Haria Nikunj Jayantilal Orre Liza Maribor Turning LED on/off using motion sensor- A project report

Size: px
Start display at page:

Download "Haria Nikunj Jayantilal Orre Liza Maribor Turning LED on/off using motion sensor- A project report"

Transcription

1 0 Haria Nikunj Jayantilal Orre Liza Maribor Turning LED on/off using motion sensor- A project report Digital Electronics- APT 2030 Dr. Sylvester Namuye USIU- Africa Spring

2 ABSTRACT The purpose of this experiment was to obtain a basic knowledge on digital electronics and in turn set the stage to perform the analysis and design of complex digital electronics circuits. It also served as an opportunity to learn how the motion sensor worked by using it to turn the LED on/off. This was done by examining results that were brought forth after carrying out the experiment. The results were analyzed and observations made in order to draw accurate conclusions from the entire process. The experiment was carried out on a breadboard and an Arduino, a board used to prototype experimental electrical circuits and by following step by step instructions to build the circuit and to observe the results there after in order to draw conclusions and relationship between the output produced and its logical components from the constructed circuit. The purpose of the Arduino was to control the motion sensor and store the results. The report draws upon mostly primary sources such as the results of the experiment itself and books based on the subject matter it was seen that the circuit is only observed to produce an output of logic high (1) only when there was movement that changed the infrared waves. The circuit only works this way for these inputs. Otherwise it produces an output of logic Low (0). 2

3 Table of Contents ABSTRACT... 2 Table of Contents... 3 INTRODUCTION... 4 OBJECTIVES... 5 REQUIREMENTS... 6 PROCEDURE... 7 OBSERVATIONS AND RESULTS... 8 DISCUSSION CONCLUSION

4 INTRODUCTION Digital electronics is one of the fundamental courses found in all electrical engineering and most computer science programs. It is essential in understanding the wide range of applications from industrial electronics to the field of communication and micro embedded systems with the main and perhaps the most revolutionary advantage being the decrease in physical size and improvement of technology. By definition, Digital electronics, also known as digital circuits, are electronics that handle digital signals, discrete bands of analog levels rather than by continuous analog ranges as used in analog electronics. As a result, Digital techniques are useful because it is easier to get electronic devices to switch into one of a number of known states than to accurately reproduce a continuous range of values. Furthermore, digital electronics circuits are usually made from large assemblies of logic gates that serve as simple electronic representations of Boolean logic functions. These logic gates are arrangements of electrically controlled switches better known as transistors. The logic gates can be used to create combinational logic with each logic gate within the circuit representing a function of Boolean logic, a form of algebra in which all the values are reduced to either true or false. The purpose of this report is to discuss the conclusive results and observations obtained from carrying out an experiment that sought to provide enlightenment on the workings and design of digital electronics by demonstrate the fundamental working of PIR motion Sensor. 4

5 OBJECTIVES The main objective of this experiment was to obtain a basic knowledge on digital electronics and in turn set the stage to perform the analysis and design of complex digital electronics circuits. Furthermore, the experiment sought to acquaint the authors to one of the most fundamental tools needed to learn how to build circuits, the breadboard, a construction base used to prototype electronic circuits electronics, sensors and most important the Arduino. The experiment also sought to benefit the author from the experience acquired from carrying out the task at hand. Through the authors own effort and knowledge acquired from carrying out the experiment, the authors have been enabled to use and adopt the knowledge acquired to so solve future problems that might be encountered by applying what was learnt from the experiment. Through the experiment, the authors were presented with an opportunity to learn how the sensor works by connecting it to the Arduino. The experiment gives the authors the ability to determine the output of the LED, given the input logic signals and as result, enabling the LED s behavior to be observed and understood through experimental determination of the motion sensor. Also, the experiment enabled the authors to understand the workings of some of the most basic circuit components such as resistors, Light Emitting Diodes, source, ground, Arduino and the breadboard as well. It also offered the opportunity to understand how to convert a circuit s schematic diagrams into an actual physical representation of a circuit on to a breadboard. Most importantly, the experiment serves as an introduction to the inner workings of digital computers and modern digital electronics as digital logic is the very core and foundation of digital computers. 5

6 REQUIREMENTS The following electrical components, each used for a specific reason was needed in order to assemble the circuit. 1 Arduino Mega Breadboard 1 LED 1 Switch 2 10 Resistor PIR Sensor Connecting wires Connection to power 6

7 PROCEDURE The schematic diagram below severed as a guide on how to connect the electronic circuit. It depicted where each of the electrical components needed to be placed and how they were to be interconnected with each other in order to assemble the circuit. 7

8 Using the schematic diagram above, the electrical circuit was constructed on a breadboard with the actual electronic components and connections depicted in the diagram. The figure below depicts the actual representation of the circuit s schematic as assembled on a breadboard. OBSERVATIONS AND RESULTS After the circuit was assembled on the breadboard as per the depiction on the schematic, the 8

9 Arduino was powered using a computer and the code was compiled and ran to produce an output. When the PIR motion sensor detected Infrared waves, it would send charge the SSR coil which powered on the lamp. The result is shown in the figure below. 9

10 When there was no motion or no infrared waves being emitted the lamp did not light up as shown in the figure below. 10

11 DISCUSSION The circuit was constructed in basic way with 3 modules, the input, output and the logic. The input was the PIR motion sensor, the output being the lamp and the logic being the code executed in the Arduino. PIR Sensor Input The Arduino Logic Module Lamp Output Module 11

12 CONCLUSION In conclusion the circuit is only observed to produce an output of logic high (1) only when there is infrared waves emission by the human body. The circuit only works this way for these input. Otherwise it produces an output of logic Low (0), for all the other possible combinations. 12

ENG 100 Electric Circuits and Systems Lab 6: Introduction to Logic Circuits

ENG 100 Electric Circuits and Systems Lab 6: Introduction to Logic Circuits ENG 100 Electric Circuits and Systems Lab 6: Introduction to Logic Circuits Professor P. Hurst Lecture 5:10p 6:00p TR, Kleiber Hall Lab 2:10p 5:00p F, 2161 Kemper Hall LM741 Operational Amplifier Courtesy

More information

Logic diagram: a graphical representation of a circuit

Logic diagram: a graphical representation of a circuit LOGIC AND GATES Introduction to Logic (1) Logic diagram: a graphical representation of a circuit Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate

More information

Breadboard Traffic Light System

Breadboard Traffic Light System 1 Breadboard Traffic Light System Alex Sawicki & Geoff Yeung TEJ4M Mr. Bawa June20, 2013 2 Table of Contents Materials 3 Background Research 4 Experimental Procedure 7 Method One 8 Method Two 9 Conclusions

More information

Introduction (concepts and definitions)

Introduction (concepts and definitions) Objectives: Introduction (digital system design concepts and definitions). Advantages and drawbacks of digital techniques compared with analog. Digital Abstraction. Synchronous and Asynchronous Systems.

More information

A B. 1 (a) (i) Fig shows the symbol for a circuit component. Fig Name this component. ... [1]

A B. 1 (a) (i) Fig shows the symbol for a circuit component. Fig Name this component. ... [1] (a) (i) Fig.. shows the symbol for a circuit component. Fig.. Name this component.... [] (ii) In the space below, draw the symbol for a NOT gate. (b) Fig..2 shows a digital circuit. [] C D E Fig..2 Complete

More information

STEM: Electronics Curriculum Map & Standards

STEM: Electronics Curriculum Map & Standards STEM: Electronics Curriculum Map & Standards Time: 45 Days Lesson 6.1 What is Electricity? (16 days) Concepts 1. As engineers design electrical systems, they must understand a material s tendency toward

More information

INTRODUCTION TO DIGITAL CONCEPT

INTRODUCTION TO DIGITAL CONCEPT COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) INTRODUCTION TO DIGITAL CONCEPT Digital and Analog Quantities Digital relates to data in the form of digits,

More information

Objective of the lesson

Objective of the lesson Arduino Lesson 5 1 Objective of the lesson Learn how to program an Arduino in S4A All of you will: Add an LED to an Arduino and get it to come on and blink Most of you will: Add an LED to an Arduino and

More information

Sensors. CS Embedded Systems p. 1/1

Sensors. CS Embedded Systems p. 1/1 CS 445 - Embedded Systems p. 1/1 Sensors A device that provides measurements of a physical process. Many sensors are transducers, devices that convert energy from one form to another. Examples: Pressure

More information

CMOS Inverter & Ring Oscillator

CMOS Inverter & Ring Oscillator CMOS Inverter & Ring Oscillator Theory: In this Lab we will implement a CMOS inverter and then use it as a building block for a Ring Oscillator. MOSfets (Metal Oxide Semiconductor Field Effect Transistors)

More information

Lab 12: Timing sequencer (Version 1.3)

Lab 12: Timing sequencer (Version 1.3) Lab 12: Timing sequencer (Version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

More information

DC Motor and Servo motor Control with ARM and Arduino. Created by:

DC Motor and Servo motor Control with ARM and Arduino. Created by: DC Motor and Servo motor Control with ARM and Arduino Created by: Andrew Kaler (39345) Tucker Boyd (46434) Mohammed Chowdhury (860822) Tazwar Muttaqi (901700) Mark Murdock (98071) May 4th, 2017 Objective

More information

Industrial Automation Training Academy. Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours)

Industrial Automation Training Academy. Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours) nfi Industrial Automation Training Academy Presents Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours) For: Electronics & Communication Engineering Electrical Engineering Instrumentation

More information

LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY

LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY Objectives Preparation Tools To see the inner workings of a commercial mechatronic system and to construct a simple manual motor speed controller and current

More information

Own Your Technology Presents Workshop on

Own Your Technology Presents Workshop on Own Your Technology Presents Workshop on PCB Designing ------------OUR FORTE------------ AERO MODELLING INTERNET OF THINGS EMBEDDED SYSTEMS ROBOTICS MATLAB & MACHINE VISION VLSI & VHDL ANDRIOD APP DEVELOPMENT

More information

Basic Microprocessor Interfacing Trainer Lab Manual

Basic Microprocessor Interfacing Trainer Lab Manual Basic Microprocessor Interfacing Trainer Lab Manual Control Inputs Microprocessor Data Inputs ff Control Unit '0' Datapath MUX Nextstate Logic State Memory Register Output Logic Control Signals ALU ff

More information

In this lecture: Lecture 3: Basic Logic Gates & Boolean Expressions

In this lecture: Lecture 3: Basic Logic Gates & Boolean Expressions In this lecture: Lecture 3: Basic Logic Gates & Boolean Expressions Dr Pete Sedcole Department of E&E Engineering Imperial College London http://cas.ee.ic.ac.uk/~nps/ (Floyd 3.1 3.6, 4.1) (Tocci 3.1 3.9)

More information

Cyber Theater Project Video sync d Robot Play

Cyber Theater Project Video sync d Robot Play Cyber Theater Project Video sync d Robot Play By Prince Paul Under the guidance and support of Dr Marek A. Perkowski Mathias Sunardi Master of Science In Electrical and Computer Engineering Portland State

More information

EE19D Digital Electronics. Lecture 1: General Introduction

EE19D Digital Electronics. Lecture 1: General Introduction EE19D Digital Electronics Lecture 1: General Introduction 1 What are we going to discuss? Some Definitions Digital and Analog Quantities Binary Digits, Logic Levels and Digital Waveforms Introduction to

More information

Implementaion of High Performance Home Automation using Arduino

Implementaion of High Performance Home Automation using Arduino Indian Journal of Science and Technology, Vol 9(21), DOI: 10.17485/ijst/2016/v9i21/94842, June 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Implementaion of High Performance Home Automation

More information

Electronic Components

Electronic Components Electronic Components Arduino Uno Arduino Uno is a microcontroller (a simple computer), it has no way to interact. Building circuits and interface is necessary. Battery Snap Battery Snap is used to connect

More information

ECE U401/U211-Introduction to Electrical Engineering Lab. Lab 4

ECE U401/U211-Introduction to Electrical Engineering Lab. Lab 4 ECE U401/U211-Introduction to Electrical Engineering Lab Lab 4 Preliminary IR Transmitter/Receiver Development Introduction: In this lab you will design and prototype a simple infrared transmitter and

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

Introduction to Electronics and Breadboarding Circuits

Introduction to Electronics and Breadboarding Circuits Introduction to Electronics and Breadboarding Circuits What we're going to learn today: What is an electronic circuit? What kind of power is needed for these projects? What are the fundamental principles

More information

PS 12b Lab 1c IV Curves

PS 12b Lab 1c IV Curves Names: 1.) 2.) 3.) PS 12b Lab 1c IV Curves Learning Goal: Understand I- V curves for ohmic and non- ohmic devices (light bulb, resistor, Light Emitting Diode (LED), and Thermistor. Work with a Field Effect

More information

Technician Licensing Class T6

Technician Licensing Class T6 Technician Licensing Class T6 Amateur Radio Course Monroe EMS Building Monroe, Utah January 11/18, 2014 January 22, 2014 Testing Session Valid dates: July 1, 2010 June 30, 2014 Amateur Radio Technician

More information

SUBELEMENT T6 Electrical components: semiconductors; circuit diagrams; component functions 4 Exam Questions - 4 Groups

SUBELEMENT T6 Electrical components: semiconductors; circuit diagrams; component functions 4 Exam Questions - 4 Groups SUBELEMENT T6 Electrical components: semiconductors; circuit diagrams; component functions 4 Exam Questions - 4 Groups 1 T6A Electrical components: fixed and variable resistors; capacitors and inductors;

More information

TECH 3232 Fall 2010 Lab #1 Into To Digital Circuits. To review basic logic gates and digital logic circuit construction and testing.

TECH 3232 Fall 2010 Lab #1 Into To Digital Circuits. To review basic logic gates and digital logic circuit construction and testing. TECH 3232 Fall 2010 Lab #1 Into To Digital Circuits Name: Purpose: To review basic logic gates and digital logic circuit construction and testing. Introduction: The most common way to connect circuits

More information

Curriculum. Technology Education ELECTRONICS

Curriculum. Technology Education ELECTRONICS Curriculum Technology Education ELECTRONICS Supports Academic Learning Expectation # 3 Students and graduates of Ledyard High School will employ problem-solving skills effectively Approved by Instructional

More information

T6A4. Electrical components; fixed and variable resistors, capacitors, and inductors; fuses, switches, batteries

T6A4. Electrical components; fixed and variable resistors, capacitors, and inductors; fuses, switches, batteries Amateur Radio Technician Class Element Course Presentation ti ELEMENT SUB-ELEMENTS Technician Licensing Class Supplement T Electrical/Electronic Components Exam Questions, Groups T - FCC Rules, descriptions

More information

EMBEDDED SYSTEMS AND KINETIC ART A NATURAL COLLABORATION. Erik Brunvand and Paul Stout. Kinetic art contains moving parts

EMBEDDED SYSTEMS AND KINETIC ART A NATURAL COLLABORATION. Erik Brunvand and Paul Stout. Kinetic art contains moving parts EMBEDDED SYSTEMS AND KINETIC ART A NATURAL COLLABORATION Erik Brunvand and Paul Stout Kinetic Art Kinetic art contains moving parts Depends on motion, sound, or light for its effect Kinetic aspect often

More information

LogicBlocks & Digital Logic Introduction

LogicBlocks & Digital Logic Introduction Page 1 of 10 LogicBlocks & Digital Logic Introduction Introduction Get up close and personal with the driving force behind the world of digital electronics - digital logic! The LogicBlocks kit is your

More information

HC-SR501 Passive Infrared (PIR) Motion Sensor

HC-SR501 Passive Infrared (PIR) Motion Sensor Handson Technology User Guide HC-SR501 Passive Infrared (PIR) Motion Sensor This motion sensor module uses the LHI778 Passive Infrared Sensor and the BISS0001 IC to control how motion is detected. The

More information

Technician Licensing Class

Technician Licensing Class Technician Licensing Class Go Picture Presented These! by Amateur Radio Technician Class Element 2 Course Presentation ELEMENT 2 SUB-ELEMENTS (Groupings) About Ham Radio Call Signs Control Mind the Rules

More information

INTRODUCTION OF SOME APPROACHES FOR EDUCATIONS OF ROBOT DESIGN AND MANUFACTURING

INTRODUCTION OF SOME APPROACHES FOR EDUCATIONS OF ROBOT DESIGN AND MANUFACTURING INTRODUCTION OF SOME APPROACHES FOR EDUCATIONS OF ROBOT DESIGN AND MANUFACTURING T. Matsuo *,a, M. Tatsuguchi a, T. Higaki a, S. Kuchii a, M. Shimazu a and H. Terai a a Department of Creative Engineering,

More information

Electronics for Scientists V and G (Spring 2007)

Electronics for Scientists V and G (Spring 2007) Electronics for Scientists V85-0110 and G85-1500 (Spring 2007) Instructor: Prof. Andrew Kent Laboratory Instructor: N/A Prerequisites: Physics II or permission of the instructor Lecture and laboratory,

More information

LogicBlocks & Digital Logic Introduction a

LogicBlocks & Digital Logic Introduction a LogicBlocks & Digital Logic Introduction a learn.sparkfun.com tutorial Available online at: http://sfe.io/t215 Contents Introduction What is Digital Logic? LogicBlocks Fundamentals The Blocks In-Depth

More information

Chapters 11 & 12 Electronic Controls & Automation

Chapters 11 & 12 Electronic Controls & Automation Chapters 11 & 12 Electronic Controls & Automation Use the Textbook Pages 255 297 to help answer the questions Why You Learn So Well in Tech & Engineering Classes 1. All control systems have and devices.

More information

LEDs and Sensors Part 2: Analog to Digital

LEDs and Sensors Part 2: Analog to Digital LEDs and Sensors Part 2: Analog to Digital In the last lesson, we used switches to create input for the Arduino, and, via the microcontroller, the inputs controlled our LEDs when playing Simon. In this

More information

What is Digital Logic? Why's it important? What is digital? What is digital logic? Where do we see it? Inputs and Outputs binary

What is Digital Logic? Why's it important? What is digital? What is digital logic? Where do we see it? Inputs and Outputs binary What is Digital Logic? Why's it important? What is digital? Electronic circuits can be divided into two categories: analog and digital. Analog signals can take any shape and be an infinite number of possible

More information

EE 280 Introduction to Digital Logic Design

EE 280 Introduction to Digital Logic Design EE 280 Introduction to Digital Logic Design Lecture 1. Introduction EE280 Lecture 1 1-1 Instructors: EE 280 Introduction to Digital Logic Design Dr. Lukasz Kurgan (section A1) office: ECERF 6 th floor,

More information

Introduction to Electronics. Dr. Lynn Fuller

Introduction to Electronics. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Introduction to Electronics Dr. Lynn Fuller Webpage: http://www.rit.edu/~lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

Logic Gates with Boolean Functions

Logic Gates with Boolean Functions 4 Logic Gates with oolean Functions In this chapter you will learn about, ² signals used in electronic science ² basic logic gates and combinational logic gates ² representing oolean expressions using

More information

Lab# 13: Introduction to the Digital Logic

Lab# 13: Introduction to the Digital Logic Lab# 13: Introduction to the Digital Logic Revision: October 30, 2007 Print Name: Section: In this lab you will become familiar with Physical and Logical Truth tables. As well as asserted high, asserted

More information

Experiment #3: Experimenting with Resistor Circuits

Experiment #3: Experimenting with Resistor Circuits Name/NetID: Experiment #3: Experimenting with Resistor Circuits Laboratory Outline During the semester, the lecture will provide some of the mathematical underpinnings of circuit theory. The laboratory

More information

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful.

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful. Name: Class: Date: DE Midterm Review 2 True/False Indicate whether the statement is true or false. 1. As more electronic systems have been designed using digital technology, devices have become smaller

More information

Electronic Systems Example: Thermo Warning Light

Electronic Systems Example: Thermo Warning Light Electronic Systems Example: Thermo Warning Light ENGG115 1 st Semester, 11 Dr. Kenneth KinYip Wong Course Topics High Level Today Applications Systems Digital Logic Circuits Image & Video Processing Computer

More information

ELECTRICAL ENGINEERING - TEACHER MODULE 1 LOGIC GATES

ELECTRICAL ENGINEERING - TEACHER MODULE 1 LOGIC GATES Revision: 02/16/01 SUMMER INSTITUTE FOR ENGINEERING AND TECHNOLOGY EDUCATION ELECTRICAL ENGINEERING - TEACHER MODULE 1 LOGIC GATES CONCEPT This unit will introduce you to logic gates and truth tables.

More information

(c) Figure 1.1: Schematic elements. (a) Voltage source. (b) Light bulb. (c) Switch, open (off). (d) Switch, closed (on).

(c) Figure 1.1: Schematic elements. (a) Voltage source. (b) Light bulb. (c) Switch, open (off). (d) Switch, closed (on). Chapter 1 Switch-based logic functions 1.1 Basic flashlight A schematic is a diagram showing the important electrical components of an electrical circuit and their interconnections. One of the simplest

More information

CPE 100L LOGIC DESIGN I

CPE 100L LOGIC DESIGN I CPE 100L LABORATORY 3: COMBINATIONAL CIRCUIT DESIGN FULL ADDER BY GRZEGORZ CHMAJ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOALS: Develop the ability to write a

More information

Conventional transistor overview and special transistors

Conventional transistor overview and special transistors Conventional transistor overview and special transistors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Lesson 13. The Big Idea: Lesson 13: Infrared Transmitters

Lesson 13. The Big Idea: Lesson 13: Infrared Transmitters Lesson Lesson : Infrared Transmitters The Big Idea: In Lesson 12 the ability to detect infrared radiation modulated at 38,000 Hertz was added to the Arduino. This lesson brings the ability to generate

More information

ME218a Midterm Exam Due by 4pm on 10/25/96. I Certify that I have taken this examination in compliance with the Stanford University Honor Code.

ME218a Midterm Exam Due by 4pm on 10/25/96. I Certify that I have taken this examination in compliance with the Stanford University Honor Code. ME218a Midterm Exam Due by 4pm on 10/25/96 Name: I Certify that I have taken this examination in compliance with the Stanford University Honor Code. Sign Here Include this as the cover sheet for you solutions

More information

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 DIGITAL ELECTRONICS Marking scheme : Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 Aim: This experiment will investigate the function of the

More information

5v AC R. 12v. 1kohm. F=35KHz oscilloscope. 3 Final Project OFF. ON Toggle Switch. Relay 5v 2N3906 2N uF LM311. IR Detector +5v GND LED PNP NPN

5v AC R. 12v. 1kohm. F=35KHz oscilloscope. 3 Final Project OFF. ON Toggle Switch. Relay 5v 2N3906 2N uF LM311. IR Detector +5v GND LED PNP NPN 3 Final Project Diode 103 IR Detector OFF ON Toggle Switch IR Detector +5v Push Button IR 100uF LED + GND LDR C Preset R 7805 IN GND OUT Relay 5v + PNP 2N3906 1 Kohm NPN 2N3904 4 3 2 1 555 5 6 7 8 4 3

More information

DIGITAL DIRECTION SENSING MOTION DETECTOR MANUAL

DIGITAL DIRECTION SENSING MOTION DETECTOR MANUAL DIGITAL DIRECTION SENSING MOTION DETECTOR MANUAL DP-005 GLOLAB CORPORATION Thank you for buying our DP-005 Digital Direction Sensing Motion Detector The goal of Glolab is to produce top quality electronic

More information

Gates and and Circuits

Gates and and Circuits Chapter 4 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

UNIT 2. Digital Signals: The basics of digital encoding and the use of binary systems.

UNIT 2. Digital Signals: The basics of digital encoding and the use of binary systems. UNIT 2 Digital Signals: The basics of digital encoding and the use of binary systems. Your Name Date of Submission CHEMISTRY 6158C Department of Chemistry University of Florida Gainesville, FL 32611 (Note:

More information

Unit level 4 Credit value 15. Introduction. Learning Outcomes

Unit level 4 Credit value 15. Introduction. Learning Outcomes Unit 20: Unit code Digital Principles T/615/1494 Unit level 4 Credit value 15 Introduction While the broad field of electronics covers many aspects, it is digital electronics which now has the greatest

More information

120 VAC. 12 VAC center-tapped

120 VAC. 12 VAC center-tapped INST 200 (Introduction to Instrumentation), Review Exam MASTERY NAME: # Question type 1st attempt 2nd attempt 1 Circuit sketching 2-3 DC circuits 4-5 Mathematics 6 Circuit fault analysis 7-8 AC and opamp

More information

Chapter 5 Electric Logic Sensors and Actuators

Chapter 5 Electric Logic Sensors and Actuators Chapter 5: Electric logic sensors and actuators -IE337 Chapter 5 Electric Logic Sensors and Actuators 1 5.1 Introduction to Electric Logic Sensors and Actuators Electric sensors and actuators can be classified

More information

Attribution Thank you to Arduino and SparkFun for open source access to reference materials.

Attribution Thank you to Arduino and SparkFun for open source access to reference materials. Attribution Thank you to Arduino and SparkFun for open source access to reference materials. Contents Parts Reference... 1 Installing Arduino... 7 Unit 1: LEDs, Resistors, & Buttons... 7 1.1 Blink (Hello

More information

FABO ACADEMY X ELECTRONIC DESIGN

FABO ACADEMY X ELECTRONIC DESIGN ELECTRONIC DESIGN MAKE A DEVICE WITH INPUT & OUTPUT The Shanghaino can be programmed to use many input and output devices (a motor, a light sensor, etc) uploading an instruction code (a program) to it

More information

ELECTRONICS WITH DISCRETE COMPONENTS

ELECTRONICS WITH DISCRETE COMPONENTS ELECTRONICS WITH DISCRETE COMPONENTS Enrique J. Galvez Department of Physics and Astronomy Colgate University WILEY John Wiley & Sons, Inc. ^ CONTENTS Preface vii 1 The Basics 1 1.1 Foreword: Welcome to

More information

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes DAV Institute of Engineering & Technology Department of ECE Course Outcomes Upon successful completion of this course, the student will intend to apply the various outcome as:: BTEC-301, Analog Devices

More information

Electronic Systems. Dr. Kenneth Kin-Yip Wong. ENGG st Semester, Department of Electrical and Electronic Engineering

Electronic Systems. Dr. Kenneth Kin-Yip Wong. ENGG st Semester, Department of Electrical and Electronic Engineering Electronic Systems ENGG1015 1 st Semester, 2011 Dr. Kenneth Kin-Yip Wong Department of Electrical and Electronic Engineering Introduction Today H ENGG1015: Hybrid 1 semester L Recall that ENGG1015 is about

More information

PIR Motion Detector Experiment. In today s crime infested society, security systems have become a much more

PIR Motion Detector Experiment. In today s crime infested society, security systems have become a much more PIR Motion Detector Experiment I. Rationale In today s crime infested society, security systems have become a much more necessary and sought out addition to homes or stores. Motion detectors provide a

More information

E X A M I N A T I O N S C O U N C I L SECONDARY EDUCATION CERTIFICATE EXAMINATION ELECTRICAL AND ELECTRONIC TECHNOLOGY TECHNICAL PROFICIENCY

E X A M I N A T I O N S C O U N C I L SECONDARY EDUCATION CERTIFICATE EXAMINATION ELECTRICAL AND ELECTRONIC TECHNOLOGY TECHNICAL PROFICIENCY TEST CODE 01317031/SBA FORM TP 2012069 JUNE 2012 C A R I B B E A N E X A M I N A T I O N S C O U N C I L SECONDARY EDUCATION CERTIFICATE EXAMINATION ELECTRICAL AND ELECTRONIC TECHNOLOGY TECHNICAL PROFICIENCY

More information

LEVEL A: SCOPE AND SEQUENCE

LEVEL A: SCOPE AND SEQUENCE LEVEL A: SCOPE AND SEQUENCE LESSON 1 Introduction to Components: Batteries and Breadboards What is Electricity? o Static Electricity vs. Current Electricity o Voltage, Current, and Resistance What is a

More information

Introduction. Reading: Chapter 1. Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi.

Introduction. Reading: Chapter 1. Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi. Introduction Reading: Chapter 1 Courtesy of Dr. Dansereau, Dr. Brown, Dr. Vranesic, Dr. Harris, and Dr. Choi http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Why study logic design? Obvious reasons

More information

Sensor, Op-amp comparator, and output revision.

Sensor, Op-amp comparator, and output revision. Sensor, Op-amp comparator, and output revision. 1). For growing tropical plants it is necessary to ensure that the greenhouses are maintained at a minimum temperature at all times. An electronic systems

More information

Name EGR 2131 Lab #2 Logic Gates and Boolean Algebra Objectives Equipment and Components Part 1: Reading Pin Diagrams 7400 (TOP VIEW)

Name EGR 2131 Lab #2 Logic Gates and Boolean Algebra Objectives Equipment and Components Part 1: Reading Pin Diagrams 7400 (TOP VIEW) Name EGR 23 Lab #2 Logic Gates and Boolean Algebra Objectives ) Become familiar with common logic-gate chips and their pin numbers. 2) Using breadboarded chips, investigate the behavior of NOT (Inverter),

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Let s look at the essential features of digital logic circuits, which are at the heart of digital computers. Learning Objectives Understand the concepts of analog and digital signals

More information

Magnetic Levitation System

Magnetic Levitation System Magnetic Levitation System Electromagnet Infrared LED Phototransistor Levitated Ball Magnetic Levitation System K. Craig 1 Magnetic Levitation System Electromagnet Emitter Infrared LED i Detector Phototransistor

More information

Design of an Integrated OLED Driver for a Modular Large-Area Lighting System

Design of an Integrated OLED Driver for a Modular Large-Area Lighting System Design of an Integrated OLED Driver for a Modular Large-Area Lighting System JAN DOUTRELOIGNE, ANN MONTÉ, JINDRICH WINDELS Center for Microsystems Technology (CMST) Ghent University IMEC Technologiepark

More information

CURIE Academy 2014 Design Project: Exploring an Internet of Things

CURIE Academy 2014 Design Project: Exploring an Internet of Things CURIE Academy 2014 Design Project: Exploring an Internet of Things Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/curie2014 Electrical and

More information

Lighting Tutorial Cornerstone Electronics Technology and Robotics I Week 7

Lighting Tutorial Cornerstone Electronics Technology and Robotics I Week 7 Lighting Tutorial Cornerstone Electronics Technology and Robotics I Week 7 Electricity and Electronics, Section 3.4, Lighting o Symbol: o Incandescent lamp: The current flows through a tungsten filament

More information

Lab 4 Rev. 1 Open Lab Due COB Friday April 6, 2018

Lab 4 Rev. 1 Open Lab Due COB Friday April 6, 2018 EE314 Systems Spring Semester 2018 College of Engineering Prof. C.R. Tolle South Dakota School of Mines & Technology Lab 4 Rev. 1 Open Lab Due COB Friday April 6, 2018 In this lab we will setup Matlab

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS LOGIC APPLICATIONS DIGITAL LOGIC CIRCUITS Noticed an analogy between the operations of switching devices, such as telephone switching circuits, and the operations of logical connectives What happens when

More information

AC : LAB EXPERIENCE FOR CIRCUITS CLASSES IN A SIM- PLIFIED LAB ENVIRONMENT

AC : LAB EXPERIENCE FOR CIRCUITS CLASSES IN A SIM- PLIFIED LAB ENVIRONMENT AC 2011-250: LAB EXPERIENCE FOR CIRCUITS CLASSES IN A SIM- PLIFIED LAB ENVIRONMENT Claudio Talarico, Eastern Washington University Claudio Talarico is an Associate Professor of Electrical Engineering at

More information

Lecture 4: Basic Electronics. Lecture 4 Brief Introduction to Electronics and the Arduino

Lecture 4: Basic Electronics. Lecture 4 Brief Introduction to Electronics and the Arduino Lecture 4: Basic Electronics Lecture 4 Page: 1 Brief Introduction to Electronics and the Arduino colintan@nus.edu.sg Lecture 4: Basic Electronics Page: 2 Objectives of this Lecture By the end of today

More information

CS302 - Digital Logic Design Glossary By

CS302 - Digital Logic Design Glossary By CS302 - Digital Logic Design Glossary By ABEL : Advanced Boolean Expression Language; a software compiler language for SPLD programming; a type of hardware description language (HDL) Adder : A digital

More information

Electronics From Wikipedia, the free encyclopedia

Electronics From Wikipedia, the free encyclopedia Page 1 of 7 Electronics From Wikipedia, the free encyclopedia Electronics is the science of controlling electrical energy electrically, in which the electrons have a fundamental role. Electronics deals

More information

The Marauder Map Final Report 12/19/2014 The combined information of these four sensors is sufficient to

The Marauder Map Final Report 12/19/2014 The combined information of these four sensors is sufficient to The combined information of these four sensors is sufficient to Final Project Report determine if a person has left or entered the room via the doorway. EE 249 Fall 2014 LongXiang Cui, Ying Ou, Jordan

More information

Using Voltage Dividers to Design a Photo-Sensitive LED Circuit. ( Doug Oliver & Jackie Kane. May be reproduced for non-profit classroom use.

Using Voltage Dividers to Design a Photo-Sensitive LED Circuit. ( Doug Oliver & Jackie Kane. May be reproduced for non-profit classroom use. Using Voltage Dividers to Design a Photo-Sensitive LED Circuit ( 2009 - Doug Oliver & Jackie Kane. May be reproduced for non-profit classroom use.) Purpose: After completing the module students will: 1.

More information

Training Schedule. Robotic System Design using Arduino Platform

Training Schedule. Robotic System Design using Arduino Platform Training Schedule Robotic System Design using Arduino Platform Session - 1 Embedded System Design Basics : Scope : To introduce Embedded Systems hardware design fundamentals to students. Processor Selection

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 9 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

Lecture 8. MOS Transistors; Cheap Computers; Everycircuit

Lecture 8. MOS Transistors; Cheap Computers; Everycircuit Lecture 8 MOS Transistors; Cheap Computers; Everycircuit Copyright 2017 by Mark Horowitz 1 Reading The rest of Chapter 4 in the reader For more details look at A&L 5.1 Digital Signals (goes in much more

More information

UTILIZATION OF ROBOTICS AS CONTEMPORARY TECHNOLOGY AND AN EFFECTIVE TOOL IN TEACHING COMPUTER PROGRAMMING

UTILIZATION OF ROBOTICS AS CONTEMPORARY TECHNOLOGY AND AN EFFECTIVE TOOL IN TEACHING COMPUTER PROGRAMMING UTILIZATION OF ROBOTICS AS CONTEMPORARY TECHNOLOGY AND AN EFFECTIVE TOOL IN TEACHING COMPUTER PROGRAMMING Aaron R. Rababaah* 1, Ahmad A. Rabaa i 2 1 arababaah@auk.edu.kw 2 arabaai@auk.edu.kw Abstract Traditional

More information

Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by Alciatore)

Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by Alciatore) Laboratory 14 Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by Alciatore) Required Components: 1x PIC 16F88 18P-DIP microcontroller 3x 0.1 F capacitors 1x 12-button numeric

More information

EXPERIMENT 5 Basic Digital Logic Circuits

EXPERIMENT 5 Basic Digital Logic Circuits ELEC 2010 Laborator Manual Eperiment 5 PRELAB Page 1 of 8 EXPERIMENT 5 Basic Digital Logic Circuits Introduction The eperiments in this laborator eercise will provide an introduction to digital electronic

More information

Concepts to be Covered

Concepts to be Covered Introductory Medical Device Prototyping Analog Circuits Part 2 Semiconductors, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Semiconductors

More information

Getting started with the multifunctional expansion board based on operational amplifiers for STM32 Nucleo

Getting started with the multifunctional expansion board based on operational amplifiers for STM32 Nucleo User manual Getting started with the multifunctional expansion board based on operational amplifiers for STM32 Nucleo Introduction The X-NUCLEO-IKA01A1 is a multifunctional expansion board based on operational

More information

MAKEVMA502 BASIC DIY KIT WITH ATMEGA2560 FOR ARDUINO USER MANUAL

MAKEVMA502 BASIC DIY KIT WITH ATMEGA2560 FOR ARDUINO USER MANUAL BASIC DIY KIT WITH ATMEGA2560 FOR ARDUINO USER MANUAL USER MANUAL 1. Introduction To all residents of the European Union Important environmental information about this product This symbol on the device

More information

JFET 101, a Tutorial Look at the Junction Field Effect Transistor 8May 2007, edit 2April2016, Wes Hayward, w7zoi

JFET 101, a Tutorial Look at the Junction Field Effect Transistor 8May 2007, edit 2April2016, Wes Hayward, w7zoi JFET 101, a Tutorial Look at the Junction Field Effect Transistor 8May 2007, edit 2April2016, Wes Hayward, w7zoi FETs are popular among experimenters, but they are not as universally understood as the

More information

RESISTANCE & OHM S LAW (PART I

RESISTANCE & OHM S LAW (PART I RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and

More information

Common Sensors. Understand the following sensors: Pull Up sensor Pull Down sensor Potentiometer Thermistor

Common Sensors. Understand the following sensors: Pull Up sensor Pull Down sensor Potentiometer Thermistor Common Sensors Understand the following sensors: Pull Up sensor Pull Down sensor Potentiometer Thermistor Pull Up Switch (sensor) VERY low current 12 volt Pull Up Switch (sensor) VERY low current 12 volt

More information

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1 Digital Multimeters ON / OFF power switch Continuity / Diode Test Function Resistance Function Ranges from 200Ω to 200MΩ Transistor Test Function DC Current Function Ranges from 2mA to 20A. AC Current

More information

D i g i t a l D e v i c e s a n d B a s i c L o g i c ( 1 2 A )

D i g i t a l D e v i c e s a n d B a s i c L o g i c ( 1 2 A ) 9 0 5 0 D i g i t a l D e v i c e s a n d B a s i c L o g i c ( 1 2 A ) 40S/40E/40M An Electronics Technology Course 9 0 5 0 : D i g i t a l D e v i c e s a n d B a s i c L o g i c ( 1 2 A ) 4 0 S / 4

More information

EDUCATORS INFORMATION GUIDE

EDUCATORS INFORMATION GUIDE EDUCATORS INFORMATION GUIDE TABLE OF CONTENTS Arduino Education: Inspiring, Teaching and Empowering What is Arduino? 5 The Education Team And Its Mission 5 Current Use Cases in Education 5 Features and

More information