dark Current (A) 1.

Figure Figure E E-09. Dark Current (A) 1. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

Ph 3455 The Photoelectric Effect

Ph 3455 The Photoelectric Effect Ph 3455 The Photoelectric Effect Required background reading Tipler, Llewellyn, section 3-3 Prelab Questions 1. In this experiment you will be using a mercury lamp as the source of photons. At the yellow

More information

Experiment Topic : FM Modulator

Experiment Topic : FM Modulator 7-1 Experiment Topic : FM Modulator 7.1: Curriculum Objectives 1. To understand the characteristics of varactor diodes. 2. To understand the operation theory of voltage controlled oscillator (VCO). 3.

More information

MA4L Series. Silicon PIN Limiters RoHS Compliant. M/A-COM Products Rev. V12. Features. Chip Outline. Description. Applications

MA4L Series. Silicon PIN Limiters RoHS Compliant. M/A-COM Products Rev. V12. Features. Chip Outline. Description. Applications Features Low Insertion Loss and Noise Figure High Peak and Average Operating Power Various P1dB Compression Powers Low Flat Leakage Power Proven Reliable, Silicon Nitride Passivation Chip Outline A Square

More information

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi

Optical Amplifiers. Continued. Photonic Network By Dr. M H Zaidi Optical Amplifiers Continued EDFA Multi Stage Designs 1st Active Stage Co-pumped 2nd Active Stage Counter-pumped Input Signal Er 3+ Doped Fiber Er 3+ Doped Fiber Output Signal Optical Isolator Optical

More information

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams.

UNIT VIII-SPECIAL PURPOSE ELECTRONIC DEVICES. 1. Explain tunnel Diode operation with the help of energy band diagrams. UNIT III-SPECIAL PURPOSE ELECTRONIC DEICES 1. Explain tunnel Diode operation with the help of energy band diagrams. TUNNEL DIODE: A tunnel diode or Esaki diode is a type of semiconductor diode which is

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

14.2 Photodiodes 411

14.2 Photodiodes 411 14.2 Photodiodes 411 Maximum reverse voltage is specified for Ge and Si photodiodes and photoconductive cells. Exceeding this voltage can cause the breakdown and severe deterioration of the sensor s performance.

More information

Exp 3 COLCULATE THE RESPONSE TIME FOR THE SILICON DETECTOR

Exp 3 COLCULATE THE RESPONSE TIME FOR THE SILICON DETECTOR Exp 3 اعداد المدرس مكرم عبد المطلب فخري Object: To find the value of the response time (Tr) for silicone photodiode detector. Equipment: 1- function generator ( 10 khz ). 2- silicon detector. 3- storage

More information

Components of Optical Instruments 1

Components of Optical Instruments 1 Components of Optical Instruments 1 Optical phenomena used for spectroscopic methods: (1) absorption (2) fluorescence (3) phosphorescence (4) scattering (5) emission (6) chemiluminescence Spectroscopic

More information

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014 Detectors for microscopy - CCDs, APDs and PMTs Antonia Göhler Nov 2014 Detectors/Sensors in general are devices that detect events or changes in quantities (intensities) and provide a corresponding output,

More information

[MILLIMETERS] INCHES DIMENSIONS ARE IN:

[MILLIMETERS] INCHES DIMENSIONS ARE IN: Features: Wide acceptance angle, 00 Fast response time Linear response vs Irradiance Plastic leadless chip carrier (PLCC-) Low Capacitance Top Sensing Area Tape and reel packaging Moisture Sensitivity

More information

LEP Optical pumping

LEP Optical pumping Related topics Spontaeous emission, induced emission, mean lifetime of a metastable state, relaxation, inversion, diode laser. Principle and task The visible light of a semiconductor diode laser is used

More information

Design of an Integrated OLED Driver for a Modular Large-Area Lighting System

Design of an Integrated OLED Driver for a Modular Large-Area Lighting System Design of an Integrated OLED Driver for a Modular Large-Area Lighting System JAN DOUTRELOIGNE, ANN MONTÉ, JINDRICH WINDELS Center for Microsystems Technology (CMST) Ghent University IMEC Technologiepark

More information

SPECTRAL SCANNER. Recycling

SPECTRAL SCANNER. Recycling SPECTRAL SCANNER The Spectral Scanner, produced on an original project of DV s.r.l., is an instrument to acquire with extreme simplicity the spectral distribution of the different wavelengths (spectral

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

IOLTS th IEEE International On-Line Testing Symposium

IOLTS th IEEE International On-Line Testing Symposium IOLTS 2018 24th IEEE International On-Line Testing Symposium Exp. comparison and analysis of the sensitivity to laser fault injection of CMOS FD-SOI and CMOS bulk technologies J.M. Dutertre 1, V. Beroulle

More information

Amplified Photodetectors

Amplified Photodetectors Amplified Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 6 EOT AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified Photodetector from EOT. This

More information

Applications S S S S 1024

Applications S S S S 1024 IMAGE SENSOR NMOS linear image sensor S9/S9 series Built-in thermoelectric cooler ensures long exposure time and stable operation. NMOS linear image sensors are self-scanning photodiode arrays designed

More information

LASER. Analog Laser Displacement Transducer. LAM Series. Key-Features: Content:

LASER. Analog Laser Displacement Transducer. LAM Series. Key-Features: Content: LASER Analog Laser Displacement Transducer LAM Series Key-Features: Content: Overview, Measuring Principle...2 Installation Instructions...3 Technical Data...4 Technical Drawings.7 Electrical Connection...9

More information

MDK EVALUATION KIT FOR METHANE DETECTION INSTRUCTION MANUAL. rev

MDK EVALUATION KIT FOR METHANE DETECTION INSTRUCTION MANUAL. rev MDK EVALUATION KIT FOR METHANE DETECTION INSTRUCTION MANUAL rev. 250516 TABLE OF CONTENTS General Information 3 Application 3 Packaging arrangement 3 Operation conditions 3 Brief overview of the components

More information

MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY

MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY Byungki Kim, H. Ali Razavi, F. Levent Degertekin, Thomas R. Kurfess G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta,

More information

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design Computer Aided Design Several CAD tools use Ray Tracing (see

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

functional block diagram (each section pin numbers apply to section 1)

functional block diagram (each section pin numbers apply to section 1) Sensor-Element Organization 00 Dots-Per-Inch (DPI) Sensor Pitch High Linearity and Low Noise for Gray-Scale Applications Output Referenced to Ground Low Image Lag... 0.% Typ Operation to MHz Single -V

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Silicon Photodiodes - SXUV Series with Platinum Silicide Front Entrance Windows

Silicon Photodiodes - SXUV Series with Platinum Silicide Front Entrance Windows Silicon Photodiodes - SXUV Series with Platinum Silicide Front Entrance Windows SXUV Responsivity Stability It is known that the UV photon exposure induced instability of common silicon photodiodes is

More information

Nano-100 Spectrophotometer. Brief introduction

Nano-100 Spectrophotometer. Brief introduction Nano-100 Spectrophotometer Brief introduction Direct and quick measure of DNA, RNA, cell solution concentration Only need volume 0.5 to 2 µl No need cuvette or capillary tube Wavelength range 200-800 nm

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit n. 7 Front End and Trigger electronics Roberta Arcidiacono Lecture overview Signal processing Some info on calorimeter FE Pre-amplifiers Charge sensitive

More information

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic Optical Modulator Technical Whitepaper MEMS Optical Modulator Technology Overview The BMC MEMS Optical Modulator, shown in Figure 1, was designed for use in free space optical communication systems. The

More information

PHYS General Physics II Lab Diffraction Grating

PHYS General Physics II Lab Diffraction Grating 1 PHYS 1040 - General Physics II Lab Diffraction Grating In this lab you will perform an experiment to understand the interference of light waves when they pass through a diffraction grating and to determine

More information

SCCH 4: 211: 2015 SCCH

SCCH 4: 211: 2015 SCCH SCCH 211: Analytical Chemistry I Analytical Techniques Based on Optical Spectroscopy Atitaya Siripinyanond Office Room: C218B Email: atitaya.sir@mahidol.ac.th Course Details October 19 November 30 Topic

More information

White-light interferometry, Hilbert transform, and noise

White-light interferometry, Hilbert transform, and noise White-light interferometry, Hilbert transform, and noise Pavel Pavlíček *a, Václav Michálek a a Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics, 17. listopadu

More information

Non-amplified Photodetectors

Non-amplified Photodetectors Non-amplified Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 9 EOT NON-AMPLIFIED PHOTODETECTOR USER S GUIDE Thank you for purchasing your Non-amplified Photodetector

More information

New applications are transforming the UV-LED market, and Nikkiso Deep UV-LED devices are applicable to many important applications including:

New applications are transforming the UV-LED market, and Nikkiso Deep UV-LED devices are applicable to many important applications including: LED Ultraviolet Light Emitting Diodes (UV-LED) Nikkiso s advantaged UV-LED products all with high performance and reliability at an affordable cost. Along with our sglux UV sensors and probes, Boston Electronics

More information

New applications are transforming the UV-LED market, and Nikkiso Deep UV-LED devices are applicable to many important applications including:

New applications are transforming the UV-LED market, and Nikkiso Deep UV-LED devices are applicable to many important applications including: LED Ultraviolet Light Emitting Diodes (UV-LED) Nikkiso s advantaged UV-LED products all with high performance and reliability at an affordable cost. Along with our sglux UV sensors and probes, Boston Electronics

More information