100+ GHz Transistor Electronics: Present and Projected Capabilities

Size: px
Start display at page:

Download "100+ GHz Transistor Electronics: Present and Projected Capabilities"

Transcription

1 21 IEEE International Topical Meeting on Microwave Photonics, October 5-6, 21, Montreal 1+ GHz Transistor Electronics: Present and Projected Capabilities Mark Rodwell University of California, Santa Barbara , fax

2 THz Transistors

3 Why Build THz Transistors? 5 GHz digital logic fiber optics THz amplifiers THz radios imaging, sensing, communications precision analog design at microwave frequencies high-performance receivers Higher-Resolution Microwave ADCs, DACs, DDSs

4 gains, db Transistor figures of Merit / Cutoff Frequencies H 21 =short-circuit current gain MAG = maximum available power gain: impedance-matched f max power-gain cutoff frequency f current-gain cutoff frequency U= unilateral power gain: feedback nulled, impedance-matched

5 What Determines Digital Gate Delay? T gate ( kt f R R ( V ex bb / qi L C (.5C (.5C / )( C )(.5C cbx je I C je.5c C cbi je 6C C cbi cbx cbx.5 I C f C 6C cbi.5 I f C / V cbi.5 I / V L ). C L f ) wire C ) / V L ) CV/I terms dominate analog ICs have somewhat similar bandwidth considerations...

6 How to Make THz Transistors

7 High-Speed Transistor Design Depletion Layers C A T Fringing Capacitances T 2v C finging / L ~ C finging / L ~ 4v ( V ) max sat appl 2 I A T Thermal Resistance Bulk and Contact Resistances R th 1 K th ln L L W 1 K th L R / contact A contact terms dominate

8 Frequency Limits and Scaling Laws of (most) Electron Devices thickness C R R I top T bottom area / contact area power length thickness contact max, space-charge-limit / area 4 log sheet area / length width width length thickness PIN photodiode To double bandwidth, reduce thicknesses 2:1 Improve contacts 4:1 reduce width 4:1, keep constant length increase current density 4:1 2 R bottom R top

9 Changes required to double transistor bandwidth emitter length L E W e HBT parameter change emitter & collector junction widths decrease 4:1 current density (ma/mm 2 ) increase 4:1 current density (ma/mm) constant collector depletion thickness decrease 2:1 base thickness decrease 1.4:1 emitter & base contact resistivities decrease 4:1 nearly constant junction temperature linewidths vary as (1 / bandwidth) 2 gate L G widthw G FET parameter change gate length decrease 2:1 current density (ma/mm), g m (ms/mm) increase 2:1 channel 2DEG electron density increase 2:1 gate-channel capacitance density increase 2:1 dielectric equivalent thickness decrease 2:1 channel thickness decrease 2:1 channel density of states increase 2:1 source & drain contact resistivities decrease 4:1 constant voltage, constant velocity scaling fringing capacitance does not scale linewidths scale as (1 / bandwidth )

10 Electron Plasma Resonance: Not a Dominant Limit L R kinetic bulk T A q T A q * nm 1 * nm m C displacement A T dielectric f dielectric relaxation C 1 2 1/ 2 R displacement frequency bulk scattering frequency f scattering 1 R 2 L 1 2 m bulk kinetic plasma frequency f plasma L kinetic 1/ 2 C displaceme nt n - InGaAs / cm p - InGaAs / cm THz 7 THz 74 THz 8 THz 12 THz 31THz

11 junction temperature rise, Kelvin Thermal Resistance Scaling : Transistor, Substrate, Package cylindrical heat flow near junction spherical flow for r L e planar flow for r D HBT / 2 P L e P 1 1 P Tsub D / 2 T substrate ln 2 K InPLE We K InP LE D KInP D increases logarithmi cally insignific ant variation increases quadratically if T sub is constant T package K P Cu chip W chip 14 T 4 mm (15 GHz / f ) sub clock HBT CMLIC total 1 8 substrate: cylindrical+spherical regions 6 4 package 2 substrate: planar region master-slave D-Flip-Flop clock frequency, GHz Wiring lenghts scale as 1/bandwidth. Power density, scales as (bandwidth) 2.

12 junction temperature rise, Kelvin Thermal Resistance Scaling : Transistor, Substrate, Package cylindrical heat flow near junction spherical flow for r L e planar flow for r D HBT / 2 P L e P 1 1 P Tsub D / 2 T substrate ln 2 K InPLE We K InP LE D KInP D increases logarithmi cally insignific ant variation increases quadratically if T sub is constant T package K P Cu chip W chip 14 T sub 4 mm (15 GHz / f ) clock 12 total 2 - HBT CMLIC 1 Probable best solution: scale as Thermal Vias ~5 nm below InP subcollector 1/bandwidth. Power density, 8 substrate: cylindrical+spherical regions 6 4 package 2 substrate: planar region over full active IC area. master-slave D-Flip-Flop clock frequency, GHz Wiring lenghts scales as (bandwidth) 2.

13 Bipolar Transistors

14 db db db 256 nm InP HBT 34 GHz dynamic frequency divider M. Seo, UCSB/TSC 34 GHz VCO M. Seo, UCSB/TSC IMS GHz amplifier J. Hacker, TSC IMS 21 VEE Vtune Vout VBB 15 nm thick collector nm thick collector Hz Z. Griffith H 21 f = 424 GHz U 1 1 f max = 56 GHz f = 56 GHz Hz U f max = 78 GHz 1 11 H 21 E. Lind 1 12 ma/mm 2 ma/mm V ce V ce 24 GHz static frequency divider Z. Griffith, TSC CSIC 21: to be presented H 21 U Z. Griffith 2 1 f = 218 GHz 1 max f = 66 GHz t much better results in press... V Hz ce ma/mm 2 3

15 InP Bipolar Transistor Scaling Roadmap emitter nm width mm 2 access base nm contact width, mm 2 contact collector nm thick, ma/mm 2 current density V, breakdown f GHz f max GHz power amplifiers GHz digital 2:1 divider GHz T b W e W bc T c

16 Fabrication Process for 128 nm & 64 nm InP HBTs

17 Chart 17 Gain (db) Initial Results: Refractory-Contact HBT Process Gain (db) 11 nm emitter width 27 nm emitter width 3 U 25 2 H 21 f = 7 GHz max 15 1 A =.11 mm x 3.5 mm je 5 f = 37 GHz t Freq (Hz) U H 21 A je =.27mm x 3.5mm f t = 43 GHz f max = 8 GHz freq (Hz) Need to add E-beam defined base, best base contact technology

18 f max (GHz) InP DHBTs: August GHz 5 GHz 6 GHz 2 nm 7 GHz 8 GHz 9 GHz f max f Teledyne DHBT UIUC DHBT NTT DBHT popular metrics : f ( f (1 f f or f f f max max 1 max alone ) / 2 f max ) nm 11 nm 25 nm 6nm 35 nm Updated Aug f t (GHz) ETHZ DHBT UIUC SHBT UCSB DHBT NGST DHBT HRL DHBT IBM SiGe Vitesse DHBT much better power amplifiers : PAE, associated gain, mw/ mm low noise amplifiers : F digital : f ( C ( R ( R ( τ min clock b cb ex bb, associated gain, I, hence V / I I c c τ / V ), / V ), c ) c ), metrics :

19 67 GHz Transceiver Simulations in 128 nm InP HBT nf(2) db(s(2,1)) nf(2) db(s(2,1)) Vout, Vout_bar PLL single-sideband phase noise spectral density, dbc (1 Hz) Noise Figure, Conversion Gain (db) nf(2) db(s(2,1)) Vout, Vout_bar transmitter exciter 67 GHz (128 nm HBT) receiver LNA: 9.5 db Fmin at 67 GHz SP.freq, GHz freq, GHz VCO: -5 dbc (1 1 Hz offset at 62 GHz (phase 1) PA: 9.1 dbm Pout at 67 GHz nm 64nm 128nm SP.freq, GHz freq, GHz (a) (b) (a) (c) Total PLL phase noise free-running VCO SP.freq, THz freq, THz -1 closed-loop VCO noise multiplied reference noise offset from carrier, Hz 3-layer thin-film THz interconnects thick-substrate--> high-q TMIC thin -> high-density digital Dynamic divider: novel design, simulates to 95 GHz GHz Input GHz Input time, seconds time, seconds Mixer: 1.4 db noise figure 11.9 db gain LO Power

20 THz Field-Effect Transistors (THz HEMTs)

21 FET Scaling Laws L G Changes required to double device / circuit bandwidth. laws in constant-voltage limit: FET parameter change gate length decrease 2:1 current density (ma/mm), g m (ms/mm) increase 2:1 channel 2DEG electron density increase 2:1 electron mass in transport direction constant gate-channel capacitance density increase 2:1 dielectric equivalent thickness decrease 2:1 channel thickness decrease 2:1 channel density of states increase 2:1 source & drain contact resistivities decrease 4:1 gate widthw G

22 HEMT/MOSFET Scaling: Four Major Challenges contact regions: need reduced access resistivity gate dielectric: need thinner barriers tunneling leakage channel: need higher charge density yet keep high carrier velocity channel: need thinner layers

23 THz FET Scaling Roadmap? Gate length nm Gate barrier EOT nm well thickness nm S/D resistance mm effective mass *m # band minima f GHz f max GHz f divider source-coupled logic GHz I d /W 2 mv overdrive ma/mm high-k gate dielectrics source / drain regrowth G-L transport

24 III-V MOSFETs with Source/Drain Regrowth 27 nm InGaAs MOSFET

25 Regarding Mixed-Signal ICs & Waveform Generation

26 Clock Timing Jitter in ADCs and DACs Timing jitter is quantitatively specified by the single-sideband phase noise spectral density L(f). IC oscillator phase noise varies as ~1/f 2 or ~1/f 3 near carrier Impact on ADCs and DACs: imposition of 1/f n sidebands on signal of relative amplitude L(f)...not creation of a broadband noise floor. Dynamic range of electronic DACs & ADCs is limited by factors other than the phase noise of the sampling clock

27 Why ADC Resolution Decreases With Sample Rate Dynamic Range Determined by Circuit Settling Time vs. Clock Period dynamic hysteresis metastability # bits 1 f sample latch IC time constants Resolution decreases at high sample rates

28 Fast IC Waveform Generation: General Prospects Waveform generator fast digital memory & DAC Parallel digital memory and 2 Gb/s MUX is feasible cost limits: power & system complexity vs. # bits, GS/s Performance limit: speed vs. resolution of DAC faster technologies increased sample rates Feasible ADC resolution: 12 SNR 4 GS/s feasible using 5 nm (4GHz) InP HBT. Feasible sample rate will scale with technology speed..

29 THz Transistors & Mixed-Signal ICs

30 Few-THz Transistors Few-THz InP Bipolar Transistors: can it be done? Scaling limits: contact resistivities, device and IC thermal resistances. 62 nm (1 THz f, 1.5 THz f max ) scaling generation is feasible. 7 GHz amplifiers, 45 GHz digital logic Is the 32 nm (1 THz amplifiers) generation feasible? Few-THz InP Field-Effect Transistors: can it be done? challenges are gate barrier, vertical scaling, source/drain access resistance, channel density of states. 2DEG carrier concentrations must increase. S/D regrowth offers a path to lower access resistance. Solutions needed for gate barrier: possibly high-k (MOSFET) Implications: 1 THz radio ICs, ~2-4 GHz digital ICs, 2 GHz ADCs/DACs

sub-mm-wave ICs, University of California, Santa Barbara

sub-mm-wave ICs, University of California, Santa Barbara 20th Annual Workshop on Interconnections within High Speed Digital Systems, Santa Fe, New Mexico, 3 6 May 2009 THz Transistors, sub-mm-wave ICs, mm-wave Systems Mark Rodwell University of California, Santa

More information

THz Indium Phosphide Bipolar Transistor Technology

THz Indium Phosphide Bipolar Transistor Technology IEEE Compound Semiconductor IC Symposium, October 4-7, La Jolla, California THz Indium Phosphide Bipolar Transistor Technology Mark Rodwell University of California, Santa Barbara Coauthors: J. Rode, H.W.

More information

Sub-mm-Wave Technologies: Systems, ICs, THz Transistors

Sub-mm-Wave Technologies: Systems, ICs, THz Transistors 2013 Asia-Pacific Microwave Conference, November 8th, Seoul Sub-mm-Wave Technologies: Systems, ICs, THz Transistors Mark Rodwell University of California, Santa Barbara Coauthors: J. Rode, H.W. Chiang,

More information

High-Frequency Transistors High-Frequency ICs. Technologies & Applications

High-Frequency Transistors High-Frequency ICs. Technologies & Applications High-Frequency Transistors High-Frequency ICs Technologies & Applications Mark Rodwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-2362 fax Report Documentation Page

More information

Indium Phosphide and Related Materials Selectively implanted subcollector DHBTs

Indium Phosphide and Related Materials Selectively implanted subcollector DHBTs Indium Phosphide and Related Materials - 2006 Selectively implanted subcollector DHBTs Navin Parthasarathy, Z. Griffith, C. Kadow, U. Singisetti, and M.J.W. Rodwell Dept. of Electrical and Computer Engineering,

More information

Galileo, Elephants, & Fast Nano-Devices

Galileo, Elephants, & Fast Nano-Devices Presentation to NNIN REU interns, July 29, 2008 Galileo, Elephants, & Fast Nano-Devices Mark Rodwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Scaling:

More information

50-500GHz Wireless Technologies: Transistors, ICs, and Systems

50-500GHz Wireless Technologies: Transistors, ICs, and Systems Plenary, Asia-Pacific Microwave Conference, December 6, 2015, Nanjing, China 50-500GHz Wireless Technologies: Transistors, ICs, and Systems Mark Rodwell, UCSB J. Rode*, P. Choudhary, B. Thibeault, W. Mitchell,

More information

Transistors for THz Systems

Transistors for THz Systems IMS Workshop: Technologies for THZ Integrated Systems (WMD) Monday, June 3, 013, Seattle, Washington (8AM-5PM) Transistors for THz Systems Mark Rodwell, UCSB rodwell@ece.ucsb.edu Co-Authors and Collaborators:

More information

Optical Phase-Locking and Wavelength Synthesis

Optical Phase-Locking and Wavelength Synthesis 2014 IEEE Compound Semiconductor Integrated Circuits Symposium, October 21-23, La Jolla, CA. Optical Phase-Locking and Wavelength Synthesis M.J.W. Rodwell, H.C. Park, M. Piels, M. Lu, A. Sivananthan, E.

More information

Frequency Limits of Bipolar Integrated Circuits

Frequency Limits of Bipolar Integrated Circuits IEEE MTT-S Symposium, June 13, 2006 Frequency Limits of Bipolar Integrated Circuits Mark Rodwell University of California, Santa Barbara Collaborators Z. Griffith, E. Lind, V. Paidi, N. Parthasarathy,

More information

Transistor & IC design for Sub-mm-Wave & THz ICs

Transistor & IC design for Sub-mm-Wave & THz ICs Plenary, 2012 European Microwave Integrated Circuits Conference, October 29th, Amsterdam Transistor & IC design for Sub-mm-Wave & THz ICs Mark Rodwell University of California, Santa Barbara Coauthors:

More information

GHz Bipolar ICs: Device and Circuit Design Principles

GHz Bipolar ICs: Device and Circuit Design Principles Short Course, IEEE Bipolar / BiCMOS Circuits and Technology Meeting, 9 October 2011, Atlanta, Georgia 100-1000 GHz Bipolar ICs: Device and Circuit Design Principles Mark Rodwell, UCSB Munkyo Seo, Teledyne

More information

Frequency Limits of InP-based Integrated Circuits

Frequency Limits of InP-based Integrated Circuits Plenary, Indium Phosphide and Related Materials Conference, May 15-18, Matsue, Japan Frequency Limits of InP-based Integrated Circuits Mark Rodwell, E. Lind, Z. Griffith, S. R. Bank, A. M. Crook U. Singisetti,

More information

THz HBTs & sub-mm-wave ICs

THz HBTs & sub-mm-wave ICs Workshop: Sub-millimeter-wave Monolithic Integrated Circuits. European Microwave Week. Amsterdam, Oct. 28, 2012 THz HBTs & sub-mm-wave ICs Mark Rodwell, UCSB Co-Authors and Collaborators: Teledyne HBT

More information

From 1 Tbs per Carrier to 1 THz

From 1 Tbs per Carrier to 1 THz From 1 Tbs per Carrier to 1 THz Sorin P. Voinigescu ECE Department, University of Toronto European Microwave Conference 1 Outline Introduction Examples of Tbs Wireless and Photonics Systems Segmented Power

More information

ECE145a / 218a: Notes Set 5 device models & device characteristics:

ECE145a / 218a: Notes Set 5 device models & device characteristics: ECE145a / 218a: Notes Set 5 device models & device characteristics: Mark odwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax Content: Bipolar Transistor M

More information

30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining

30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining 2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining 1 H.C. Park, 1 S.

More information

TU3B-1. An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns

TU3B-1. An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns TU3B-1 Student Paper Finalist An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns H. Park 1, S. Daneshgar 1, J. C. Rode 1, Z. Griffith

More information

DEFENSE TECHNICAL INFORMATION CENTER

DEFENSE TECHNICAL INFORMATION CENTER DEFENSE TECHNICAL INFORMATION CENTER [nformiiioitforthe Deffrtse Couutauuty Month Day Year DTI'C has determined on LL j that this Technical Document has the Distribution Statement checked below. The current

More information

InP HBT technology development at IEMN

InP HBT technology development at IEMN InP HBT technology development at IEMN Advanced NanOmetric Devices Group, Institut d Electronique de Microelectronique et de Nanotechnology, Lille, FRANCE Date Outline Which applications for THz GaAsSb/InP

More information

Up to 6 GHz Medium Power Silicon Bipolar Transistor. Technical Data AT Plastic Package

Up to 6 GHz Medium Power Silicon Bipolar Transistor. Technical Data AT Plastic Package Up to 6 GHz Medium Power Silicon Bipolar Transistor Technical Data AT-286 Features High Output Power: 2.5 dbm Typical P 1 db at 2. GHz High Gain at 1 db Compression: 13.5 db Typical G 1 db at 2. GHz Low

More information

RF and Microwave Semiconductor Technologies

RF and Microwave Semiconductor Technologies RF and Microwave Semiconductor Technologies Muhammad Fahim Ul Haque, Department of Electrical Engineering, Linköping University muhha@isy.liu.se Note: 1. This presentation is for the course of State of

More information

techniques, and gold metalization in the fabrication of this device.

techniques, and gold metalization in the fabrication of this device. Up to 6 GHz Medium Power Silicon Bipolar Transistor Chip Technical Data AT-42 Features High Output Power: 21. dbm Typical P 1 db at 2. GHz 2.5 dbm Typical P 1 db at 4. GHz High Gain at 1 db Compression:

More information

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400 Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip Technical Data AT-1 Features Low Noise Figure: 1.6 db Typical at 3. db Typical at. GHz High Associated Gain: 1.5 db Typical at 1.5 db Typical at. GHz

More information

ECE 145A / 218 C, notes set xx: Class A power amplifiers

ECE 145A / 218 C, notes set xx: Class A power amplifiers ECE 145A / 218 C, notes set xx: Class A power amplifiers Mark Rodwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax Class A power amplifier: what do we mean?

More information

AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Data Sheet

AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Data Sheet AT-86 Up to 6 GHz Medium Power Silicon Bipolar Transistor Data Sheet Description Avago s AT-86 is a general purpose NPN bipolar transistor that offers excellent high frequency performance. The AT-86 is

More information

Surface Mount Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41411

Surface Mount Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41411 Surface Mount Low Noise Silicon Bipolar Transistor Chip Technical Data AT-111 Features Low Noise Figure: 1. db Typical at 1. GHz 1.8 db Typical at 2. GHz High Associated Gain: 18. db Typical at 1. GHz

More information

Silicon Bipolar Low Noise Microwave Transistors

Silicon Bipolar Low Noise Microwave Transistors Silicon Bipolar Low Noise Microwave Transistors MP42141 Features Case Styles Low Intrinsic Noise Figure (2.3dB Typical @ 1.0 GHz) High Power Gain At 1.0 GHz 18.0 db Typical Gold Metalization Hermetic and

More information

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Alternatives to standard MOSFETs. What problems are we really trying to solve? Alternatives to standard MOSFETs A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include: Silicon-in-insulator

More information

GaN MMIC PAs for MMW Applicaitons

GaN MMIC PAs for MMW Applicaitons GaN MMIC PAs for MMW Applicaitons Miroslav Micovic HRL Laboratories LLC, 311 Malibu Canyon Road, Malibu, CA 9265, U. S. A. mmicovic@hrl.com Motivation for High Frequency Power sources 6 GHz 11 GHz Frequency

More information

ECE 194J/594J Design Project

ECE 194J/594J Design Project ECE 194J/594J Design Project Optical Fiber Amplifier and 2:1 demultiplexer. DUE DATES----WHAT AND WHEN... 2 BACKGROUND... 3 DEVICE MODELS... 5 DEMULTIPLEXER DESIGN... 5 AMPLIFIER DESIGN.... 6 INITIAL CIRCUIT

More information

Optical Fiber Communication Lecture 11 Detectors

Optical Fiber Communication Lecture 11 Detectors Optical Fiber Communication Lecture 11 Detectors Warriors of the Net Detector Technologies MSM (Metal Semiconductor Metal) PIN Layer Structure Semiinsulating GaAs Contact InGaAsP p 5x10 18 Absorption InGaAs

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

Updates on THz Amplifiers and Transceiver Architecture

Updates on THz Amplifiers and Transceiver Architecture Updates on THz Amplifiers and Transceiver Architecture Sanggeun Jeon, Young-Chai Ko, Moonil Kim, Jae-Sung Rieh, Jun Heo, Sangheon Pack, and Chulhee Kang School of Electrical Engineering Korea University

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

Data Sheet. AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Description. Features. 85 Plastic Package

Data Sheet. AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Description. Features. 85 Plastic Package AT-85 Up to 6 GHz Medium Power Silicon Bipolar Transistor Data Sheet Description Avago s AT-85 is a general purpose NPN bipolar transistor that offers excellent high frequency performance. The AT-85 is

More information

A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio

A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio International Microwave Symposium 2011 Chart 1 A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio Zach Griffith, M. Urteaga, R. Pierson, P. Rowell, M. Rodwell,

More information

Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product

Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product Hughes Presented at the 1995 IEEE MTT-S Symposium UCSB Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product J. Pusl 1,2, B. Agarwal1, R. Pullela1, L. D. Nguyen 3, M. V. Le 3,

More information

InP AND GaAs COMPONENTS FOR 40 Gbps APPLICATIONS

InP AND GaAs COMPONENTS FOR 40 Gbps APPLICATIONS InP AND GaAs COMPONENTS FOR 40 Gbps APPLICATIONS M. Siddiqui, G. Chao, A. Oki, A. Gutierrez-Aitken, B. Allen, A. Chau, W. Beall, M. D Amore, B. Oyama, D. Hall, R Lai, and D. Streit Velocium, a TRW Company

More information

Alternative Channel Materials for MOSFET Scaling Below 10nm

Alternative Channel Materials for MOSFET Scaling Below 10nm Alternative Channel Materials for MOSFET Scaling Below 10nm Doug Barlage Electrical Requirements of Channel Mark Johnson Challenges With Material Synthesis Introduction Outline Challenges with scaling

More information

Quantum-effect Resonant Tunneling Device Technology for Practical Ultra Low-power High-speed Applications

Quantum-effect Resonant Tunneling Device Technology for Practical Ultra Low-power High-speed Applications Quantum-effect Resonant Tunneling Device Technology for Practical Ultra Low-power High-speed Applications SEMATECH Symposium October 23 rd, 2012 Prof. Kyounghoon Yang High Speed Nanoelectronics Laboratory

More information

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design by Dr. Stephen Long University of California, Santa Barbara It is not easy to design an RFIC mixer. Different, sometimes conflicting,

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

Beyond 40 GHz: Chips to be tested, Instruments to measure them

Beyond 40 GHz: Chips to be tested, Instruments to measure them Beyond 40 GHz: Chips to be tested, Instruments to measure them Mark Rodwell University of California, Santa Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax >40 GHz Measurements: Why now? Very

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Feasibility test of THz channel for high-speed wireless link Date Submitted: 12 Nov 2013 Source: Jae-Young Kim, Ho-Jin

More information

Active Technology for Communication Circuits

Active Technology for Communication Circuits EECS 242: Active Technology for Communication Circuits UC Berkeley EECS 242 Copyright Prof. Ali M Niknejad Outline Comparison of technology choices for communication circuits Si npn, Si NMOS, SiGe HBT,

More information

White Paper. A High Performance, GHz MMIC Frequency Multiplier with Low Input Drive Power and High Output Power. I.

White Paper. A High Performance, GHz MMIC Frequency Multiplier with Low Input Drive Power and High Output Power. I. A High Performance, 2-42 GHz MMIC Frequency Multiplier with Low Input Drive Power and High Output Power White Paper By: ushil Kumar and Henrik Morkner I. Introduction Frequency multipliers are essential

More information

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs Sanghoon Lee 1*, V. Chobpattana 2,C.-Y. Huang 1, B. J. Thibeault 1, W. Mitchell 1, S. Stemmer

More information

Silicon Bipolar High f T Low Noise Medium Power 12 Volt Transistors

Silicon Bipolar High f T Low Noise Medium Power 12 Volt Transistors Silicon Bipolar High f T Low Noise Medium Power 1 Volt Transistors Features Low Phase Noise Oscillator Transistor mw Driver Amplifier Transistor Operation to GHz Available as Available in Hermetic Surface

More information

Data Sheet. AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Features. Description. 100 mil Package. High Output Power:

Data Sheet. AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Features. Description. 100 mil Package. High Output Power: AT-1 Up to 6 GHz Medium Power Silicon Bipolar Transistor Data Sheet Description Avago s AT-1 is a general purpose NPN bipolar transistor that offers excellent high frequency performance. The AT-1 is housed

More information

An 18-GHz Continuous-Time 6 1 Analog Digital Converter Implemented in InP-Transferred Substrate HBT Technology

An 18-GHz Continuous-Time 6 1 Analog Digital Converter Implemented in InP-Transferred Substrate HBT Technology IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 9, SEPTEMBER 2001 1343 An 18-GHz Continuous-Time 6 1 Analog Digital Converter Implemented in InP-Transferred Substrate HBT Technology Shrinivasan Jaganathan,

More information

Gert Veale / Christo Nel Grintek Ewation

Gert Veale / Christo Nel Grintek Ewation Phase noise in RF synthesizers Gert Veale / Christo Nel Grintek Ewation Introduction & Overview Where are RF synthesizers used? What is phase noise? Phase noise eects Classic RF synthesizer architecture

More information

Advanced Regulating Pulse Width Modulators

Advanced Regulating Pulse Width Modulators Advanced Regulating Pulse Width Modulators FEATURES Complete PWM Power Control Circuitry Uncommitted Outputs for Single-ended or Push-pull Applications Low Standby Current 8mA Typical Interchangeable with

More information

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers

Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers 2017.07.03 Technology Trend of Ultra-High Data Rate Wireless CMOS Transceivers Akira Matsuzawa and Kenichi Okada Tokyo Institute of Technology Contents 1 Demand for high speed data transfer Developed high

More information

Fiber-fed wireless systems based on remote up-conversion techniques

Fiber-fed wireless systems based on remote up-conversion techniques 2008 Radio and Wireless Symposium incorporating WAMICON 22 24 January 2008, Orlando, FL. Fiber-fed wireless systems based on remote up-conversion techniques Jae-Young Kim and Woo-Young Choi Dept. of Electrical

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs.

Frequency Synthesizers for RF Transceivers. Domine Leenaerts Philips Research Labs. Frequency Synthesizers for RF Transceivers Domine Leenaerts Philips Research Labs. Purpose Overview of synthesizer architectures for RF transceivers Discuss the most challenging RF building blocks Technology

More information

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics BJT Structure The BJT has three regions called the emitter, base, and collector. Between the regions are junctions as indicated. The base is a thin lightly doped region compared to the

More information

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop Inductances Y. Chung, S. Cai, W. Lee, Y. Lin, C. P. Wen, Fellow, IEEE, K. L. Wang, Fellow, IEEE, and T. Itoh, Fellow,

More information

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier 852 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 7, JULY 2002 A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier Ryuichi Fujimoto, Member, IEEE, Kenji Kojima, and Shoji Otaka Abstract A 7-GHz low-noise amplifier

More information

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4 ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4 26.4 40Gb/s CMOS Distributed Amplifier for Fiber-Optic Communication Systems H. Shigematsu 1, M. Sato 1, T. Hirose 1, F. Brewer 2, M. Rodwell 2 1 Fujitsu,

More information

Agilent AT Up to 6 GHz Low Noise Silicon Bipolar Transistor Data Sheet

Agilent AT Up to 6 GHz Low Noise Silicon Bipolar Transistor Data Sheet Agilent AT-135 Up to GHz Low Noise Silicon Bipolar Transistor Data Sheet Description Agilent s AT-135 is a general purpose NPN bipolar transistor that offers excellent high frequency performance. The AT-135

More information

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL

More information

Technical Data IFD IFD-53110

Technical Data IFD IFD-53110 Silicon Bipolar MMIC 3.5 and 5.5 GHz Divide-by- Static Prescalers Technical Data IFD-53 IFD-53 Features Wide Operating Frequency Range: IFD-53:.5 to 5.5 GHz IFD-53:.5 to 3.5 GHz Low Phase Noise: -3 dbc/hz

More information

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS MICROWAVE ENGINEERING-II Unit- I MICROWAVE MEASUREMENTS 1. Explain microwave power measurement. 2. Why we can not use ordinary diode and transistor in microwave detection and microwave amplification? 3.

More information

Single-stage G-band HBT Amplifier with 6.3 db Gain at 175 GHz

Single-stage G-band HBT Amplifier with 6.3 db Gain at 175 GHz Single-stage G-band HBT Amplifier with 6.3 db Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M.J.W. Rodwell Department of Electrical and Computer Engineering, University of California,

More information

Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems

Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems 71 Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems Isaac Lagnado and Paul R. de la Houssaye SSC San Diego S. J. Koester, R. Hammond, J. O. Chu, J. A. Ott, P. M. Mooney, L. Perraud,

More information

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver)

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Arvin Shahani Stanford University Overview GPS Overview Frequency Conversion Frequency Synthesis Conclusion GPS Overview: Signal Structure

More information

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in

A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in RTU1D-2 LAICS A 1.6-to-3.2/4.8 GHz Dual Modulus Injection-Locked Frequency Multiplier in 0.18µm CMOS L. Zhang, D. Karasiewicz, B. Ciftcioglu and H. Wu Laboratory for Advanced Integrated Circuits and Systems

More information

1 MHz to 2.7 GHz RF Gain Block AD8354

1 MHz to 2.7 GHz RF Gain Block AD8354 1 MHz to 2.7 GHz RF Gain Block AD834 FEATURES Fixed gain of 2 db Operational frequency of 1 MHz to 2.7 GHz Linear output power up to 4 dbm Input/output internally matched to Ω Temperature and power supply

More information

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13 µm CMOS SOI Technology School of Electrical and Electronic Engineering Yonsei University 이슬아 1. Introduction 2. Architecture

More information

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Anri Nakajima Research Center for Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama, Higashi-Hiroshima,

More information

Microwave Semiconductor Devices

Microwave Semiconductor Devices INDEX Avalanche breakdown, see reverse breakdown, Avalanche condition, 61 generalized, 62 Ballistic transport, 322, 435, 450 Bandgap, III-V-compounds, 387 Bandgap narrowing, Si, 420 BARITT device, 111,

More information

Design of THz Signal Generation Circuits Using 65nm CMOS Technologies

Design of THz Signal Generation Circuits Using 65nm CMOS Technologies Design of THz Signal Generation Circuits Using 65nm CMOS Technologies Hyeong-Jin Kim, Wonseok Choe, and Jinho Jeong Department of Electronics Engineering, Sogang University E-mail: jjeong@sogang.ac.kr

More information

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.2

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.2 13.2 An MLSE Receiver for Electronic-Dispersion Compensation of OC-192 Fiber Links Hyeon-min Bae 1, Jonathan Ashbrook 1, Jinki Park 1, Naresh Shanbhag 2, Andrew Singer 2, Sanjiv Chopra 1 1 Intersymbol

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

FD-SOI FOR RF IC DESIGN. SITRI LETI Workshop Mercier Eric 08 september 2016

FD-SOI FOR RF IC DESIGN. SITRI LETI Workshop Mercier Eric 08 september 2016 FD-SOI FOR RF IC DESIGN SITRI LETI Workshop Mercier Eric 08 september 2016 UTBB 28 nm FD-SOI : RF DIRECT BENEFITS (1/2) 3 back-end options available Routing possible on the AluCap level no restriction

More information

Varactor-Tuned Oscillators. Technical Data. VTO-8000 Series

Varactor-Tuned Oscillators. Technical Data. VTO-8000 Series Varactor-Tuned Oscillators Technical Data VTO-8000 Series Features 600 MHz to 10.5 GHz Coverage Fast Tuning +7 to +13 dbm Output Power ± 1.5 db Output Flatness Hermetic Thin-film Construction Description

More information

Simulations of High Linearity and High Efficiency of Class B Power Amplifiers in GaN HEMT Technology

Simulations of High Linearity and High Efficiency of Class B Power Amplifiers in GaN HEMT Technology Simulations of High Linearity and High Efficiency of Class B Power Amplifiers in GaN HEMT Technology Vamsi Paidi, Shouxuan Xie, Robert Coffie, Umesh K Mishra, Stephen Long, M J W Rodwell Department of

More information

Band 11 Receiver Development

Band 11 Receiver Development Band 11 Receiver Development Y. Uzawa on behalf of Band 10 team 2013 July 8 2013 EA ALMA Development Workshop 1 Outline Band 10 status Band 11 specifications and required technologies Preliminary consideration

More information

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson Design Considerations for 5G mm-wave Receivers Stefan Andersson, Lars Sundström, and Sven Mattisson Outline Introduction to 5G @ mm-waves mm-wave on-chip frequency generation mm-wave analog front-end design

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

1 MHz to 2.7 GHz RF Gain Block AD8354

1 MHz to 2.7 GHz RF Gain Block AD8354 Data Sheet FEATURES Fixed gain of 2 db Operational frequency of 1 MHz to 2.7 GHz Linear output power up to 4 dbm Input/output internally matched to Ω Temperature and power supply stable Noise figure: 4.2

More information

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth Agilent 71400C Lightwave Signal Analyzer Product Overview Calibrated measurements of high-speed modulation, RIN, and laser linewidth High-Speed Lightwave Analysis 2 The Agilent 71400C lightwave signal

More information

Proposing. An Interpolated Pipeline ADC

Proposing. An Interpolated Pipeline ADC Proposing An Interpolated Pipeline ADC Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa & Okada Lab. Background 38GHz long range mm-wave system Role of long range mm-wave Current Optical

More information

MOSFET Parasitic Elements

MOSFET Parasitic Elements MOSFET Parasitic Elements Three MITs of the ay Components of the source resistance and their influence on g m and R d Gate-induced drain leakage (GIL) and its effect on lowest possible leakage current

More information

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California A 4 GSample/s 8-bit ADC in 0.35 µm CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California 1 Outline Background Chip Architecture

More information

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers ADI 2006 RF Seminar Chapter II RF/IF Components and Specifications for Receivers 1 RF/IF Components and Specifications for Receivers Fixed Gain and Variable Gain Amplifiers IQ Demodulators Analog-to-Digital

More information

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Indian Journal of Engineering & Materials Sciences Vol. 17, February 2010, pp. 34-38 Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Bhanu

More information

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-0 SCHEME OF VALUATION Subject Code: 40 Subject: PART - A 0. Which region of the transistor

More information

UPC8151TB BIPOLAR ANALOG INTEGRATED CIRCUIT SILICON RFIC LOW CURRENT AMPLIFIER FOR CELLULAR/CORDLESS TELEPHONES FEATURES DESCRIPTION

UPC8151TB BIPOLAR ANALOG INTEGRATED CIRCUIT SILICON RFIC LOW CURRENT AMPLIFIER FOR CELLULAR/CORDLESS TELEPHONES FEATURES DESCRIPTION BIPOLAR ANALOG INTEGRATED CIRCUIT SILICON RFIC LOW CURRENT AMPLIFIER FOR CELLULAR/CORDLESS TELEPHONES UPC8TB FEATURES SUPPLY VOLTAGE: Vcc = 2. to. V LOW CURRENT CONSUMPTION: UPC8TB; Icc =.2 ma TYP @. V

More information

Fig 1: The symbol for a comparator

Fig 1: The symbol for a comparator INTRODUCTION A comparator is a device that compares two voltages or currents and switches its output to indicate which is larger. They are commonly used in devices such as They are commonly used in devices

More information

Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving

Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving Above 200 GHz On-Chip CMOS Frequency Generation, Transmission and Receiving Bassam Khamaisi and Eran Socher Department of Physical Electronics Faculty of Engineering Tel-Aviv University Outline Background

More information

INC. MICROWAVE. A Spectrum Control Business

INC. MICROWAVE. A Spectrum Control Business DRO Selection Guide DIELECTRIC RESONATOR OSCILLATORS Model Number Frequency Free Running, Mechanically Tuned Mechanical Tuning BW (MHz) +10 MDR2100 2.5-6.0 +10 6.0-21.0 +20 Free Running, Mechanically Tuned,

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

EE 230: Optical Fiber Communication Transmitters

EE 230: Optical Fiber Communication Transmitters EE 230: Optical Fiber Communication Transmitters From the movie Warriors of the Net Laser Diode Structures Most require multiple growth steps Thermal cycling is problematic for electronic devices Fabry

More information

Introduction to Surface Acoustic Wave (SAW) Devices

Introduction to Surface Acoustic Wave (SAW) Devices May 31, 2018 Introduction to Surface Acoustic Wave (SAW) Devices Part 7: Basics of RF Circuits Ken-ya Hashimoto Chiba University k.hashimoto@ieee.org http://www.te.chiba-u.jp/~ken Contents Noise Figure

More information

Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent

Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent feedback path. Figure 12-2 (p. 579) General circuit for a transistor oscillator. The transistor

More information

Equivalent circuit modeling of InP/InGaAs Heterojunction Phototransistor for application of Radio-on-fiber systems

Equivalent circuit modeling of InP/InGaAs Heterojunction Phototransistor for application of Radio-on-fiber systems Equivalent circuit modeling of InP/InGaAs Heterojunction Phototransistor for application of Radio-on-fiber systems Jae-Young Kim The Graduate School Yonsei University Department of Electrical and Electronic

More information