Carrier Mobility, Channel on Resistance r DS(on) MOSFET Threshold Voltage V tn, V tp SPICE Parameter Extraction

Size: px
Start display at page:

Download "Carrier Mobility, Channel on Resistance r DS(on) MOSFET Threshold Voltage V tn, V tp SPICE Parameter Extraction"

Transcription

1 EE4902 ab 2 C2008 PURPOSE: Carrier Mobility, Channel on Resistance r DS(on) MOSFET Threshold Voltage V tn, V tp SPICE Parameter Extraction The purpose of this lab is to measure the resistive nature of the MOSFET drainsource channel. Upon completion of this lab you should be able to: Recognize that the channel of a MOSFET looks (mostly) resistive for small currents i D and small values of drainsource voltage v DS. Recognize that increasing the gate drive beyond the threshold voltage reduces the channel "on" resistance r DS(on), Determine the carrier mobility and threshold voltage for the N and Pchannel MOSFETs in the CD4007 Compare the measured data to predicted values based on extracted parameters Prelab P2. In the circuit of Fig. P2, a is used to measure the drainsource resistance r DS(on) as a function of applied gatesource voltage v GS. The following data is obtained: v GS r DS(on).5 V Ω Ω Ω Ω Estimate the threshold voltage V t and µ n C ox procedure) for this MOSFET (see riteup section for vgs M Figure P2.

2 ab Exercise: REDUCING ON RESISTANCE r DS(on) BY INCREASING GATE DRIVE v GS 2. Use the circuit of Fig. 22 (using the in ohmmeter mode) to measure the on resistance r DS(on) directly. As you vary v GS, you will see variation in the on resistance. NOTE: Unfortunately, this requires lots of lead swapping and button clicking you need to measure the on resistance r DS(on) between the drain and source terminals ( as ohmmeter), but also the applied gatesource voltage v GS ( as voltmeter). Keep the negative ( or black) lead attached to ground; just swap the positive ( or red) lead. Since the currents flowing in this circuit are relatively small, you don't need to turn power off when changing the lead configuration save time! ADDITIONA NOTE: It's important to observe the lead polarity shown in Fig. 22. If the connection is reversed, the current will forward bias the substratetodrain diode when V GS < V t. ANOTHER ADDITIONA NOTE: For this part, it s very important to leave the on the 20V/20kΩ range throughout. Changing the resistance range changes the current the uses to measure resistance, which affects the resistance measured in the triode region. The problem: in the 2kΩ range, the injects a larger test current than in the 20kΩ range. This causes a larger value of v DS, violating the small v DS condition for the resistive portion of the triode region. So, even though normal practice would be to use the 2kΩ range when measuring r DS(on) less than 2kΩ (for better measurement resolution), in this case, we ll live with lower resolution so as not to violate the small v DS condition. 22. Set the power supply voltage V SUPPY to provide v GS of approximately 5V. Measure r DS(on) and v GS. The resistance r DS(on) should be in the range of approximately 200Ω to kω (which will read 0.2kΩ to kω with the on the 20kΩ range). Reduce v GS until r DS(on) has increased by about a factor of two. Measure r DS(on) and v GS again. As v GS decreases, you should see r DS(on) increase. Continue decreasing the power supply voltage to decrease v GS in increments that approximately double the measured value of r DS(on). Measure r DS(on) and v GS at each step and make a table of measurements in your lab notebook. As v GS gets closer to the threshold voltage V tn, r DS(on) will start increasing rapidly. As r DS(on) increases, take a few data points with r DS(on) values of about 2kΩ, 5kΩ, and 0kΩ. You should end up with a total of about 5 to 0 data points. In your lab notebook, plot r DS(on) as a function of v GS. Note that increasing gate drive v GS reduces the value of onresistance. Also, plot / r DS(on) as a function of v GS. You should see an approximately linear relationship between / r DS(on) and v GS ; a line through the measured data points should intersect the v GS axis at the threshold voltage. VSUPPY R 0k! R2 2k! VGS M /6 CD4007 (RED) (BK) Figure 22. 2

3 23. Repeat the above procedure for a Pchannel MOSFET as shown in Figure 23 below. You may need to adjust your leadswapping technique with the since you will now be measuring v SG : Keep the positive ( or red) lead attached to ground; just swap the negative ( or black) lead. The range of resistances r DS(on) should be similar to the previous part; follow the same procedure for gathering data. In your lab notebook, plot r DS(on) as a function of v SG. Also, plot / r DS(on) as a function of v SG. Note that, since your horizontal axis is v SG rather than v GS, some care is needed in interpreting the plots. For the Pchannel MOSFET making the gate drive voltage v GS more negative reduces the value of onresistance. On the / r DS(on) plot, you should also see an approximately linear relationship between / r DS(on) and v SG ; however in this case a line through the measured data points should intersect the v SG axis at the negative of the threshold voltage. So, for example, if the v SG intercept is at 2V, then the threshold voltage is 2V. (RED) VSUPPY R 0k! R2 2k! VSG 6 4 M /6 CD (BK) Figure 23. 3

4 RITEUP REATIONSHIP BETEEN ON RESISTANCE r DS(on) AND GATE DRIVE v GS NChannel MOSFET 2. Plot r DS(on) as a function of v GS. 22. Plot / r DS(on) as a function of v GS. Using this plot, extract the slope µ n C ox, and the xintercept (threshold voltage V tn ) for the triode region "on" resistance expression: r DS(on) = (2) µ n C ox ( v GS "V t ) 23. From the slope µ n C ox, determine the value of mobility µ n. Use your value of C ox from ab and the / = 350/0 for the CD Using your parameters from 22, plot the prediction of the MOSFET r DS(on) model on the same axes with your measured data from part 22. How well does the model predict the measured data? PChannel MOSFET 25. Plot r DS(on) as a function of v SG. 26. Plot / r DS(on) as a function of v SG. Using this plot, extract the slope µ p C ox, and the xintercept (which will be V tp, the negative of the pchannel threshold voltage) for the triode region "on" resistance expression: (2) r DS(on ) = µ p C ox ( ( )) v SG " "V tp 27. From the slopeµ p C ox, determine the value of mobility µ p. Use your value of C ox from ab and the / = 900/0 for the CD Using your parameters from 26, plot the prediction of the MOSFET r DS(on) model on the same axes with your measured data from part 23. How well does the model predict the measured data? 4

5 NOTE: The above procedure can be considerably simplified by using the MATAB file rdsplot.m, available from the course website. ook at the source code to see where to put in your measurements. Your plots will look something like Figure 24 below. Fig. 24 5

ECE4902 C2012 Lab 3. Qualitative MOSFET V-I Characteristic SPICE Parameter Extraction using MOSFET Current Mirror

ECE4902 C2012 Lab 3. Qualitative MOSFET V-I Characteristic SPICE Parameter Extraction using MOSFET Current Mirror ECE4902 C2012 Lab 3 Qualitative MOSFET VI Characteristic SPICE Parameter Extraction using MOSFET Current Mirror The purpose of this lab is for you to make both qualitative observations and quantitative

More information

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters Dept. of Electrical and Computer Engineering University of California, Davis March 18, 2010 Reading: Rabaey Chapter 3 [1]. Reference: Kang

More information

Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 9 - MOSFET Amplifier Configurations Overview: The purpose of this experiment is to familiarize

More information

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic.

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic. Digital Electronics Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region Positive Logic Logic 1 Negative Logic Logic 0 Voltage Transition Region Transition

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects Real Analog - Circuits 1 Chapter 1: Lab Projects 1.2.2: Dependent Sources and MOSFETs Overview: In this lab assignment, a qualitative discussion of dependent sources is presented in the context of MOSFETs

More information

Lecture 27: MOSFET Circuits at DC.

Lecture 27: MOSFET Circuits at DC. Whites, EE 30 Lecture 7 Page 1 of 8 Lecture 7: MOSFET Circuits at C. We will illustrate the C analysis of MOSFET circuits through a number of examples in this lecture. Example N7.1 (similar to text Example

More information

EE 2274 MOSFET BASICS

EE 2274 MOSFET BASICS Pre Lab: Include your CN with prelab. EE 2274 MOSFET BASICS 1. Simulate in LTspice a family of output characteristic curves (cutve tracer) for the 2N7000 NMOS You will need to add the 2N7000 model to LTspice

More information

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits Objective This experiment is designed for students to get familiar with the basic properties

More information

8. Characteristics of Field Effect Transistor (MOSFET)

8. Characteristics of Field Effect Transistor (MOSFET) 1 8. Characteristics of Field Effect Transistor (MOSFET) 8.1. Objectives The purpose of this experiment is to measure input and output characteristics of n-channel and p- channel field effect transistors

More information

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#:

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#: Experiment 3 3 MOSFET Drain Current Modeling 3.1 Summary In this experiment I D vs. V DS and I D vs. V GS characteristics are measured for a silicon MOSFET, and are used to determine the parameters necessary

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) Device Structure N-Channel MOSFET Providing electrons Pulling electrons (makes current flow) + + + Apply positive voltage to gate: Drives away

More information

MOS Field Effect Transistors

MOS Field Effect Transistors MOS Field Effect Transistors A gate contact gate interconnect n polysilicon gate source contacts W active area (thin oxide area) polysilicon gate contact metal interconnect drain contacts A bulk contact

More information

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices EIE209 Basic Electronics Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

HCS70R1K6 700V N-Channel Super Junction MOSFET

HCS70R1K6 700V N-Channel Super Junction MOSFET HCS70RK6 700 NChannel Super Junction MOSFET Features ery Low FOM (R DS(on) X Qg) Extremely low switching loss Excellent stability and uniformity 00% valanche Tested Builtin ESD Diode pplication Switch

More information

SSFT04N15. Main Product Characteristics V DSS 150V. 130mΩ (typ.) I D. Features and Benefits. Description

SSFT04N15. Main Product Characteristics V DSS 150V. 130mΩ (typ.) I D. Features and Benefits. Description Main Product Characteristics V DSS 15V R DS (on) I D 13mΩ (typ.) 4A T4N15 G D S Features and Benefits Advanced MOSFET process technology Ideal for PWM, load switching and general purpose applications Low

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

ECE 2274 MOSFET Voltmeter. Richard Cooper

ECE 2274 MOSFET Voltmeter. Richard Cooper ECE 2274 MOSFET Voltmeter Richard Cooper Pre-Lab for MOSFET Voltmeter Voltmeter design: Build a MOSFET (2N7000) voltmeter in LTspice. The MOSFETs in the voltmeter act as switches. To turn on the MOSFET.

More information

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

Course Outline. 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT) Course Outline 1. Chapter 1: Signals and Amplifiers 1 2. Chapter 3: Semiconductors 3. Chapter 4: Diodes 4. Chapter 5: MOS Field Effect Transistors (MOSFET) 5. Chapter 6: Bipolar Junction Transistors (BJT)

More information

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices EE 230 Fall 2006 Experiment 11 Small Signal Linear Operation of Nonlinear Devices Purpose: The purpose of this laboratory experiment is to investigate the use of small signal concepts for designing and

More information

18 N Amps, 500 Volts N-CHANNEL MOSFET. Power MOSFET DESCRIPTION FEATURES SYMBOL

18 N Amps, 500 Volts N-CHANNEL MOSFET. Power MOSFET DESCRIPTION FEATURES SYMBOL Power MOSFET 8 Amps, 500 Volts NCHANNEL MOSFET DESCRIPTION The YR 8N50 are NChannel enhancement mode power field effect transistors (MOSFET) which are produced using YR s proprietary,planar stripe, DMOS

More information

ECEN325: Electronics Summer 2018

ECEN325: Electronics Summer 2018 ECEN325: Electronics Summer 2018 Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Reading H5 due today Exam 2 on

More information

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017 Objective: The objective of this laboratory experiment is to become more familiar with the operation of

More information

EXPERIMENT # 1: REVERSE ENGINEERING OF INTEGRATED CIRCUITS Week of 1/17/05

EXPERIMENT # 1: REVERSE ENGINEERING OF INTEGRATED CIRCUITS Week of 1/17/05 EXPERIMENT # 1: REVERSE ENGINEERING OF INTEGRATED CIRCUITS Week of 1/17/5 Experiment #1: Reading: Reverse engineering of integrated circuits Jaeger 9.2: MOS transistor layout and design rules HP4145 basics:

More information

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre EJECICIOS DE COMPONENTES ELECTÓNICOS. 1 er cuatrimestre 2 o Ingeniería Electrónica Industrial Juan Antonio Jiménez Tejada Índice 1. Basic concepts of Electronics 1 2. Passive components 1 3. Semiconductors.

More information

LABORATORY 3 v3 CIRCUIT ELEMENTS

LABORATORY 3 v3 CIRCUIT ELEMENTS University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Leon Chua LABORATORY 3 v3 CIRCUIT ELEMENTS The purpose of this laboratory is to familiarize

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UNISONIC TECHNOLOGIES CO., LTD PCHANNEL ENHANCEMENT MOSFET DESCRIPTION The UTC UT632 is a power MOSFET offering the customers efficient and reliable performance. The UTC UT632 is ideal for thin application

More information

ELEC 350L Electronics I Laboratory Fall 2012

ELEC 350L Electronics I Laboratory Fall 2012 ELEC 350L Electronics I Laboratory Fall 2012 Lab #9: NMOS and CMOS Inverter Circuits Introduction The inverter, or NOT gate, is the fundamental building block of most digital devices. The circuits used

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

P-channel -30 V, 48 mω typ., -2 A STripFET H6 Power MOSFET in a SOT-23. Order code V DS R DS(on) max. I D

P-channel -30 V, 48 mω typ., -2 A STripFET H6 Power MOSFET in a SOT-23. Order code V DS R DS(on) max. I D Datasheet Pchannel 30 V, 48 mω typ., 2 A STripFET H6 Power MOSFET in a SOT23 package 3 Features Order code V DS R DS(on) max. I D 1 SOT23 2 STR2P3LLH6 30 V 56 mω 2 A Very low onresistance Very low gate

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2005

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2005 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Circuits & Electronics Spring 2005 Lab #2: MOSFET Inverting Amplifiers & FirstOrder Circuits Introduction

More information

Laboratory #5 BJT Basics and MOSFET Basics

Laboratory #5 BJT Basics and MOSFET Basics Laboratory #5 BJT Basics and MOSFET Basics I. Objectives 1. Understand the physical structure of BJTs and MOSFETs. 2. Learn to measure I-V characteristics of BJTs and MOSFETs. II. Components and Instruments

More information

JFET and MOSFET Characterization

JFET and MOSFET Characterization Laboratory-3 JFET and MOSFET Characterization Introduction Precautions The objectives of this experiment are to observe the operating characteristics of junction field-effect transistors (JFET's) and metal-oxide-semiconductor

More information

Field - Effect Transistor

Field - Effect Transistor Page 1 of 6 Field - Effect Transistor Aim :- To draw and study the out put and transfer characteristics of the given FET and to determine its parameters. Apparatus :- FET, two variable power supplies,

More information

Top View. Max n-channel Max p-channel Units Drain-Source Voltage V. Symbol V DS V GS ±12 I DM P D T J, T STG Maximum Junction-to-Lead

Top View. Max n-channel Max p-channel Units Drain-Source Voltage V. Symbol V DS V GS ±12 I DM P D T J, T STG Maximum Junction-to-Lead 3V Complementary MOSFET General Description The AO uses advanced trench technology to provide excellent R DS(ON) and low gate charge. The complementary MOSFETs form a highspeed power inverter, suitable

More information

2. Introduction to MOS Amplifiers: Transfer Function Biasing & Small-Signal-Model Concepts

2. Introduction to MOS Amplifiers: Transfer Function Biasing & Small-Signal-Model Concepts 2. Introduction to MOS Amplifiers: Transfer Function Biasing & Small-Signal-Model Concepts Reading: Sedra & Smith Sec. 5.4 (S&S 5 th Ed: Sec. 4.4) ECE 102, Fall 2011, F. Najmabadi NMOS Transfer Function

More information

AO V Complementary MOSFET

AO V Complementary MOSFET AO 3V Complementary MOSFET General Description The AO uses advanced trench technology to provide excellent R DS(ON) and low gate charge. The complementary MOSFETs form a highspeed power inverter, suitable

More information

Order code V DS R DS(on) max. I D P TOT

Order code V DS R DS(on) max. I D P TOT Datasheet Automotivegrade Nchannel 65 V,.58 Ω typ., 48 A, MDmesh DM2 Power MOSFET in a TO247 package Features Order code V DS R DS(on) max. I D P TOT STW58N65DM2AG 65 V.65 Ω 48 A 36 W TO247 D(2) 1 3 2

More information

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

More information

Laboratory #9 MOSFET Biasing and Current Mirror

Laboratory #9 MOSFET Biasing and Current Mirror Laboratory #9 MOSFET Biasing and Current Mirror. Objectives 1. Review the MOSFET characteristics and transfer function. 2. Understand the relationship between the bias, the input signal and the output

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

Top View S1 G1 S2 G2. Orderable Part Number Package Type Form Minimum Order Quantity AO4630 SO-8 Tape & Reel Symbol V DS ±12 V GS I D

Top View S1 G1 S2 G2. Orderable Part Number Package Type Form Minimum Order Quantity AO4630 SO-8 Tape & Reel Symbol V DS ±12 V GS I D 3V Complementary MOSFET General Description AO463 uses advanced trench technology to provide excellent R DS(ON) and low gate charge. This complementary N and P channel MOSFET configuration is ideal for

More information

ECE 310L : LAB 9. Fall 2012 (Hay)

ECE 310L : LAB 9. Fall 2012 (Hay) ECE 310L : LAB 9 PRELAB ASSIGNMENT: Read the lab assignment in its entirety. 1. For the circuit shown in Figure 3, compute a value for R1 that will result in a 1N5230B zener diode current of approximately

More information

4.5 Biasing in MOS Amplifier Circuits

4.5 Biasing in MOS Amplifier Circuits 4.5 Biasing in MOS Amplifier Circuits Biasing: establishing an appropriate DC operating point for the MOSFET - A fundamental step in the design of a MOSFET amplifier circuit An appropriate DC operating

More information

FET. Field Effect Transistors ELEKTRONIKA KONTROL. Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya. p + S n n-channel. Gate. Basic structure.

FET. Field Effect Transistors ELEKTRONIKA KONTROL. Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya. p + S n n-channel. Gate. Basic structure. FET Field Effect Transistors ELEKTRONIKA KONTROL Basic structure Gate G Source S n n-channel Cross section p + p + p + G Depletion region Drain D Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya S Channel

More information

Experiment 9- Single Stage Amplifiers with Passive Loads - MOS

Experiment 9- Single Stage Amplifiers with Passive Loads - MOS Experiment 9- Single Stage Amplifiers with Passive oads - MOS D. Yee,.T. Yeung, M. Yang, S.M. Mehta, and R.T. Howe UC Berkeley EE 105 1.0 Objective This is the second part of the single stage amplifier

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Discussion #9 EE 05 Spring 2008 Prof. u MOSFETs The standard MOSFET structure is shown

More information

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. MOSFET Terminals The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. For an n-channel MOSFET, the SOURCE is biased at a lower potential (often

More information

MODULE-2: Field Effect Transistors (FET)

MODULE-2: Field Effect Transistors (FET) FORMAT-1B Definition: MODULE-2: Field Effect Transistors (FET) FET is a three terminal electronic device used for variety of applications that match with BJT. In FET, an electric field is established by

More information

Symbol Drain-Source Voltage -30 Gate-Source Voltage Continuous Drain T A =25 C T A =70 C Pulsed Drain Current C V DS V GS

Symbol Drain-Source Voltage -30 Gate-Source Voltage Continuous Drain T A =25 C T A =70 C Pulsed Drain Current C V DS V GS 3V PChannel EnhancementMode MOSFET LP347LT1G V DS 3V I D (V GS = V) 4.1A R DS(ON) (V GS = V) < 7mΩ R DS(ON) (V GS = 4.5V) < m Ω 1 3 2 FEATURES The LP347LT1G uses advanced trench technology to provide excellent

More information

Experiment 10 Current Sources and Voltage Sources

Experiment 10 Current Sources and Voltage Sources Experiment 10 Current Sources and Voltage Sources W.T. Yeung and R.T. Howe UC Berkeley EE 105 Fall 2003 1.0 Objective This experiment will introduce techniques for current source biasing. Several different

More information

I D (at V GS =-4.5V) -4A R DS(ON) (at V GS = -1.8V) ESD protected V DS V GS -4 I D T A =70 C -3.5 I DM P D T J, T STG. R θjl

I D (at V GS =-4.5V) -4A R DS(ON) (at V GS = -1.8V) ESD protected V DS V GS -4 I D T A =70 C -3.5 I DM P D T J, T STG. R θjl 2V PChannel MOSFET General Description The AO345 uses advanced trench technology to provide excellent R DS(ON), low gate charge and operation with gate voltages as low as.8v. This device is suitable for

More information

Power MOSFET FEATURES. IRFP23N50LPbF SiHFP23N50L-E3 IRFP23N50L SiHFP23N50L

Power MOSFET FEATURES. IRFP23N50LPbF SiHFP23N50L-E3 IRFP23N50L SiHFP23N50L Power MOSFET IRFP23N5L, SiHFP23N5L PRODUCT SUMMARY (V) 5 R DS(on) (Ω) V GS = V.9 Q g (Max.) (nc) 5 Q gs (nc) 44 Q gd (nc) 72 Configuration Single TO247 S G D ORDERING INFORMATION Package Lead (Pb)free

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

EE4902 C Lab 7

EE4902 C Lab 7 EE4902 C2007 - Lab 7 MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important

More information

E. Slope-Intercept Form and Direct Variation (pp )

E. Slope-Intercept Form and Direct Variation (pp ) and Direct Variation (pp. 32 35) For any two points, there is one and only one line that contains both points. This fact can help you graph a linear equation. Many times, it will be convenient to use the

More information

Small Signal MOSFET 115 ma, 60 V

Small Signal MOSFET 115 ma, 60 V NChannel SOT323 We declare that the material of product compliance with RoHS requirements. ESD Protected:1000V SOT 323 MAXIMUM RATINGS Rating Symbol Value Unit Simplified Schematic DrainSource Voltage

More information

Order code V DS R DS(on) max. I D

Order code V DS R DS(on) max. I D Datasheet Nchannel 6 V, 15 mω typ., 25 A, MDmesh M6 Power MOSFET in a TO22FP package Features TO22FP D(2) 1 2 3 Order code V DS R DS(on) max. I D STF33N6M6 6 V 125 mω 25 A Reduced switching losses Lower

More information

FET Biasing. Electronic Circuit Design ME /8/2013. Spring Chapter 2. Chapter Contents. Course Support

FET Biasing. Electronic Circuit Design ME /8/2013. Spring Chapter 2. Chapter Contents. Course Support Spring 2013 2 Chapter 2 ME-2401 Electronic Circuit Design 4 th Semester (Mechatronics) SZABIST, Karachi 3 Chapter Contents 4 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Ext. (120)

More information

EECS 312: Digital Integrated Circuits Lab Project 2 Extracting Electrical and Physical Parameters from MOSFETs. Teacher: Robert Dick GSI: Shengshuo Lu

EECS 312: Digital Integrated Circuits Lab Project 2 Extracting Electrical and Physical Parameters from MOSFETs. Teacher: Robert Dick GSI: Shengshuo Lu EECS 312: Digital Integrated Circuits Lab Project 2 Extracting Electrical and Physical Parameters from MOSFETs Teacher: Robert Dick GSI: Shengshuo Lu Due 3 October 1 Introduction In this lab project, we

More information

CMOS Cascode Transconductance Amplifier

CMOS Cascode Transconductance Amplifier CMOS Cascode Transconductance Amplifier Basic topology. 5 V I SUP v s V G2 M 2 iout C L v OUT Device Data V Tn = 1 V V Tp = 1 V µ n C ox = 50 µa/v 2 µ p C ox = 25 µa/v 2 λ n = 0.05 V 1 λ p = 0.02 V 1 @

More information

Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Junction Field-effect Transistors. Dr. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Junction Field-effect Transistors Dr. Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of the Precedent Lecture Explain the Operation Class A Power

More information

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor In this chapter, we will: Study and understand the operation and characteristics of the various types

More information

V DS. 100% UIS Tested 100% R g Tested. Top View S2 G2 S1 G1

V DS. 100% UIS Tested 100% R g Tested. Top View S2 G2 S1 G1 3V AO48 Dual PChannel MOSFET General Description The AO48 combines advanced trench MOSFET technology with a low resistance package to provide extremely low R DS(ON). This device is ideal for load switch

More information

Top View. Symbol Max n-channel Max p-channel Units Drain-Source Voltage Symbol

Top View. Symbol Max n-channel Max p-channel Units Drain-Source Voltage Symbol AO668 V Complementary MOSFET General Description The AO668 combines advanced trench MOSFET technology with a low resistance package to provide extremely low R DS(ON). This device is ideal for load switch

More information

Problem Points Score Grader Total 100

Problem Points Score Grader Total 100 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Fall 2003 Quiz 1 Please write your name on each page of the exam in the space

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

Field Effect Transistor Characterization EE251 Laboratory Report #3 <name> May 26, 2008

Field Effect Transistor Characterization EE251 Laboratory Report #3 <name> May 26, 2008 Field Effect Transistor Characterization EE251 Laboratory Report #3 May 26, 2008 Abstract The low frequency characteristics of the 2N7000 N channel MOS Transistor were measured and compared to published

More information

AON5802B Common-Drain Dual N-Channel Enhancement Mode Field Effect Transistor General Description

AON5802B Common-Drain Dual N-Channel Enhancement Mode Field Effect Transistor General Description AON582B CommonDrain Dual NChannel Enhancement Mode Field Effect Transistor General Description Features The AON582B/L uses advanced trench technology to provide excellent R DS(ON), low gate charge and

More information

V DS I D (at V GS =-4.5V) R DS(ON) (at V GS =-1.8V) D1 G2 Bottom

V DS I D (at V GS =-4.5V) R DS(ON) (at V GS =-1.8V) D1 G2 Bottom 2V Dual PChannel MOSFET General Description The AON283 uses advanced trench technology to provide excellent R DS(ON), low gate charge and operation with gate voltage as low as.8v. This device is suitable

More information

EE5310/EE3002: Analog Circuits. on 18th Sep. 2014

EE5310/EE3002: Analog Circuits. on 18th Sep. 2014 EE5310/EE3002: Analog Circuits EC201-ANALOG CIRCUITS Tutorial 3 : PROBLEM SET 3 Due shanthi@ee.iitm.ac.in on 18th Sep. 2014 Problem 1 The MOSFET in Fig. 1 has V T = 0.7 V, and μ n C ox = 500 μa/v 2. The

More information

1.2Vdc 1N4002. Anode V+

1.2Vdc 1N4002. Anode V+ ECE 2274 Pre-Lab for MOSFET Night Light and Voltmeter 1. Night Light The purpose of this part of experiment is to use the switching characteristics of the MOSFET to design a Night Light using a LED, MOSFET,

More information

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD?

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD? Improved Inverter: Current-Source Pull-Up MOS Inverter with Current-Source Pull-Up What else could be connected between the drain and? Replace resistor with current source I SUP roc i D v IN v OUT Find

More information

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer The objective of this lab is to become familiar with methods to measure the dc current-voltage (IV) behavior of diodes

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #4 Lab Report MOSFET Amplifiers and Current Mirrors Submission Date: 07/03/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

More information

EE351 Laboratory Exercise 4 Field Effect Transistors

EE351 Laboratory Exercise 4 Field Effect Transistors Oct. 28, 2007, rev. July 26, 2009 Introduction The purpose of this laboratory exercise is for students to gain experience making measurements on Junction (JFET) to confirm mathematical models and to gain

More information

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

More information

S Series Power MOSFET

S Series Power MOSFET S Series Power MOSFET PRODUCT SUMMARY at T J max. (V) 65 R DS(on) max. at 25 C (Ω) = V.9 Q g max. (nc) 98 Q gs (nc) 7 Q gd (nc) 25 Configuration Single D D 2 PAK (TO263) FEATURES Generation one High E

More information

V DS. Pin 1 G1 D2. Maximum Drain-Source Voltage -12 Gate-Source Voltage Continuous Drain Current G Pulsed Drain Current C V GS I D I DM P D

V DS. Pin 1 G1 D2. Maximum Drain-Source Voltage -12 Gate-Source Voltage Continuous Drain Current G Pulsed Drain Current C V GS I D I DM P D AON289 2V Dual PChannel MOSFET General Description The AON289 combines advanced trench MOSFET technology with a low resistance package to provide extremely low R DS(ON). This device is ideal for load switch

More information

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS AV18-AFC ANALOG FUNDAMENTALS C Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS 1 ANALOG FUNDAMENTALS C AV18-AFC Overview This topic identifies the basic FET amplifier configurations and their principles of

More information

Power MOSFET FEATURES. IRF9540PbF SiHF9540-E3 IRF9540 SiHF9540

Power MOSFET FEATURES. IRF9540PbF SiHF9540-E3 IRF9540 SiHF9540 Power MOSFET PRODUCT SUMMARY (V) 1 R DS(on) (Ω) = 1 V.2 Q g (Max.) (nc) 61 Q gs (nc) 14 Q gd (nc) 29 Configuration Single TO22 G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G S D PChannel MOSFET

More information

Dual N-Channel 30 V (D-S) MOSFET

Dual N-Channel 30 V (D-S) MOSFET SPICE Device Model Si596DU Dual N-Channel 3 V (D-S) MOSFET DESCRIPTION The attached SPICE model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is

More information

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs)

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs) INTRODUCTION - FETs are voltage controlled devices as opposed to BJT which are current controlled. - There are two types of FETs. o Junction FET (JFET) o Metal

More information

Small Signal MOSFET 115 mamps, 60 Volts N Channel SOT 23

Small Signal MOSFET 115 mamps, 60 Volts N Channel SOT 23 Small Signal MOSFET 115 mamps, 60 Volts NChannel SOT2 Pb Free Package is Available. LESHAN RADIO COMPANY, LTD. 1 MAXIMUM RATINGS Rating Symbol Value Unit DrainSource Voltage V DSS 60 Vdc DrainGate Voltage

More information

ECE4902 C Lab 7

ECE4902 C Lab 7 ECE902 C2012 - Lab MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important topology

More information

V DS D1/D2 V GS I D I DM P DSM W. T A =70 C 1 Junction and Storage Temperature Range T J, T STG

V DS D1/D2 V GS I D I DM P DSM W. T A =70 C 1 Junction and Storage Temperature Range T J, T STG AON58B 3V CommonDrain Dual NChannel MOSFET General Description The AON58B uses advanced trench technology to provide excellent R DS(ON), low gate charge and operation with gate voltages as low as.5v while

More information

PDPM6UT20V1E P-Channel MOSFET

PDPM6UT20V1E P-Channel MOSFET PChannel MOSFET Description The MOSFET provide the best combination of fast switching, low onresistance and costeffectiveness. SOT363 MOSFET Product Summary V DS (V) R DS(on) (Ω) I D (ma) S2 6 D2.45@ =4.5V

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 3 Field Effect Transistors Lecture-7 High Frequency

More information

V DS I D (at V GS =10V) R DS(ON) (at V GS = 4.5V) 100% UIS Tested 100% R g Tested

V DS I D (at V GS =10V) R DS(ON) (at V GS = 4.5V) 100% UIS Tested 100% R g Tested 3V NChannel MOSFET General Description The AO4476A combines advanced trench MOSFET technology with a low resistance package to provide extremely low R DS(ON). This device is suitable for use as a high

More information

V DS. 100% UIS Tested 100% R g Tested. Top View V GS -200 T A =25 C T A =70 C I DM I DSM I AS E AS P D P DSM T J, T STG

V DS. 100% UIS Tested 100% R g Tested. Top View V GS -200 T A =25 C T A =70 C I DM I DSM I AS E AS P D P DSM T J, T STG AON7 3V PChannel MOSFET General Description The AON7 combines advanced trench MOSFET technology with a low resistance package to provide extremely low R DS(ON). This device is ideal for load switch and

More information

E Series Power MOSFET

E Series Power MOSFET E Series Power MOSFET SiHPN8E D TO22AB G G DS S NChannel MOSFET PRODUCT SUMMARY (V) at T J max. 85 R DS(on) typ. (Ω) at 25 C V GS = V.8 Q g max. (nc) 88 Q gs (nc) 9 Q gd (nc) 6 Configuration Single FEATURES

More information

Automotive-grade N-channel 60 V, Ω typ., 60 A STripFET II Power MOSFET in a D²PAK package. Features. Description.

Automotive-grade N-channel 60 V, Ω typ., 60 A STripFET II Power MOSFET in a D²PAK package. Features. Description. Automotivegrade Nchannel 60 V, 0.012 Ω typ., 60 A STripFET II Power MOSFET in a D²PAK package Datasheet production data Features TAB Order code V DS R DS(on) max. I D P TOT 60 V 0.014 Ω 60 A 110 W 1 3

More information