Homework Assignment 07

Size: px
Start display at page:

Download "Homework Assignment 07"

Transcription

1 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz. If an inverting amplifier with closed-loop low-frequency gain of A f = 50 uses this op-amp, determine the closed-loop bandwidth. Answer. The gain-bandwidth product is Hz. The bandwidth of the closed-loop amplifier is then is /50 = 8 khz. 2. A MOSFET is biased such that g m = 1.78 ma/v and I D = 1 ma. If v GS changes with 1 mv, by how much does the drain current change? δi D = g m δv GS = ( )( ) = 1.78 µa 3. The units for the λ parameter for a MOSFET is V 1 4. The op-amp in the circuit is ideal, and R 1 = 10K, R 2 = 100K, and R 3 = 10K. The input resistance that the source sees is (a) R 1 = 10K (b) R 1 + R 3 = 20K (virtual short between + and ) (c) (Ideal op-amp has R i = ) (d) R 1 R 2 R 3 = 4.72K (KCL at terminal) Answer: R 1 = 10K, so (a) is the answer. 5. What is frequency is 3 decades down from 220 Hz? (a) 22 mhz (b) 220 mhz (c) 6.4 mhz (d) 190 Hz Answer: 3 = log(220 f x ), so that f x = 220 mhz, so (b) is the answer. 6. A signal with amplitude v = 4 V at 4 khz decreases as frequency increases at 2 db/octave. What is the amplitude in V at 13 khz? (3 points) Answer: There are log 2 (13 2) = 1.7octaves between 4 khz and 13 khz. Thus, the amplitude decreases by = 3.4 db. The new amplitude is 20 log = 8.6 db. This is equivalent to 2.7 V. 1

2 7. Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage? Answer: (a) (a) (b) 8. True or false: in IC circuits, transistors are often used to replace resistors, because IC realestate is expensive, and resistors, especially large value resistors, require large surface area. Answer: True 9. True or false: assuming that g m1 = g m2 for the amplifiers below, then A v1 is larger than A v2. However, A v1 also more sensitive to FET parameter variation than A v2. Answer: True 2

3 10. Which one of the MOSFET circuits below behaves as a non-linear resistor? (1) (2) (3) (a) Only (1) (b) Only (2) (c) Only 3 (d) Both (1) and (3) (e) All (f) None Answer: Option (e) 11. True or false: everything else being equal, MOSFETs the drain current is directly proportional to the width-to-length ratio. Answer: True 12. Consider two MOSFETs A and B that are identical in all respects except that A s channel is twice as wide as channel B s channel: W A = 2W B. Under identical bias what is the relationship between the drain current of A and B? I DA = 2I DB 13. Consider two MOSFETs A and B that are identical in all respects except that A s channel is twice as long as channel B s channel: L A = 2L B. Under identical bias what is the relationship between the drain current of A and B? I DA = 0.5I DB 14. True or false: given the symmetrical construction of MOSFETs one can, in principle, at least, interchange the drain and the source terminals without affecting device behavior. Answer: True 15. The output frequency of a full-wave rectifier is the input frequency. Answer: Option (b) (a) one-half (b) double (c) same as (d) quarter 3

4 16. Write down the dc load line equation for the MOSFET in the circuit below. (3 points) Answer: V DS = V DD I D R D I D = V DD V DS R D R D 17. Write down the dc load line equation for the MOSFET in the circuit below. (3 points) Answer: V DS = V DD I D R D I D R S I D = V DD V DS R D + R S R D + R S 18. The R DS(on) for a small switching MOSFETs such as the 2N7000 is (circle one) (1 point) Answer: (b) (a) 20 mω 200 mω (b) 200 mω 20 Ω (c) 20 Ω 200 Ω 19. Briefly explain (1 2 sentences) what is R DS(on) as it pertains to MOSFETs. (3 points) Answer: R DS(on) refers to the drain-source resistance when the FET is in full saturation. That is, it is fully turned on, or V GS V TN (NMOS) and V SG V TP (PMOS). 4

5 20. Below is a depiction of an n-channel enhancement-mode MOSFET. Annotate the diagram with a p or n to show the type of substrate material, and then indicate the body diode. p-material substrate Body diode 21. What is the magnitude of the current phase angle for a 5.6 μf capacitor and a 50-Ω resistor in series with a 1.1 khz, 5 VAC source? (a) 72.9 (b) 62.7 (c) 27.3 (d) 17.1 Answer: The impedance of the RC circuit is = R 1 j2πfc = 50 j25.84 Ω. The magnitude of the phase angle is tan 1 ( ) = Thus, (c) is the answer. Question 2 In the circuit the op-amp is ideal, except for an input bias current I b = 10 na. Further, R F = 10K, R 1 = 100 Ω and C = 6.8 μf. The switch is opened at t = 0. What is the output voltage after 10 seconds? (3 points) For t 0, the voltage across the capacitor is v C = (±I b Δt) C which is (± ) (10) ( ) = ±14.71 mv for t = 10 s. The gain of the amplifier is1 + R F R 1 = 101, so that the output voltage is ± V. 5

6 Question 3 An engineer uses the circuit shown in (a) below to measure the input offset voltage V OS and input bias current I B for an op-amp. In the circuit, R 1 = 98 Ω, R F = 9.9K, and C = 13 μf. In (b) is the output voltage for various values of R T. Plot her data and use the plot to estimate V OS and I B. (10 points) (a) R T (Ω) V O (V) K K K K K K (b) Shown is a plot of the data and a linear trendline. By convention I B flows into the noninverting input, and V O = AI B R T + AV OS where A is the gain of the amplifier, namely A = 1 + R F R 1 = The intercept of the trenline corresponds to A V OS and from the plot it is 92.6 mv so that V OS = = 0.9 mv Further, the slope of the trendline corresponds to AI B and from the plot it is 608 na so that I B = = 5.9 na The negative sign indicates that I B flows out of the noninverting terminal for this circuit. 6

7 Question 4 Consider the following circuit. Assume that V TN = 1 V, K n = 1.5 ma V 2, and λ = 0. Sketch I D versus V DS for 0 V DS 5 V. Label and add numerical values on each the axis. Calculate and indicate V DS (sat) on the plot. Clearly indicate the saturation and Ohmic regions and the saturation current. (5 points) V DS (sat) = V GS V TN = 2 1 = 1 V In the saturation region, I D = K n (V GS V TN ) 2 = K n (2 1) 2 = 1.5 ma. Plot see below. 7

8 Question 5 The transistor characteristics for an NMOS FET are shown below. (a) Is this an enhancement- or depletion-mode device? (1 points) (b) Estimate a value for V TN. (5 points) (Hint: consider using the supplied graph paper) Part (a) This is an enhancement-mode device. Part (b) Make a plot of I D vs. V GS with V DS is the saturation region, for example at V DS = 15 V. Then extend the plot to I D = 0, and estimate V TN ~ 2.65 V (see below). 8

9 Question 6 The graph and table below summarize the output characteristics for the 2N7000 MOSFET. Use this information and estimate a value for K n. (8 points) The table below gives the numerical values of I D for various V GS at V DS = 12 V. Assume V TN = 2 V V GS (V) I D (A) I D as a function of V GS at V DS = 12 V I D = K n (V GS V TN ) 2 I D K n = (V GS V TN ) 2 Substitute the values for V GS and I D from the table into the second equation to find K n = A V 2,, K n = A V 2. The average value is K n = A V 2 9

10 Problem 7 The transistor in the circuit shown has K n = 0.5 ma V 2, V TN = 2 V, and λ = 0. Further, R S = 12K. Determine I DQ, assuming the MOSFET operates in the saturation region. (6 points) I D = K n (V GS V TN ) 2 Since the gate current is zero, V G = 0 and V GS = 0 V S = V S. Further, V S = 9 + I D R S so that V GS = 9 I D R S. Thus I D = K n (9 I D R S V TN ) 2 = 0.5(9 12(I D ) 2) 2 ma A trial-and-error solution reveals that I D = 0.5 ma is a solution. Question 8 The circuit shown uses an NMOS transistor to implement a current source. For the transistor, V TN = 1 V and K n = 12.5 μa V 2. What is the required value op V GS so that I dc = 25 μa? (3 points) What is the compliance voltage? (2 points) I D = K n (V GS V TN ) = ( )(V GS 1) 2 2 = (V GS 1) 2 V GS = = V To function as a current source the transistor must be in saturation, or V DS > V DS (sat). Now, V DS (sat) = V GS V TN = = V. Thus, the compliance voltage is V. 10

11 Problem 9 The so-called diode-connected transistor is sub circuit that appears in many other circuits. Of interest is the output resistance. Draw the small-signal model and determine R o. Be sure to include the transistor s own output resistance r o. What is a simplified expression for R O when r O is very large? (10 points) Below is the small signal model with a test voltage V x. The next step is to find I x and then R O = V x I x. Note that v gs = V x and KCL at the drain gives I x + g m V x + V x r o = 0 V x I x = R O = When r O is large, r O g m 1 and R O 1 g m. r o = r 1 + r o g o 1 m g m 11

12 Problem 10 Using the results from the previous problem, determine R O for the circuits below if I D = 0.5 ma, and λ = 0.02 V 1 and K n = 0.1 ma/v 2 and K p = 0.06 ma/v 2, and R g = 1M. (6 points) (a) (b) (c) The two NMOS circuits, namely (a) and (b) have identical output resistances no current flows through R G so in both cases v G = v D. Further, g m = 2 K n I D = ma V and r O = 1 (λi D ) = 100K. Thus R O = 1 g m r O = 2.24K 100K = 2.19K For the PMOS device Further, g m = 2 K p I D = ma V and r O = 1 (λi D ) = 100K. Thus R O = 1 g m r O = 2.89K 100K = 2.81K 12

13 Question 11 A MOEFET amplifier along with the FET and circuit parameters are shown below. C C1, C C2 are coupling capacitors. Determine R 1, R 2 such that R in = 200K, and I DQ = 3 ma. (10 points) K n = 2 ma V 2 V TN = 2 V λ = 0 V DD = 15 V R S = 0.5K R D = 2K R in = 200K R 1 =? R 2 =? R L = 5K I DQ = 3 ma I DQ = K n (V GS V TN ) = (V GS 2) 2 Solving yields V GS = V. Further, V S = I DQ R S = ( )( ) = 1.5 V. Thus, V G = V GS + V S = V. Resistors R 1, R 2 form a voltage divider and the task is to select value such that and R 2 15 R 1 + R2 = V R 1 R 2 = R 1R 2 R 1 + R 2 = 200K Solving these two equations (with two unknowns), yields R 1 = 635K, and R 2 = 292K 13

14 Question 12 The parameters of the transistor are K n = 0.5 ma V 2, V TN = 1.2 V and λ = 0. Further, the bias current is I Q = 50 μa. Determine v GS (5 points) and v DS (2 points) for the circuit. For I D = 50 μa: I D = K n (v GS V TN ) = ( )(v GS 1.2) 2 v GS = 1.2 ± v GS = 1.2 ± v GS = V or v GS = V The solution v GS = V is the proper solution since v GS = V would imply that the FET is off, because this is less than V TN. v DS = 5 ( 1.516) = V 14

15 Question 13 An op-amp has a voltage gain of 100 db at dc and a unity-gain frequency of 5 MHz. (a) What is f B, the low frequency 3-dB cutoff frequency? (2 points) (b) Write an expression for the transfer function A(f) for the open loop gain of the op amp (2 points) (c) The op-amp is used in a non-inverting configuration with a gain of 40 db. What is the bandwidth of the feedback amplifier? (2 points) (d) Write an expression for the transfer function A(f) for the feedback gain of the op amp. (2 points) (e) By how much (i.e., how many microseconds) does the amplifier delay a 10 khz sine wave? (3 points) Assume that the op-amp has a single-pole frequency response. (a) 100 db of voltage gain is equivalent to a voltage gain of 10 5 and the GBW is 5 MHz. Thus, the low frequency 3-dB point is = 50 Hz. (b) The transfer function for the open loop amplifier is A(f) = j f. 50 (c) The GBP is 5 MHz, so that an amplifier with gain 100 ( 40 db) will have a bandwidth of = 50 khz. (d) The transfer function for the feedback amplifier is (e) The phase at 10-kHz is 100 A(f) =. f 1 + j θ = tan = The period of a 10-kHz sine wave is 100 μs so that corresponds to a delay of Δt = μs = 3.14 μs

16 Question 14 Consider the amplifier shown. The transistor has an Early voltage V A = 50 V. A dc analysis reveals that I D = 1.06 ma, and g m = ma V. Assume that the coupling capacitors are large enough so that they are shorts at the operating frequency. Draw the corresponding small-signal circuit. Incorporate the MOSFETs output resistance r o. Next, determine the amplifier s voltage gain. Finally, determine the amplifier s input and output resistances. (25 points) C C = Coupling Capacitors R G = 10M R D = 10K R L = 10K The small-signal model for the amplifier is shown right. The numerical values for all components are known, except for r o. However, we can calculate that from r o = V A I D = 47K. We can lump r o, R D, and R L together as R L = r o R D R L = 4.52K. Next, write a KCL equation at the output node v o R L + g mv gs + v o v i R G = 0 From the small-signal model it is clear that v gs = v i so that the equation above becomes Some algebraic manipulation yields v o R L + g mv i + v o v i R G = 0 A v = v o = g v m R 1 (1 g mr G ) L i 1 + (R L R G ) Substituting R L = 4.52K, g m = ma V and R G = 10M yields A V =

17 Determine the input resistance using the standard procedure: turn off independent sources, drive the circuit with a test source V x and determine the current I x that flows. Then, R i = V x I x. Referring to the small signal model given above, we can simply replace v i with V x and then I x = V x v o R G However, we already determined that A v = 3.3 so we can write v o = 3.3V x so that I x = V x + 3.3V x R G R i = V x = R G I X = 2.33M Determine the output resistance using the standard procedure: turn off independent sources, drive the circuit at the output with a test source V x and determine the current I x that flows. Then, R o = V x I x. If we turn off the independent source, namely v i and add a test source, the model below results. Clearly the control voltage v gs = 0 and the current source is off, so KCL at the drain gives I x + V x r o + V x R D + V x R G = 0 R o = V x I x = r o R D R G Substituting the numerical values give R o = 8.4K. 17

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage?

Exam Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance voltage? Exam 2 Name: Score /90 Question 1 Short Takes 1 point each unless noted otherwise. 1. Below are two schematics of current sources implemented with MOSFETs. Which current source has the best compliance

More information

Homework Assignment 06

Homework Assignment 06 Homework Assignment 06 Question 1 (Short Takes) One point each unless otherwise indicated. 1. Consider the current mirror below, and neglect base currents. What is? Answer: 2. In the current mirrors below,

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

Homework Assignment 06

Homework Assignment 06 Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. True or false: when transforming a circuit s diagram to a diagram of its small-signal model, we replace dc constant current sources

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

Homework Assignment 04

Homework Assignment 04 Question 1 (Short Takes) Homework Assignment 04 1. Consider the single-supply op-amp amplifier shown. What is the purpose of R 3? (1 point) Answer: This compensates for the op-amp s input bias current.

More information

Homework Assignment 12

Homework Assignment 12 Homework Assignment 12 Question 1 Shown the is Bode plot of the magnitude of the gain transfer function of a constant GBP amplifier. By how much will the amplifier delay a sine wave with the following

More information

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in Question 1 (Short Takes), 2 points each. Homework Assignment 02 1. An op-amp has input bias current I B = 1 μa. Make an estimate for the input offset current I OS. Answer. I OS is normally an order of

More information

Homework Assignment 09

Homework Assignment 09 Question 1 (2 points each unless noted otherwise) Homework Assignment 09 1. For SPICE, Explain very briefly the difference between the multiplier M and Meg, as in a resistor has value 2M versus a resistor

More information

Homework Assignment 03 Solution

Homework Assignment 03 Solution Homework Assignment 03 Solution Question 1 Determine the h 11 and h 21 parameters for the circuit. Be sure to supply the units and proper sign for each parameter. (8 points) Solution Setting v 2 = 0 h

More information

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Homework Assignment 01

Homework Assignment 01 Homework Assignment 01 In this homework set students review some basic circuit analysis techniques, as well as review how to analyze ideal op-amp circuits. Numerical answers must be supplied using engineering

More information

Final Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier.

Final Exam. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth of the amplifier. Final Exam Name: Score /100 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.1 μs. Estimate the 3 db bandwidth

More information

Homework Assignment 02

Homework Assignment 02 Question 1 (2 points each unless noted otherwise) 1. Is the following circuit an STC circuit? Homework Assignment 02 (a) Yes (b) No (c) Need additional information Answer: There is one reactive element

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point. Exam 3 Name: Score /65 Question 1 Unless stated otherwise, each question below is 1 point. 1. An engineer designs a class-ab amplifier to deliver 2 W (sinusoidal) signal power to an resistive load. Ignoring

More information

2. The. op-amp in and 10K. (a) 0 Ω. (c) 0.2% (d) (a) 0.02K. (b) 4. The. 5 V, then. 0V (virtual. (a) (c) Fall V. (d) V.

2. The. op-amp in and 10K. (a) 0 Ω. (c) 0.2% (d) (a) 0.02K. (b) 4. The. 5 V, then. 0V (virtual. (a) (c) Fall V. (d) V. Homework Assignment 04 Question 1 (2 points each unless noted otherwise) 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY INTRODUCTION Op-Amp means Operational Amplifier. Operational stands for mathematical operation like addition,

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Homework Assignment 01

Homework Assignment 01 Homework Assignment 01 In this homework set students review some basic circuit analysis techniques, as well as review how to analyze ideal op-amp circuits. Numerical answers must be supplied using engineering

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment 11 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Homework Assignment 01

Homework Assignment 01 Homework Assignment 01 In this homework set students review some basic circuit analysis techniques, as well as review how to analyze ideal op-amp circuits. Numerical answers must be supplied using engineering

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS)

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) SOLUTIONS ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) Problem 1 (20 points) We know that a pn junction diode has an exponential I-V behavior when forward biased. The diode equation relating

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Mosfet Review Sections of Chapter 3 &4 A. Kruger Mosfet Review, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width 1 10-6 m or less Thickness 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

Experiment 5 Single-Stage MOS Amplifiers

Experiment 5 Single-Stage MOS Amplifiers Experiment 5 Single-Stage MOS Amplifiers B. Cagdaser, H. Chong, R. Lu, and R. T. Howe UC Berkeley EE 105 Fall 2005 1 Objective This is the first lab dealing with the use of transistors in amplifiers. We

More information

ECE 310L : LAB 9. Fall 2012 (Hay)

ECE 310L : LAB 9. Fall 2012 (Hay) ECE 310L : LAB 9 PRELAB ASSIGNMENT: Read the lab assignment in its entirety. 1. For the circuit shown in Figure 3, compute a value for R1 that will result in a 1N5230B zener diode current of approximately

More information

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

ECE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load ECE4902 C2012 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

12/01/2009. Practice with past exams

12/01/2009. Practice with past exams EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams http://hkn.eecs.berkeley.edu/exam/list/?examcourse=ee%2040 Slide 1 Overview of Course Circuit components: R, C, L, sources

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

Chapter 8: Field Effect Transistors

Chapter 8: Field Effect Transistors Chapter 8: Field Effect Transistors Transistors are different from the basic electronic elements in that they have three terminals. Consequently, we need more parameters to describe their behavior than

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 1 Solution

55:041 Electronic Circuits The University of Iowa Fall Exam 1 Solution Exam 1 Name: Score /60 Question 1 Short takes. For True/False questions, write T, or F in the right-hand column as appropriate. For other questions, provide answers in the space provided. 1. Tue of false:

More information

ETIN25 Analogue IC Design. Laboratory Manual Lab 2

ETIN25 Analogue IC Design. Laboratory Manual Lab 2 Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Fall and. Answer: Below. The. assumptions. base

Fall and. Answer: Below. The. assumptions. base Homework Assignment 08 Question 1 (2 points each unless noted otherwise) 1. Sketch a two-transistor configuration using npn and pnpp BJTs that iss equivalent to a single pnpp BJT, and label the effective

More information

ES250: Electrical Science. HW6: The Operational Amplifier

ES250: Electrical Science. HW6: The Operational Amplifier ES250: Electrical Science HW6: The Operational Amplifier Introduction This chapter introduces the operational amplifier or op amp We will learn how to analyze and design circuits that contain op amps,

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Phy 335, Unit 4 Transistors and transistor circuits (part one) Mini-lecture topics (multiple lectures): Phy 335, Unit 4 Transistors and transistor circuits (part one) p-n junctions re-visited How does a bipolar transistor works; analogy with a valve Basic circuit

More information

SAMPLE FINAL EXAMINATION FALL TERM

SAMPLE FINAL EXAMINATION FALL TERM ENGINEERING SCIENCES 154 ELECTRONIC DEVICES AND CIRCUITS SAMPLE FINAL EXAMINATION FALL TERM 2001-2002 NAME Some Possible Solutions a. Please answer all of the questions in the spaces provided. If you need

More information

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

Laboratory #5 BJT Basics and MOSFET Basics

Laboratory #5 BJT Basics and MOSFET Basics Laboratory #5 BJT Basics and MOSFET Basics I. Objectives 1. Understand the physical structure of BJTs and MOSFETs. 2. Learn to measure I-V characteristics of BJTs and MOSFETs. II. Components and Instruments

More information

Analog Integrated Circuit Design Exercise 1

Analog Integrated Circuit Design Exercise 1 Analog Integrated Circuit Design Exercise 1 Integrated Electronic Systems Lab Prof. Dr.-Ing. Klaus Hofmann M.Sc. Katrin Hirmer, M.Sc. Sreekesh Lakshminarayanan Status: 21.10.2015 Pre-Assignments The lecture

More information

Homework Assignment 13

Homework Assignment 13 Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shunt-shunt, series-shunt, ) Answer: Series-shunt. 2. True or false: an engineer

More information

Op-Amp Simulation Part II

Op-Amp Simulation Part II Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate

More information

4 Transistors. 4.1 IV Relations

4 Transistors. 4.1 IV Relations 4 Transistors Due date: Sunday, September 19 (midnight) Reading (Bipolar transistors): HH sections 2.01-2.07, (pgs. 62 77) Reading (Field effect transistors) : HH sections 3.01-3.03, 3.11-3.12 (pgs. 113

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points)

1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier. (2 points) Exam 1 Name: Score /60 Question 1 Short Takes 1 point each unless noted otherwise. 1. An engineer measures the (step response) rise time of an amplifier as. Estimate the 3-dB bandwidth of the amplifier.

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier Chapter 15 Goals ac-coupled multistage amplifiers including voltage gain, input and output resistances, and small-signal limitations. dc-coupled multistage amplifiers. Darlington configuration and cascode

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G)

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G) ECE 341 Homework 4 Problem 1. In each of the ideal-diode circuits shown below, is a 1 khz sinusoid with zero-to-peak amplitude 1 V. For each circuit, sketch the output waveform and state the values of

More information

Common-Source Amplifiers

Common-Source Amplifiers Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

Code: 9A Answer any FIVE questions All questions carry equal marks *****

Code: 9A Answer any FIVE questions All questions carry equal marks ***** II B. Tech II Semester (R09) Regular & Supplementary Examinations, April/May 2012 ELECTRONIC CIRCUIT ANALYSIS (Common to EIE, E. Con. E & ECE) Time: 3 hours Max Marks: 70 Answer any FIVE questions All

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the

More information

ELC224 Final Review (12/10/2009) Name:

ELC224 Final Review (12/10/2009) Name: ELC224 Final Review (12/10/2009) Name: Select the correct answer to the problems 1 through 20. 1. A common-emitter amplifier that uses direct coupling is an example of a dc amplifier. 2. The frequency

More information

James Lunsford HW2 2/7/2017 ECEN 607

James Lunsford HW2 2/7/2017 ECEN 607 James Lunsford HW2 2/7/2017 ECEN 607 Problem 1 Part A Figure 1: Negative Impedance Converter To find the input impedance of the above NIC, we use the following equations: V + Z N V O Z N = I in, V O kr

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

ECEN 5008: Analog IC Design. Final Exam

ECEN 5008: Analog IC Design. Final Exam ECEN 5008 Initials: 1/10 ECEN 5008: Analog IC Design Final Exam Spring 2004 Instructions: 1. Exam Policy: Time-limited, 150-minute exam. When the time is called, all work must stop. Put your initials on

More information

Exam Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below.

Exam Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier below. Exam 3 Name: Score /94 Question 1 Short Takes 1 point each unless noted otherwise. 1. Write down one phrase/sentence that describes the purpose of the diodes and constant current source in the amplifier

More information

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment School of Sciences SPRING SEMESTER 2010 INSTRUCTOR: Dr Konstantinos Katzis COURSE / SECTION: ECE212N COURSE TITLE: Electronics II OFFICE RM#: 124 (1 st floor) OFFICE TEL#: 22713296 OFFICE HOURS: Monday

More information

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

More information

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 9. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 9 The Common-Source Amplifier In a CS amplifier, the input signal is applied to the gate and the output signal is taken from the drain. The amplifier has

More information

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair,

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair, Basic Circuits Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair, CCS - Basic Circuits P. Fischer, ZITI, Uni Heidelberg, Seite 1 Reminder: Effect of Transistor Sizes Very crude classification:

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

Physics 303 Fall Module 4: The Operational Amplifier

Physics 303 Fall Module 4: The Operational Amplifier Module 4: The Operational Amplifier Operational Amplifiers: General Introduction In the laboratory, analog signals (that is to say continuously variable, not discrete signals) often require amplification.

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

Electronics EECE2412 Spring 2016 Exam #1

Electronics EECE2412 Spring 2016 Exam #1 Electronics EECE2412 Spring 2016 Exam #1 Prof. Charles A. DiMarzio Department of Electrical and Computer Engineering Northeastern University 18 February 2016 File:12140/exams/exam1 Name: : Row # : Seat

More information

d. Can you find intrinsic gain more easily by examining the equation for current? Explain.

d. Can you find intrinsic gain more easily by examining the equation for current? Explain. EECS140 Final Spring 2017 Name SID 1. [8] In a vacuum tube, the plate (or anode) current is a function of the plate voltage (output) and the grid voltage (input). I P = k(v P + µv G ) 3/2 where µ is a

More information

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic.

Digital Electronics. Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region. Positive Logic. Digital Electronics Assign 1 and 0 to a range of voltage (or current), with a separation that minimizes a transition region Positive Logic Logic 1 Negative Logic Logic 0 Voltage Transition Region Transition

More information

In-Class Exercises for Lab 2: Input and Output Impedance

In-Class Exercises for Lab 2: Input and Output Impedance In-Class Exercises for Lab 2: Input and Output Impedance. What is the output resistance of the output device below? Suppose that you want to select an input device with which to measure the voltage produced

More information

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) Revised 2/16/2007 ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration) *NOTE: The text mentioned below refers to the Sedra/Smith, 5th edition.

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

Improving Amplifier Voltage Gain

Improving Amplifier Voltage Gain 15.1 Multistage ac-coupled Amplifiers 1077 TABLE 15.3 Three-Stage Amplifier Summary HAND ANALYSIS SPICE RESULTS Voltage gain 998 1010 Input signal range 92.7 V Input resistance 1 M 1M Output resistance

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 13 JFETs Topics Covered in Chapter 13 Basic ideas Drain curves Transconductance curve Biasing in the ohmic region Biasing in the active region

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

LF411 Low Offset, Low Drift JFET Input Operational Amplifier

LF411 Low Offset, Low Drift JFET Input Operational Amplifier Low Offset, Low Drift JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input

More information

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009 Lab 1 Power Amplifier Circuits Issued August 25, 2009 Due: September 11, 2009

More information

5.25Chapter V Problem Set

5.25Chapter V Problem Set 5.25Chapter V Problem Set P5.1 Analyze the circuits in Fig. P5.1 and determine the base, collector, and emitter currents of the BJTs as well as the voltages at the base, collector, and emitter terminals.

More information

MICROELECTRONIC CIRCUIT DESIGN Third Edition

MICROELECTRONIC CIRCUIT DESIGN Third Edition MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113

More information

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load

EE4902 C Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load EE4902 C200 - Lab 5 MOSFET Common Source Amplifier with Active Load Bandwidth of MOSFET Common Source Amplifier: Resistive Load / Active Load PURPOSE: The primary purpose of this lab is to measure the

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

INTRODUCTION TO ELECTRONICS EHB 222E

INTRODUCTION TO ELECTRONICS EHB 222E INTRODUCTION TO ELECTRONICS EHB 222E MOS Field Effect Transistors (MOSFETS II) MOSFETS 1/ INTRODUCTION TO ELECTRONICS 1 MOSFETS Amplifiers Cut off when v GS < V t v DS decreases starting point A, once

More information

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier LF353 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

Test Your Understanding

Test Your Understanding 074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switched-capacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the

More information

LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier

LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier General Description These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

GATE SOLVED PAPER - IN

GATE SOLVED PAPER - IN YEAR 202 ONE MARK Q. The i-v characteristics of the diode in the circuit given below are : v -. A v 0.7 V i 500 07 $ = * 0 A, v < 0.7 V The current in the circuit is (A) 0 ma (C) 6.67 ma (B) 9.3 ma (D)

More information

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III

Lecture 13. Biasing and Loading Single Stage FET Amplifiers. The Building Blocks of Analog Circuits - III Lecture 3 Biasing and Loading Single Stage FET Amplifiers The Building Blocks of Analog Circuits III In this lecture you will learn: Current biasing of circuits Current sources and sinks for CS, CG, and

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 9 - MOSFET Amplifier Configurations Overview: The purpose of this experiment is to familiarize

More information

ECE:3410 Electronic Circuits

ECE:3410 Electronic Circuits ECE:3410 Electronic Circuits Reiew of Op-Amps Sections of Chapters 9 & 14 A. Kruger Op-Amp Reiew-1 Real-World Op-Amp In earlier courses, op-amp were often considered ideal Infinite input resistance Infinite

More information

Introduction to Operational Amplifiers

Introduction to Operational Amplifiers P. R. Nelson ECE 322 Fall 2012 p. 1/50 Introduction to Operational Amplifiers Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer Engineering California State Polytechnic

More information