Remote Sensing Technology for Earthquake Damage Detection

Size: px
Start display at page:

Download "Remote Sensing Technology for Earthquake Damage Detection"

Transcription

1 Workshop on Application of Remote Sensing to Disaster Response September 12, 2003, Irvine, CA, USA Remote Sensing Technology for Earthquake Damage Detection Fumio Yamazaki 1,2, Ken-ichi Kouchi 1, Masayuki Kohiyama 1, Miguel Estrada 1 and Masashi Matsuoka 2 1. Institute of Industrial Science, The University of Tokyo, Japan 2. Earthquake Disaster Mitigation Research Center, NIED, Japan 1

2 GIS and RS in Disaster Management Cycle of Disasters Pre-Event Event Post-Event Hard Tech. Mitigation Restoration/Reconstruction Soft Tech. Disaster Information Systems Preparedness Response using GIS and RS Urban Inventory Damage Map 2

3 Remote Sensing Satellite Optical Sensor/SAR km km Space Shuttle Airborne SAR Aerial Photography Aerial Television km 10-12km 0.3km 3

4 Contents Moderate to Low Resolution Satellites Landsat SAR Tools for Field Survey Airborne Remote Sensing High-Resolution Satellites IKONOS for the 2001 Gujarat Earthquake QuickBird for the 2003 Algeria Earthquake 4

5 Lansat-7 ETM+ (launched April, 1999) Landsat-7 ETM+ Landsat-5 TM Band Wavelength Spatial resolution Spatial resolution mm 30 m 30 m Blue mm 30 m 30 m Green mm 30 m 30 m Red mm 30 m 30 m Near IR mm 30 m 30 m Mid IR mm 60 m 120 m Far IR mm 30 m 30 m Mid IF 8 (panchr omatic) mm 15 m - Altitude 705 km Repeat cycle 16 days Swath width 185km ETM+ : Enhanced Thematic Mapper Plus 5

6 Landsat TM Images of Kobe Area Aug. 17, 1994 (Before EQ) Jan. 24, 1995 (After EQ) 6

7 Spectral Characteristics in Damaged Areas 80% Typical Spectral Reflectance Curves Water (clear) Vegetation (green) 70% Dry bare soil (gray-brown) 60% BlueGreenRedNear IR Mid IR Mid IR Reflectance Reflectance 50% 40% 30% TM band 20% 10% 0% (µm) Wavelength (m m) Wave length of satellite optical bands and spectral reflectance of various surfaces Liquefied Area High [Visible~Mid-infrared] by Sand Soil Burned Area Low [Visible] by embers/ashes Damaged Area High [Visible~Mid-infrared] by Soil under Roof and/or Walls 7

8 Damage Distribution Estimated from Landsat Images Liquefied Area Burned Area Heavy Damage Slight Damage No Damage Pre-event: 08/17/94 Post-event: 01/24/95 Actual damage 8 data

9 SAR: Synthetic Aperture Radar Active Microwave Sensor Emitting microwave signals, then receiving their reflection from objects on earth s surface All Weather, Day and Nighttime ERS/SAR Wave Length: 5.7cm (C-band VV) Resolution: 30m Recurrent Period: 35 days 9

10 Estimation of Damage Areas due to 1995 Kobe EQ using ERS/SAR Phase Front B Sat-1 Sat-2 Coherence High Low High Phase Front z 1 z 2 weak weak Coherence High Low High strong strong Severe damage area Very severe damage area Filtering Window: 21 x 21 Calculation Window: 13 x 13 95/05-94/10 95/05-94/06 95/05-93/08 95/05-92/11 Correlation Coefficient of Intensity Images Difference of Backscattering Coefficient [db] ERS (1995/5/ /6/3) Red: Very severe damage area Yellow: Severe damage area 10

11 Use of GPS and RS Data for Field Survey Joint Survey by MCEER/EDM after the 1999 Kocaeli, Turkey EQ Landsat image as a map GPS and mobile PC 11

12 Automated damage detection of airborne video images using edge and color information Edge Intensity Kobe EQ, 1995 Turkey EQ, 1999 Color 12

13 Multi Level Slice method Selection of training data MLC method Selection of training data C-3 N-3 C-1 G-1 N-1 N-2 C-2 Hue, Saturation, Brightness, Edge intensity & its variance Percentage (%) Building C-1 C-2 C-3 N-1 N-2 N-3 Maximum Setting threshold values Principal component analysis likelihood classifier Hue (0-360 degree) Automated extraction 13

14 Automated damage detection from aerial Photo Red: collapsed Yellow: damaged Red: Extracted Field survey and visual inspection Automated Detection 14 (Revised criteria in spatial filtering )

15 High-Resolution Satellite: IKONOS Resolution: 1m (Panchromatic), 4m (Multi-Spectral) Recurrence Time: 11days Retake Time: 3days (Resolution: 1.0m) Everyday (Resolution: 2.1m) Launched on September 25, 1999 Cost: $70 / km 2 IKONOS Image of Bhuj, India on Feb. 2,

16 IKONOS Image and Field Survey of Bhuj after the 2001 Gujarat, India Earthquake A part of IKONOS satellite image of Bhuj city after the Gujarat earthquake. Stones fell down from the parapet of the palace building and they are seen in the IKONOS image as well as 16in the ground photographs.

17 Boumerdes 17

18 Damages 2,276 people killed 11,000 people injured

19 QuickBird QuickBird launched on October 18, The highest resolution commercial satellite in operation. The system will collect 61cm class panchromatic and 2.5m multispectral stereoscopic data. 19

20 Specification of QuickBird Products Spatial and Spectral Resolution Panchromatic Multispectral Product Type Pixel Resolution Black & White 450 to 900-nm Blue 450 to 520-nm Green 520 to 600-nm Red 630 to 690- nm Near IR 760 to 900- nm Panchromatic 60-cm (2-ft) or 70-cm (2.3-ft) Multispectral 2.4-m (8-ft) or 2.8-m (9.2-ft) Natural Color 60-cm (2-ft) or 70-cm (2.3-ft) Color Infrared 60-cm (2-ft) or 70-cm (2.3-ft) Pan sharpened (4-band) 60-cm (2-ft) or 70-cm (2.3-ft) 20

21 QuickBird True Color Image (1) ~5 km Pre-event image 2002/04/ days before the earthquake ~5 km 21

22 QuickBird True Color Image (2) ~5 km Post-event days after the earthquake ~5 km 22

23 QuickBird True Color Image (3) ~5 km Post-event days after the earthquake ~5 km 23

24 Acquisition Parameters of QuickBird Images for Boumerdes, Algeria Pre-event Post-event 1 Post-event-2 Date 2002/04/ /05/ /06/18 (from 21 May, 2003 Earthquake) 394 days before 2 days after 28 days after Time 10:38:03 10:36:03 10:25:18 Sun azimuth ( o ) Sun elevation ( o ) Satellite azimuth ( o ) Satellite elevation ( o ) In track view angle ( o ) Cross track view angle ( o ) Off nadir view angle ( o ) Mean collected GSD (Multi/Pan) (m) 2.529/ / /

25 Image Enhancement (Pan-sharpening) R G B Encode BLUE I H S I R H G S B Manipulate Decode IHS/RGB encoding and decoding CYAN Display and analysis Panchromatic band is used for Intensity for resolution improvement. Mutispectrum bands for H and S. GREEN Intensity: total brightness of a color Hue: dominant wavelength of light contributing a color Saturation: the purity of color relative to gray I YELLOW MAGENTA BLACK WHITE GREEN CYAN BLUE WHITE RED MAGENTA RED YELLOW BLACK H S RGB based color cube IHS based color hexcone 25

26 Pansharpened Image True color image ~ 2.4m Panchromatic Bands 3, 2 and 1 (RGB) image ~ 0.6m True color pansharpened image ~ 0.6m 26

27 Boumerdes on May 23,

28 Building Collapse C B A D Pre-event 2002/04/22 Post-event 2003/05/23 28

29 South Campus, Boumerdes University C B A D Photo by Dr. K. Meguro on 22 July, 2003 C 29

30 Level of damages detected by QuickBird E F H G Pre-event 2002/04/22 Post-event 2003/05/23 30

31 Level of damages observed in field survey F E Damage to short columns Collapse of First Story Photo by Dr. K. Meguro on 22 July,

32 Level of damages observed in field survey H G Fall off infill blocks Collapse of the first story. This damage is difficult to identify from the vertical image Photo by Dr. K. Meguro on 22 July,

33 Building Damage and Cleaning Works (1) 2002/04/ /05/ /06/

34 Building Damage and Cleaning Works (2) 2002/04/ /05/ /06/ This building does not look so severely damaged, but it was demolished. 34

35 Classification of damage to buildings of reinforced concrete used in the European Macroseismic Scale (EMS) Grade 1: Negligible to slight damage (no structural damage, slight non-structural damage) Fine cracks in plaster over frame members or in walls at the base. Fine cracks in partitions and infills. Grade 2: Moderate damage (slight structural damage, moderate non-structural damage) Cracks in columns and beams of frames and in structural walls. Cracks in partition and infill walls; fall of brittle cladding and plaster. Falling mortar from the joints of wall panels. Grade 3: Substantial to heavy damage (moderate structural damage, heavy non-structural damage) Cracks in columns and beam column joints of frames at the base and at joints of coupled walls. Spalling of concrete cover, buckling of reinforced rods. Large cracks in partition and infill walls, failure of individual infill panels. 35

36 Classification of damage to buildings of reinforced concrete used in the European Macroseismic Scale (EMS) Grade 4: Very heavy damage (heavy structural damage, very heavy non-structural damage) Large cracks in structural elements with compression failure of concrete and fracture of rebars; bond failure of beam reinforced bars; tilting of columns. Collapse of a few columns or of a single upper floor. Grade 5: Destruction (very heavy structural damage) Collapse of ground floor or parts (e. g. wings) of buildings. Grade 5 and Grade 4 (and in some case, Grade 3) can be detected from QuickBird Images. 36

37 Flow of the damage classification Judgment by using the 23May image Grade 5 Grade 4 Grade 3 Grade 2,1 Unclear Confirmed by using the pre-event image Judged by using the pre-event image Grade 5 Grade 4 Grade 3 Grade 2,1 37

38 Visual damage detection using Post-event 1 image Green: Grades 1 and 2 Yellow: Grades 3 Orange: Grades 4 Red: Grade 5 38

39 City blocks used for the calculation of damage ratio and determined damage grade for each buildings Buildings Total: 3,446 Grade 5: 71 Grade 4: 54 Grade 3:

40 Number of buildings classified as Grades 3, 4, and 時期で確認, 検証 Judged by using preand post-event images Judged by using preand post-event images <Difficult to judge only by post-image> 2 時期で判読 ( 不明分 ) 1 時期 Judged by using postevent image only 0 G rade5 G rade4 G rade3 40

41 Damage ratio for Grade 5 in each block 41

42 Damage ratio for Grades 3, 4 and 5 in each block 42

43 2002/04/22 Tents for Refugees 2003/05/ /06/ Photo by Dr. K. Meguro on 22 July,

44 Distribution of tents in each block 284 tents on May 23, ,150 tents on June 18,

45 Conclusions (1) Remote sensing is quite a promising tool for earthquake disaster management. - Moderate resolution satellites (optical & SAR) for capturing macroscopic damage distribution - Airborne images for quick reconnaissance - High resolution satellites for capturing damages of buildings and infrastructures 45

46 Conclusions (2) Visual damage detection was carried out using QuickBird images for the 2003 Algeria earthquake. - Building damages of Grades 4 and 5in EMS can be identified. - Minor damages may be difficult to identify from vertical images. - GIS maps for building damage and tents were produced from the QuickBird images. 46

Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images

Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images Fumio YAMAZAKI/ yamazaki@edm.bosai.go.jp Hajime MITOMI/ mitomi@edm.bosai.go.jp Yalkun YUSUF/ yalkun@edm.bosai.go.jp

More information

Building Damage Mapping of the 2006 Central Java, Indonesia Earthquake Using High-Resolution Satellite Images

Building Damage Mapping of the 2006 Central Java, Indonesia Earthquake Using High-Resolution Satellite Images 4th International Workshop on Remote Sensing for Post-Disaster Response, 25-26 Sep. 2006, Cambridge, UK Building Damage Mapping of the 2006 Central Java, Indonesia Earthquake Using High-Resolution Satellite

More information

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns)

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns) Spectral Signatures % REFLECTANCE VISIBLE NEAR INFRARED Vegetation Soil Water.5. WAVELENGTH (microns). Spectral Reflectance of Urban Materials 5 Parking Lot 5 (5=5%) Reflectance 5 5 5 5 5 Wavelength (nm)

More information

Aral Sea profile Selection of area 24 February April May 1998

Aral Sea profile Selection of area 24 February April May 1998 250 km Aral Sea profile 1960 1960 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 2010? Selection of area Area of interest Kzyl-Orda Dried seabed 185 km Syrdarya river Aral Sea Salt

More information

Use of digital aerial camera images to detect damage to an expressway following an earthquake

Use of digital aerial camera images to detect damage to an expressway following an earthquake Use of digital aerial camera images to detect damage to an expressway following an earthquake Yoshihisa Maruyama & Fumio Yamazaki Department of Urban Environment Systems, Chiba University, Chiba, Japan.

More information

USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES

USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES Fumio Yamazaki 1, Daisuke Suzuki 2 and Yoshihisa Maruyama 3 ABSTRACT : 1 Professor, Department of Urban Environment Systems, Chiba University,

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

Multi-level detection of damaged buildings from high-resolution optical satellite images

Multi-level detection of damaged buildings from high-resolution optical satellite images Multi-level detection of damaged buildings from high-resolution optical satellite images T. Thuy Vu a, Masashi Matsuoka b, Fumio Yamazaki a a Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522,

More information

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES H. Topan*, G. Büyüksalih*, K. Jacobsen ** * Karaelmas University Zonguldak, Turkey ** University of Hannover, Germany htopan@karaelmas.edu.tr,

More information

Detection and Animation of Damage Using Very High-Resolution Satellite Data Following the 2003 Bam, Iran, Earthquake

Detection and Animation of Damage Using Very High-Resolution Satellite Data Following the 2003 Bam, Iran, Earthquake Detection and Animation of Damage Using Very High-Resolution Satellite Data Following the 2003 Bam, Iran, Earthquake Tuong Thuy Vu, a M.EERI, Masashi Matsuoka, a M.EERI, and Fumio Yamazaki, b M.EERI The

More information

ACCURATE EVALUATION OF BUILDING DAMAGE IN THE 2003 BOUMERDES, ALGERIA EARTHQUAKE FROM QUICKBIRD SATELLITE IMAGES

ACCURATE EVALUATION OF BUILDING DAMAGE IN THE 2003 BOUMERDES, ALGERIA EARTHQUAKE FROM QUICKBIRD SATELLITE IMAGES Journal of Earthquake and Tsunami, Vol. 5, No. 1 (2011) 1 18 c World Scientific Publishing Company DOI: 10.1142/S1793431111001029 ACCURATE EVALUATION OF BUILDING DAMAGE IN THE 2003 BOUMERDES, ALGERIA EARTHQUAKE

More information

Remote Sensing Platforms

Remote Sensing Platforms Types of Platforms Lighter-than-air Remote Sensing Platforms Free floating balloons Restricted by atmospheric conditions Used to acquire meteorological/atmospheric data Blimps/dirigibles Major role - news

More information

REMOTE SENSING INTERPRETATION

REMOTE SENSING INTERPRETATION REMOTE SENSING INTERPRETATION Jan Clevers Centre for Geo-Information - WU Remote Sensing --> RS Sensor at a distance EARTH OBSERVATION EM energy Earth RS is a tool; one of the sources of information! 1

More information

remote sensing? What are the remote sensing principles behind these Definition

remote sensing? What are the remote sensing principles behind these Definition Introduction to remote sensing: Content (1/2) Definition: photogrammetry and remote sensing (PRS) Radiation sources: solar radiation (passive optical RS) earth emission (passive microwave or thermal infrared

More information

REMOTE SENSING FOR FLOOD HAZARD STUDIES.

REMOTE SENSING FOR FLOOD HAZARD STUDIES. REMOTE SENSING FOR FLOOD HAZARD STUDIES. OPTICAL SENSORS. 1 DRS. NANETTE C. KINGMA 1 Optical Remote Sensing for flood hazard studies. 2 2 Floods & use of remote sensing. Floods often leaves its imprint

More information

Building Damage Mapping of the 2003 Bam, Iran, Earthquake Using Envisat/ASAR Intensity Imagery

Building Damage Mapping of the 2003 Bam, Iran, Earthquake Using Envisat/ASAR Intensity Imagery Building Damage Mapping of the 2003 Bam, Iran, Earthquake Using Envisat/ASAR Intensity Imagery Masashi Matsuoka, a M.EERI, and Fumio Yamazaki, b M.EERI A strong earthquake occurred beneath the city of

More information

Fusion of Heterogeneous Multisensor Data

Fusion of Heterogeneous Multisensor Data Fusion of Heterogeneous Multisensor Data Karsten Schulz, Antje Thiele, Ulrich Thoennessen and Erich Cadario Research Institute for Optronics and Pattern Recognition Gutleuthausstrasse 1 D 76275 Ettlingen

More information

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS REMOTE SENSING Topic 10 Fundamentals of Digital Multispectral Remote Sensing Chapter 5: Lillesand and Keifer Chapter 6: Avery and Berlin MULTISPECTRAL SCANNERS Record EMR in a number of discrete portions

More information

Abstract Quickbird Vs Aerial photos in identifying man-made objects

Abstract Quickbird Vs Aerial photos in identifying man-made objects Abstract Quickbird Vs Aerial s in identifying man-made objects Abdullah Mah abdullah.mah@aramco.com Remote Sensing Group, emap Division Integrated Solutions Services Department (ISSD) Saudi Aramco, Dhahran

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

USE OF OPTICAL SATELLITE IMAGES FOR THE RECOGNITION OF AREAS DAMAGED BY EARTHQUAKES ABSTRACT

USE OF OPTICAL SATELLITE IMAGES FOR THE RECOGNITION OF AREAS DAMAGED BY EARTHQUAKES ABSTRACT USE OF OPTICAL SATELLITE IMAGES FOR THE RECOGNITION OF AREAS DAMAGED BY EARTHQUAKES Miguel Estrada 1, Masashi Matsuoka 2, Fumio Yamazaki 3 ABSTRACT After an earthquake occurs, it is vital to identify hard-hit

More information

Remote Sensing Platforms

Remote Sensing Platforms Remote Sensing Platforms Remote Sensing Platforms - Introduction Allow observer and/or sensor to be above the target/phenomena of interest Two primary categories Aircraft Spacecraft Each type offers different

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Popular Remote Sensing Sensors & their Selection Michiel Damen (September 2011) damen@itc.nl 1 Overview Low resolution

More information

Remote Sensing for Rangeland Applications

Remote Sensing for Rangeland Applications Remote Sensing for Rangeland Applications Jay Angerer Ecological Training June 16, 2012 Remote Sensing The term "remote sensing," first used in the United States in the 1950s by Ms. Evelyn Pruitt of the

More information

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition Module 3 Introduction to GIS Lecture 8 GIS data acquisition GIS workflow Data acquisition (geospatial data input) GPS Remote sensing (satellites, UAV s) LiDAR Digitized maps Attribute Data Management Data

More information

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego 1 Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana Geob 373 Remote Sensing Dr Andreas Varhola, Kathry De Rego Zhu an Lim (14292149) L2B 17 Apr 2016 2 Abstract Montana

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

Lecture 13: Remotely Sensed Geospatial Data

Lecture 13: Remotely Sensed Geospatial Data Lecture 13: Remotely Sensed Geospatial Data A. The Electromagnetic Spectrum: The electromagnetic spectrum (Figure 1) indicates the different forms of radiation (or simply stated light) emitted by nature.

More information

IKONOS High Resolution Multispectral Scanner Sensor Characteristics

IKONOS High Resolution Multispectral Scanner Sensor Characteristics High Spatial Resolution and Hyperspectral Scanners IKONOS High Resolution Multispectral Scanner Sensor Characteristics Launch Date View Angle Orbit 24 September 1999 Vandenberg Air Force Base, California,

More information

Image interpretation. Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary.

Image interpretation. Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary. Image interpretation Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary. 50 1 N 110 7 W Milestones in the History of Remote Sensing 19 th century

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing Mads Olander Rasmussen (mora@dhi-gras.com) 01. Introduction to Remote Sensing DHI What is remote sensing? the art, science, and technology

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

1. Theory of remote sensing and spectrum

1. Theory of remote sensing and spectrum 1. Theory of remote sensing and spectrum 7 August 2014 ONUMA Takumi Outline of Presentation Electromagnetic wave and wavelength Sensor type Spectrum Spatial resolution Spectral resolution Mineral mapping

More information

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 Jacobsen, Karsten University of Hannover Email: karsten@ipi.uni-hannover.de

More information

Advanced Optical Satellite (ALOS-3) Overviews

Advanced Optical Satellite (ALOS-3) Overviews K&C Science Team meeting #24 Tokyo, Japan, January 29-31, 2018 Advanced Optical Satellite (ALOS-3) Overviews January 30, 2018 Takeo Tadono 1, Hidenori Watarai 1, Ayano Oka 1, Yousei Mizukami 1, Junichi

More information

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Remote sensing in archaeology from optical to lidar Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Introduction Optical remote sensing Systems Search for

More information

Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018

Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018 GEOL 1460/2461 Ramsey Introduction to Remote Sensing Fall, 2018 Synthetic aperture RADAR (SAR) principles/instruments October 31, 2018 I. Reminder: Upcoming Dates lab #2 reports due by the start of next

More information

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony K. Jacobsen, G. Konecny, H. Wegmann Abstract The Institute for Photogrammetry and Engineering Surveys

More information

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS Fundamentals of Remote Sensing Pranjit Kr. Sarma, Ph.D. Assistant Professor Department of Geography Mangaldai College Email: prangis@gmail.com Ph. No +91 94357 04398 Remote Sensing Remote sensing is defined

More information

Introduction of Satellite Remote Sensing

Introduction of Satellite Remote Sensing Introduction of Satellite Remote Sensing Spatial Resolution (Pixel size) Spectral Resolution (Bands) Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands)

More information

Introduction. Introduction. Introduction. Introduction. Introduction

Introduction. Introduction. Introduction. Introduction. Introduction Identifying habitat change and conservation threats with satellite imagery Extinction crisis Volker Radeloff Department of Forest Ecology and Management Extinction crisis Extinction crisis Conservationists

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

Aerial photography and Remote Sensing. Bikini Atoll, 2013 (60 years after nuclear bomb testing)

Aerial photography and Remote Sensing. Bikini Atoll, 2013 (60 years after nuclear bomb testing) Aerial photography and Remote Sensing Bikini Atoll, 2013 (60 years after nuclear bomb testing) Computers have linked mapping techniques under the umbrella term : Geomatics includes all the following spatial

More information

EO Data Today and Application Fields. Denise Petala

EO Data Today and Application Fields. Denise Petala EO Data Today and Application Fields Denise Petala ! IGD GROUP AE "Infotop SA, Geomet Ltd., Dynatools Ltd. "Equipment and know how in many application fields, from surveying till EO data and RS. # Leica,

More information

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf(

Outline. Introduction. Introduction: Film Emulsions. Sensor Systems. Types of Remote Sensing. A/Prof Linlin Ge. Photographic systems (cf( GMAT x600 Remote Sensing / Earth Observation Types of Sensor Systems (1) Outline Image Sensor Systems (i) Line Scanning Sensor Systems (passive) (ii) Array Sensor Systems (passive) (iii) Antenna Radar

More information

Use of Satellite Remote Sensing in Tsunami Damage Assessment

Use of Satellite Remote Sensing in Tsunami Damage Assessment Japan-Peru Workshop on Earthquake Disaster Mitigation, Lima 2005 Use of Satellite Remote Sensing in Tsunami Damage Assessment August 10, 2005 Fumio Yamazaki Chiba University, Chiba, Japan 1 World Tsunami

More information

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes A condensed overview George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) The art and science

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Introduction to Remote Sensing Michiel Damen (September 2011) damen@itc.nl 1 Overview Some definitions Remote

More information

Topographic mapping from space K. Jacobsen*, G. Büyüksalih**

Topographic mapping from space K. Jacobsen*, G. Büyüksalih** Topographic mapping from space K. Jacobsen*, G. Büyüksalih** * Institute of Photogrammetry and Geoinformation, Leibniz University Hannover ** BIMTAS, Altunizade-Istanbul, Turkey KEYWORDS: WorldView-1,

More information

What is Remote Sensing? Contents. Image Fusion in Remote Sensing. 1. Optical imagery in remote sensing. Electromagnetic Spectrum

What is Remote Sensing? Contents. Image Fusion in Remote Sensing. 1. Optical imagery in remote sensing. Electromagnetic Spectrum Contents Image Fusion in Remote Sensing Optical imagery in remote sensing Image fusion in remote sensing New development on image fusion Linhai Jing Applications Feb. 17, 2011 2 1. Optical imagery in remote

More information

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur.

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur. Basics of Remote Sensing Some literature references Franklin, SE 2001 Remote Sensing for Sustainable Forest Management Lewis Publishers 407p Lillesand, Kiefer 2000 Remote Sensing and Image Interpretation

More information

RADAR REMOTE SENSING

RADAR REMOTE SENSING RADAR REMOTE SENSING Jan G.P.W. Clevers & Steven M. de Jong Chapter 8 of L&K 1 Wave theory for the EMS: Section 1.2 of L&K E = electrical field M = magnetic field c = speed of light : propagation direction

More information

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning Lecture 6: Multispectral Earth Resource Satellites The University at Albany Fall 2018 Geography and Planning Outline SPOT program and other moderate resolution systems High resolution satellite systems

More information

Automated speed detection of moving vehicles from remote sensing images

Automated speed detection of moving vehicles from remote sensing images Safety, Reliability and Risk of Structures, Infrastructures and Engineering Systems Furuta, Frangopol & Shinozuka (eds) 2010 Taylor & Francis Group, London, ISBN 978-0-415-47557-0 Automated speed detection

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Sources of Geographic Information

Sources of Geographic Information Sources of Geographic Information Data properties: Spatial data, i.e. data that are associated with geographic locations Data format: digital (analog data for traditional paper maps) Data Inputs: sampled

More information

GIS Data Collection. Remote Sensing

GIS Data Collection. Remote Sensing GIS Data Collection Remote Sensing Data Collection Remote sensing Introduction Concepts Spectral signatures Resolutions: spectral, spatial, temporal Digital image processing (classification) Other systems

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

DEM GENERATION WITH WORLDVIEW-2 IMAGES

DEM GENERATION WITH WORLDVIEW-2 IMAGES DEM GENERATION WITH WORLDVIEW-2 IMAGES G. Büyüksalih a, I. Baz a, M. Alkan b, K. Jacobsen c a BIMTAS, Istanbul, Turkey - (gbuyuksalih, ibaz-imp)@yahoo.com b Zonguldak Karaelmas University, Zonguldak, Turkey

More information

Remote Sensing and GIS

Remote Sensing and GIS Remote Sensing and GIS Atmosphere Reflected radiation, e.g. Visible Emitted radiation, e.g. Infrared Backscattered radiation, e.g. Radar (λ) Visible TIR Radar & Microwave 11/9/2017 Geo327G/386G, U Texas,

More information

Applications of remote sensing and GIS for damage assessment

Applications of remote sensing and GIS for damage assessment Structural Safety and Reliability, Corotis et al. (eds), 2001 Swets & Zeitlinger, ISBN 90 5809 197 X Applications of remote sensing and GIS for damage assessment F. Yamazaki Earthquake Disaster Mitigation

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Daniel McInerney Urban Institute Ireland, University College Dublin, Richview Campus, Clonskeagh Drive, Dublin 14. 16th June 2009 Presentation Outline 1 2 Spaceborne Sensors

More information

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching.

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching. Remote Sensing Objectives This unit will briefly explain display of remote sensing image, geometric correction, spatial enhancement, spectral enhancement and classification of remote sensing image. At

More information

Remote Sensing. Measuring an object from a distance. For GIS, that means using photographic or satellite images to gather spatial data

Remote Sensing. Measuring an object from a distance. For GIS, that means using photographic or satellite images to gather spatial data Remote Sensing Measuring an object from a distance For GIS, that means using photographic or satellite images to gather spatial data Remote Sensing measures electromagnetic energy reflected or emitted

More information

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Spatial Resolution

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Spatial Resolution CHARACTERISTICS OF REMOTELY SENSED IMAGERY Spatial Resolution There are a number of ways in which images can differ. One set of important differences relate to the various resolutions that images express.

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

CHAPTER 7: Multispectral Remote Sensing

CHAPTER 7: Multispectral Remote Sensing CHAPTER 7: Multispectral Remote Sensing REFERENCE: Remote Sensing of the Environment John R. Jensen (2007) Second Edition Pearson Prentice Hall Overview of How Digital Remotely Sensed Data are Transformed

More information

Introduction to KOMPSAT

Introduction to KOMPSAT Introduction to KOMPSAT September, 2016 1 CONTENTS 01 Introduction of SIIS 02 KOMPSAT Constellation 03 New : KOMPSAT-3 50 cm 04 New : KOMPSAT-3A 2 KOMPSAT Constellation KOMPSAT series National space program

More information

Some Basic Concepts of Remote Sensing. Lecture 2 August 31, 2005

Some Basic Concepts of Remote Sensing. Lecture 2 August 31, 2005 Some Basic Concepts of Remote Sensing Lecture 2 August 31, 2005 What is remote sensing Remote Sensing: remote sensing is science of acquiring, processing, and interpreting images and related data that

More information

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry Satellite Imagery and Remote Sensing DeeDee Whitaker SW Guilford High EES & Chemistry whitakd@gcsnc.com Outline What is remote sensing? How does remote sensing work? What role does the electromagnetic

More information

MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES

MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES MODULE 4 LECTURE NOTES 4 DENSITY SLICING, THRESHOLDING, IHS, TIME COMPOSITE AND SYNERGIC IMAGES 1. Introduction Digital image processing involves manipulation and interpretation of the digital images so

More information

TELLS THE NUMBER OF PIXELS THE TRUTH? EFFECTIVE RESOLUTION OF LARGE SIZE DIGITAL FRAME CAMERAS

TELLS THE NUMBER OF PIXELS THE TRUTH? EFFECTIVE RESOLUTION OF LARGE SIZE DIGITAL FRAME CAMERAS TELLS THE NUMBER OF PIXELS THE TRUTH? EFFECTIVE RESOLUTION OF LARGE SIZE DIGITAL FRAME CAMERAS Karsten Jacobsen Leibniz University Hannover Nienburger Str. 1 D-30167 Hannover, Germany jacobsen@ipi.uni-hannover.de

More information

Remote Sensing 1 Principles of visible and radar remote sensing & sensors

Remote Sensing 1 Principles of visible and radar remote sensing & sensors Remote Sensing 1 Principles of visible and radar remote sensing & sensors Nick Barrand School of Geography, Earth & Environmental Sciences University of Birmingham, UK Field glaciologist collecting data

More information

Advanced Techniques in Urban Remote Sensing

Advanced Techniques in Urban Remote Sensing Advanced Techniques in Urban Remote Sensing Manfred Ehlers Institute for Geoinformatics and Remote Sensing (IGF) University of Osnabrueck, Germany mehlers@igf.uni-osnabrueck.de Contents Urban Remote Sensing:

More information

The Normal Baseline. Dick Gent Law of the Sea Division UK Hydrographic Office

The Normal Baseline. Dick Gent Law of the Sea Division UK Hydrographic Office The Normal Baseline Dick Gent Law of the Sea Division UK Hydrographic Office 2 The normal baseline for measuring the breadth of the territorial sea is the low water line along the coast as marked on large

More information

to Geospatial Technologies

to Geospatial Technologies What s in a Pixel? A Primer for Remote Sensing What s in a Pixel Development UNH Cooperative Extension Geospatial Technologies Training Center Shane Bradt UConn Cooperative Extension Geospatial Technology

More information

MULTISPECTRAL IMAGE PROCESSING I

MULTISPECTRAL IMAGE PROCESSING I TM1 TM2 337 TM3 TM4 TM5 TM6 Dr. Robert A. Schowengerdt TM7 Landsat Thematic Mapper (TM) multispectral images of desert and agriculture near Yuma, Arizona MULTISPECTRAL IMAGE PROCESSING I SENSORS Multispectral

More information

RGB colours: Display onscreen = RGB

RGB colours:  Display onscreen = RGB RGB colours: http://www.colorspire.com/rgb-color-wheel/ Display onscreen = RGB DIGITAL DATA and DISPLAY Myth: Most satellite images are not photos Photographs are also 'images', but digital images are

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

ROLE OF SATELLITE DATA APPLICATION IN CADASTRAL MAP AND DIGITIZATION OF LAND RECORDS DR.T. RAVISANKAR GROUP HEAD (LRUMG) RSAA/NRSC/ISRO /DOS HYDERABAD

ROLE OF SATELLITE DATA APPLICATION IN CADASTRAL MAP AND DIGITIZATION OF LAND RECORDS DR.T. RAVISANKAR GROUP HEAD (LRUMG) RSAA/NRSC/ISRO /DOS HYDERABAD ROLE OF SATELLITE DATA APPLICATION IN CADASTRAL MAP AND DIGITIZATION OF LAND RECORDS DR.T. RAVISANKAR GROUP HEAD (LRUMG) RSAA/NRSC/ISRO /DOS HYDERABAD WORKSHOP on Best Practices under National Land Records

More information

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY Ahmed Elsharkawy 1,2, Mohamed Elhabiby 1,3 & Naser El-Sheimy 1,4 1 Dept. of Geomatics Engineering, University of Calgary

More information

HISTORY OF REMOTE SENSING

HISTORY OF REMOTE SENSING HISTORY OF REMOTE SENSING IMPORTANT PERIODS The beginning: photography and flight (1858-1918) Rapid developments in photogrammetry (1918-1939) Military imperatives (1939-1945) Cold wars and environmental

More information

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs

Basic Digital Image Processing. The Structure of Digital Images. An Overview of Image Processing. Image Restoration: Line Drop-outs Basic Digital Image Processing A Basic Introduction to Digital Image Processing ~~~~~~~~~~ Rev. Ronald J. Wasowski, C.S.C. Associate Professor of Environmental Science University of Portland Portland,

More information

Coral Reef Remote Sensing

Coral Reef Remote Sensing Coral Reef Remote Sensing Spectral, Spatial, Temporal Scaling Phillip Dustan Sensor Spatial Resolutio n Number of Bands Useful Bands coverage cycle Operation Landsat 80m 2 2 18 1972-97 Thematic 30m 7

More information

INFORMATION CONTENT ANALYSIS FROM VERY HIGH RESOLUTION OPTICAL SPACE IMAGERY FOR UPDATING SPATIAL DATABASE

INFORMATION CONTENT ANALYSIS FROM VERY HIGH RESOLUTION OPTICAL SPACE IMAGERY FOR UPDATING SPATIAL DATABASE INFORMATION CONTENT ANALYSIS FROM VERY HIGH RESOLUTION OPTICAL SPACE IMAGERY FOR UPDATING SPATIAL DATABASE M. Alkan a, * a Department of Geomatics, Faculty of Civil Engineering, Yıldız Technical University,

More information

Development of the Technology of Utilization of Airborne Synthetic Aperture Radar (SAR)

Development of the Technology of Utilization of Airborne Synthetic Aperture Radar (SAR) Development of the Technology of Utilization of Airborne Synthetic Aperture Radar (SAR) Mamoru Koarai, Kouichi Moteki, Nobuyuki Watanabe, Takaki Okatani,Youko Yamada and Kaoru Matsuo Geographical Survey

More information

APPLICATION OF HIGH-RESOLUTION SATELLITE IMAGERRY FOR DETECTION OF DISASTER DAMAGES AND DISASTER MONITORING -THROUGH THE PRODUCE OF INTERPRETATION CHARACTERSTICS CARDS OF SATELLITE IMAGERIES FOR DISASTER

More information

NRS 415 Remote Sensing of Environment

NRS 415 Remote Sensing of Environment NRS 415 Remote Sensing of Environment 1 High Oblique Perspective (Side) Low Oblique Perspective (Relief) 2 Aerial Perspective (See What s Hidden) An example of high spatial resolution true color remote

More information

Satellite/Aircraft Imaging Systems Imaging Sensors Standard scanner designs Image data formats

Satellite/Aircraft Imaging Systems Imaging Sensors Standard scanner designs Image data formats CEE 6150: Digital Image Processing 1 Satellite/Aircraft Imaging Systems Imaging Sensors Standard scanner designs Image data formats CEE 6150: Digital Image Processing 2 CEE 6150: Digital Image Processing

More information

Application of Satellite Image Processing to Earth Resistivity Map

Application of Satellite Image Processing to Earth Resistivity Map Application of Satellite Image Processing to Earth Resistivity Map KWANCHAI NORSANGSRI and THANATCHAI KULWORAWANICHPONG Power System Research Unit School of Electrical Engineering Suranaree University

More information

MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR

MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR 1. Introduction The field of digital image processing relies on mathematical and probabilistic formulations accompanied by human intuition and analysis based

More information

Image Fusion. Pan Sharpening. Pan Sharpening. Pan Sharpening: ENVI. Multi-spectral and PAN. Magsud Mehdiyev Geoinfomatics Center, AIT

Image Fusion. Pan Sharpening. Pan Sharpening. Pan Sharpening: ENVI. Multi-spectral and PAN. Magsud Mehdiyev Geoinfomatics Center, AIT 1 Image Fusion Sensor Merging Magsud Mehdiyev Geoinfomatics Center, AIT Image Fusion is a combination of two or more different images to form a new image by using certain algorithms. ( Pohl et al 1998)

More information

HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING. Author: Peter Fricker Director Product Management Image Sensors

HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING. Author: Peter Fricker Director Product Management Image Sensors HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING Author: Peter Fricker Director Product Management Image Sensors Co-Author: Tauno Saks Product Manager Airborne Data Acquisition Leica Geosystems

More information

GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11

GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11 GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11 Global Positioning Systems GPS is a technology that provides Location coordinates Elevation For any location with a decent view of the sky

More information

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks)

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks) Final Examination Introduction to Remote Sensing Time: 1.5 hrs Max. Marks: 50 Note: Attempt all questions. Section-I (50 x 1 = 50 Marks) 1... is the technology of acquiring information about the Earth's

More information

DETECTION OF BUILDING SIDE-WALL DAMAGE CAUSED BY THE 2011 TOHOKU, JAPAN EARTHQUAKE TSUNAMIS USING HIGH-RESOLUTION SAR IMAGERY

DETECTION OF BUILDING SIDE-WALL DAMAGE CAUSED BY THE 2011 TOHOKU, JAPAN EARTHQUAKE TSUNAMIS USING HIGH-RESOLUTION SAR IMAGERY 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska DETECTION OF BUILDING SIDE-WALL DAMAGE CAUSED BY THE 2011 TOHOKU,

More information

DAMAGE ASSESSMENT OF URBAN AREAS DUE TO THE 2015 NEPAL EARTHQUAKE USING PALSAR-2 IMAGERY

DAMAGE ASSESSMENT OF URBAN AREAS DUE TO THE 2015 NEPAL EARTHQUAKE USING PALSAR-2 IMAGERY DAMAGE ASSESSMENT OF URBAN AREAS DUE TO THE 2015 NEPAL EARTHQUAKE USING PALSAR-2 IMAGERY Rendy Bahri 1, Wen Liu 2 and Fumio Yamazaki 3 Department of Urban Environment Systems, Chiba University 1-33 Yayoi-cho,

More information