Chapter 5 Analytic Trigonometry

Size: px
Start display at page:

Download "Chapter 5 Analytic Trigonometry"

Transcription

1 Section 5. Fundmentl Identities 03 Chter 5 Anlytic Trigonometry Section 5. Fundmentl Identities Exlortion. cos > sec, sec > cos, nd tn sin > cos. sin > csc nd tn > cot 3. csc > sin, cot > tn, nd cot cos > sin Quick Review 5. For #, use clcultor rd rd rd rd b + b - b 6. u + u + u + 7. x - 3xy - y x + yx - y 8. v - 5v - 3 v + v # y x y - # x y x y - x xy # y x y + b # x y + bx y x xy x + y x + y xy x + y # x + y b xy x # x + y x - y x + y - Section 5. Exercises. sec + tn + 3> 5>6, so sec ;5>. Then cos >sec ;>5. But sin, tn 7 0 imlies cos 7 0. So cos >5. Finlly, tn 3 sin cos 3 y # x - y x + y x - y x + y x - y sin 3 cos 3 5 b sec + tn + 3 0, so sec ;0. But cos 7 0 imlies sec 7 0, so sec 0. Finlly, tn 3 sec csc 3 csc 3 sec tn sec - - 5, so tn ;5. But sec 7 0, sin 6 0 imlies tn 6 0, so tn -5. And cot >tn -> 5-5>5.. sin - cos , so sin ;0.6. But cos >0, tn <0 imlies sin 6 0, so sin Finlly, tn sin >cos -0.6> cos( /- )sin cot tn( /- ) cos( )cos sin( /- ) sin( - /) cot( ) cot tn( /- ) tn( - /) tn x # 0. cot x tn x #. sec y sin - y b # cos y cos y cos u. cot u sin u # sin ucos u sin u + tn x sec x >cos x sin x 3. cos x tn x csc x csc x >sin x. - cos u sin u sin u sin u sin u 5. - cos 3 x - cos x sin x sin u + tn u + cos u + tn u sec u 6. sec u sec u sec u sec u 7. csc( x) # sin x 8. sec( x) cos( x) # cos -x cos x cos cos -x - x b 9. cot( x) cot # - x b sin -x sin - x b cos -x # sinx sin -x cosx cos -x 0. cot( x) tn( x) # sin -x sin -x cos -x. sin -x + cos -x. sec -x - tn x sec x - tn x tn - x b csc x 3. cot x csc x # csc x

2 0 Chter 5 Anlytic Trigonometry + tn x. # + sin x + cot x + cos x + tn x + 5. sec x + csc x - tn x + cot x sec x - tn x + csc x - cot x+ sec u - tn u 6. cos v + sin v 7. ()(tn x+cot x)() + b + cos x b sec x 8. sin -tn cos + cos - u b sin u sin - # cos u+sin sin cos u 9. ()()(tn x)(sec x)(csc x) ()() b b b tn x sec y - tn ysec y + tn y 30. sec y cos y - sin y cos y b cos y + sin y cos y b cos y b + sin y - sin y - sin y - sin y # cos y cos y cos y cos y cos y cos y tn x 3. csc x + tn x sec x cos x b + b #. b + cos x tn x # sec cos x b x csc x 3. sec x + csc x cos x b + sin x b # cos x sin x cos x # sin x + cos x sec x csc x+ sin x tn x cos x cos x csc x+ csc x sin x sin x cos x sec x 35. cot x - cos x tn x - sec x tn x - sec x sec x - - sec x + - sec x + sec x + sec x - tn x cot x sec x sec x - - cos x cot x sin x csc x 39. cos x sin x cos x - + sin x -. - cos x - + sin x - (-)(+) 3. - sin x cos x + cos x sin x + csc x tn x - + csc x cot x # tn x - tn x + tn x - tn x + tn x - 6. sec x - sec x + tn x sec x - sec x + sec x - sec x - sec x - sec x + sec x sin x + tn - tn - tn + 8. tn - + tn + tn sin x tn x 50. sec x + sec x - sec x - sec x + sec x + sec x + sec x , so either 0 or. Then x or + n or x 6 + n x 5, n n integer. On the intervl: 6 + n x e 6,, 5 6, 3 f

3 Section 5. Fundmentl Identities tn x - 0, so either tn x 0 or. Then x n or x ; n + n, n integer. On the intervl: x e 0,,, 7 f 53. tn xsin x - 0, so either tn x 0 or. Then x n or x n interger. + n, n However, tn x excludes x, so we hve only + n xn, n n integer. On the intervl: x 50, 6 5. tn x - 0, so either 0 or tn x. Then x n or x n integer. Put nother + n, n wy, ll multiles of excet for ;, etc., ; 3 On the intervl: x e 0,, 3,, 5, 7 f 55. tn x ;3, so x ; n integer. 3 + n, n On the intervl: x e 3, 3, 3, 5 3 f 56. ; n integer., so x + n, n On the intervl: x e, 3, 5, 7 f , so therefore ; x ; n integer. 3 + n, n 58. ( +)(+)0, so - or. Then x - +n, x - 5 or n x - n integer. + n, n 59. sin usin u - 0, so sin u 0 or sin u. Then u n, n n integer sin t- sin t,or sin t+3 sin t-0. This fctors to ( sin t-)(sin t+)0, so sin t or sin t. Then t or t 5, 6 + n 6 + n n n integer. 6. cos() if n. Only n0 gives vlue between nd ±, so 0, or xn, n n integer. 6. This cn be rewritten s ( -)(+)0, so or -. Then x or 6 + n x 5 n integer. See lso # n, n 63. cos L.98, so the solution set is {;.98+n n0, ;, ;,... }. 6. cos L 0.77, so the solution set is {; 0.77+n n0, ;, ;,... }. 65. sin L nd , so the solution set is {0.307+n or.8369+n n0, ;, ;,... }. 66. tn - 5 L.373, so the solution set is {.373+n n0, ;, ;,... } L 0.636, nd cos L 0.886, so the solution set is {; n n0, ;, ;,... } L nd sin L 0.687, so the solution set is {; n n0, ;, ;,... } cos sin 70. tn u sec 7. 9 sec u - 9 tn sin u cos sec u - 00 tn 75. True. Since cosine is n even function, so is secnt, nd thus sec (x- /)sec ( /-x), which equls csc x by one of the cofunction identities. 76. Flse. The domin of vlidity does not include vlues of for which cos 0 nd tn sin /cos is undefined, nmely ll odd integer multiles of /. 77. tn x sec xtn x//cos x Z. The nswer is D. 78. sine, tngent, cosecnt, nd cotngent re odd, while cosine nd secnt re even. The nswer is A. 79. (sec +)(sec -)sec -tn.the nswer is C. 80. By the qudrtic formul, 3 cos x+-0 imlies - or 3 There re three solutions on the intervl (0, ).The nswer is D. 8., ; - sin x, tn x ; - sin x, csc x, sec x ; - sin x 8. 8 tn u + 8 sec - ; cot x ; - ; - cos x,, tn x ; - csc x ; - cos x, sec x, cot x ; - cos x 83. The two functions re rllel to ech other, serted by unit for every x. At ny x, the distnce between the two grhs is sin x - -cos x sin x + cos x.,

4 06 Chter 5 Anlytic Trigonometry [, ] by [, ] 8. The two functions re rllel to ech other, serted by unit for every x. At ny x, the distnce between the two grhs is sec x - tn x. 90. Use the hint: cos - x cos> - x - > sinx - > Cofunction identity -sin> - x Since sin is odd - Cofunction identity 9. Since A, B, nd C re ngles of tringle, A+B -C. So: sin(a+b)sin( -C) sin C 9. Using the identities from Exercises 69 nd 70, we hve: sin - x tn( -x) cos - x - -tn x 85. () [, ] by [, ] Section 5. Proving Trigonometric Identities Exlortion. The grhs led us to conclude tht this is not n identity. [ 6, 70] by [0 000, ] (b) The eqution is y3, sin(0.997x+.57)+38,855. [, ] by [, ]. For exmle, cos( # 0), wheres cos(0). 3. Yes.. The grhs led us to conclude tht this is n identity. [ 6, 70] by [0 000, ] (c) >0.998 L 7.3 dys. This is the number of dys tht it tkes the Moon to mke one comlete orbit of the Erth (known s the Moon s siderel eriod). (d) 5,7 miles (e) y 3, cos x + 38,855, or y 3, cos0.997x + 38, Answers will vry. 87. Fctor the left-hnd side: sin u - cos u sin u - cos usin sin u - cos u # u + cos u sin u - cos u 88. Any k stisfying k or k Use the hint: sin - x sin> - x - > cosx - > Cofunction identity cos> - x Since cos is even Cofunction identity [, ] by [ 3, 3] 5. No. The grh window cn not show the full grhs, so they could differ outside the viewing window. Also, the function vlues could be so close tht the grhs er to coincide. Quick Review 5.. csc x+sec x + + sin x + cos x. tn x+cot x + cos x + sin x 3. # + #

5 Section 5. Proving Trigonometric Identities 07. sin # cos -cos # sin cos -sin sin cos 5. sin x+cos x > + > >cos Å 6. cos Å - sin Å cos Å - sin Å cos Å>sin cos Å - sin Å cos Å 7. No. (Any negtive x.) 8. Yes. 9. No. (Any x for which <0, e.g. x /.) 0. No. (Any x for which tn x<0, e.g. x /.). Yes.. Yes. Section 5. Exercises. One ossible roof: x 3 - x - x - x + xx - x - x - x x x - x - x - -x + - x. One ossible roof: x - x b - x x b x - x x - x x 3. One ossible roof: x - x - - x - 9 x + 3 x + x - x + 3x x - x + 3 x + - x One ossible roof: x - x + - x + x - x + x - - x - x - x + x - - x + x + x sin x + cos x 5..Yes. csc x csc x tn x 6. #.Yes. sec x 7. # cot x # No.. 8. cos x - Yes. b cos - x b. sin 3 x 9. (sin 3 x)(+cot x)(sin 3 x)(csc x).yes. sin x 0. No. Confirm grhiclly.. ()(tn x+ cot x) # + # +cos x. ()(cot x+ tn x) # + # +sin x 3. (-tn x) - tn x+tn x (+tn x)- tn xsec x- tn x. (-) cos x- +sin x (cos x+sin x) One ossible roof: - cos u + cos u - cos u cos u cos u sin u cos u tn u + 6. tn x+sec x cos x - sin x - cos x - -sin x 7. # tn x 8. # sin sin sec - tn sin sin sin cos b cos sin - sin 9. Multily out the exression on the left side csc x - cos x sin x. (cos t-sin t) +(cos t+sin t) cos t- cos t sin t+sin t+cos t + cos t sin t+sin t cos t+ sin t. sin Å-cos Å(-cos Å)-cos Å- cos Å + tn x sec x 3. sec x sin x + cos x cos ı cos ı + sin ı. +tn ı sin ı + sin b tn ı cos b cos ı sin ı sec ı csc ı cos ı sin ı cos ı cos ı - sin ı 5. + sin ı cos ı + sin ı cos ı + sin ı - sin ı + sin ı - sin ı cos ı + sin ı cos ı 6. One ossible roof: sec x + sec x + sec x - tn x tn x sec x - sec x - tn xsec x - tn x # tn xsec x - - -

6 08 Chter 5 Anlytic Trigonometry tn x sec x - 7. sec x- - sec x + sec x + - cot v - cot v - 8. # tn v cot v tn v - tn v cot v + cot v + tn v cot v tn v + tn v - tn v cos v (Note: cot v tn v # sin v ) + tn v sin v cos v 9. cot x-cos x -cos x b cos x - sin x cos x # sin x sin x cos x cot x 30. tn -sin sin -sin cos b sin - cos sin # sin cos cos sin tn 3. cos x-sin x(cos x+sin x)(cos x-sin x) (cos x-sin x)cos x-sin x 3. tn t+tn ttn t(tn t+)(sec t-)(sec t) sec t-sec t 33. (x sin Å+y cos Å) +(x cos Å-y sin Å) (x sin Å+xy sin Å cos Å+y cos Å) +(x cos Å-xy cos Å sin Å+y sin Å) x sin Å+y cos Å+x cos Å+y sin Å (x +y )(sin Å+cos Å)x +y - cos - cos sin 3. sin sin + cos sin + cos sin + cos tn x tn xsec x + tn xsec x sec x - sec x - tn x sec x +. See lso #6. tn x sin t + cos t sin t + + cos t cos t sin t sin t + cos t sin t + + cos t + cos t + cos t sin t + cos t sin t + cos t csc t sin t sin x - cos x sin x - - sin x sin x + + cos x + sin x sec x + sec x 38. # sec x - - sec x sec x - sec x sec x + (Note: sec x #.) sec x - sin t + cos t sin t + + cos t - cos t cos t sin t sin t - cos t sin t + - cos t - cos t + - cos t sin t - cos t sin t - cos t - cos t + cos t sin t - cos t sin t cos B + cos A sin B 0. cos A cos B - sin B cos A cos B cos B + cos A sin B ± # cos A cos B - sin B cos A cos B cos A + sin B cos B tn A + tn B - tn A tn B - sin B cos A cos B. sin x cos 3 xsin x cos x sin x(-sin x)(sin x-sin x). sin 5 x cos xsin x cos x (sin x) cos x (-cos x) cos x (- cos x+cos x)cos x (cos x- cos x+cos 6 x) 3. cos 5 xcos x (cos x) (-sin x) (- sin x+sin x). sin 3 x cos 3 xsin 3 x cos x sin 3 x (-sin x)(sin 3 x-sin 5 x) tn x cot x cot x - tn x tn x # cot x + # - cot x - tn x > - + > - b sin 3 x - cos 3 x - sin x + + cos x + +csc x sec x +. This involves rewriting 3 -b 3 s (-b)( +b+b ), where nd b sin x sec x cos x

7 Section 5. Proving Trigonometric Identities 09 tn x tn x cos x - tn x # + - tn x cos x cos x - sin x cos x + sin x + cos x - sin x cos x - sin x + cos x + sin x cos x sin x - cos x cos 3 x(cos x)()(-sin x)() 50. sec x(sec x)(sec x)(+tn x)(sec x) 5. sin 5 x(sin x)()(sin x) () (-cos x) () (- cos x+cos x)() + 5. (b) divide through by : sec x+tn x (d) multily out: (+sec x)(-) -+sec x-sec x # - cos x sin x -+ - # tn x. 5. () ut over common denomintor: sec x+csc x + b b # sin x + cos x cos cos b x sin x x sin x sec x csc x. 55. (c) ut over common denomintor: sin x sec x. cos x 56. (e) multily nd divide by : tn x + cot x sin x + cos x + b. 57. (b) multily nd divide by sec x+tn x: # sec x + tn x sec x + tn x sec x - tn x sec x + tn x sec x - tn x sec x + tn x. 58. Flse. There re numbers in the domin of both sides of the eqution for which equlity does not hold, nmely ll negtive rel numbers. For exmle, -3 3, not True. If x is in the domin of both sides of the eqution, then x 0. The eqution x x holds for ll x 0, so it is n identity. 60. By the definition of identity, ll three must be true. The nswer is E. 6. A roof is - # cos x + sin x + The nswer is E. 6. One ossible roof: tn + sec sin cos + cos sin + cos sin + # sin - cos sin - sin - cos sin - -cos cos sin - -cos sin - cos - sin The nswer is C. 63. k must equl, so f(x) Z 0. The nswer is B. 6. ; cot x # 65. ; tn x # 66. ; + csc x + sec x > > sin x+cos x csc x cot x csc x > >sin x 67. ; - - sec x > cos x - cos x sin x - sin x sin x sin x sin x 68. ;. tn x > 69. ; (sec x)(-sin x) (cos x) b 70. Since the sum of the logrithms is the logrithm of the roduct, nd since the roduct of the bsolute vlues of ll six bsic trig functions is, the logrithms sum to ln, which is 0.

8 0 Chter 5 Anlytic Trigonometry 7. If A nd B re comlementry ngles, then sin A+sin Bsin A+sin ( /-A) sin A+cos A 7. Check Exercises 5 for correct identities. 73. Multily nd divide by -sin t under the rdicl: - sin t # - sin t - sin t C + sin t - sin t C - sin t - sin t ƒ - sin t ƒ since ƒ ƒ. C cos t ƒ cos t ƒ Now, since -sin t 0, we cn disense with the bsolute vlue in the numertor, but it must sty in the denomintor. 7. Multily nd divide by +cos t under the rdicl: + cos t # + cos t + cos t C - cos t + cos t C - cos t + cos t ƒ + cos t ƒ since ƒ ƒ. C sin t ƒ sin t ƒ Now, since +cos t 0, we cn disense with the bsolute vlue in the numertor, but it must sty in the denomintor. 75. sin 6 x+cos 6 x(sin x) 3 +cos 6 x (-cos x) 3 +cos 6 x (-3 cos x+3 cos x-cos 6 x)+cos 6 x -3 cos x(-cos x)-3 cos x sin x. 76. Note tht 3 -b 3 (-b)( +b+b ). Also note tht +b+b +b+b -b (+b) -b. Tking cos x nd bsin x, we hve cos 6 x-sin 6 x (cos x-sin x)(cos x+cos x sin x+sin x) (cos x-sin x)[(cos x+sin x) -cos x sin x] (cos x-sin x)(-cos x sin x). 77. One ossible roof: ln tn x ln ƒ ƒ ƒ ƒ ln -ln. 78. One ossible roof: ln sec +tn +ln sec -tn ln sec -tn ln () They re not equl. Shown is the window [,,] by [, ]; grhing on nerly ny viewing window does not show ny rent difference but using TRACE, one finds tht the y coordintes re not identicl. Likewise, tble of vlues will show slight differences; for exmle, when x, y while y [, ] by [, ] (b) One choice for h is 0.00 (shown). The function y 3 is combintion of three sinusoidl functions (000 sin(x+0.00), 000, nd ), ll with eriod. [, ] by [ 0.00, 0.00] 80. () cosh x-sinh x (e x +e x ) - (e x -e x ) [e x ++e x -(e x -+e x )] (). sinh x cosh x - sinh x (b) -tnh x- cosh x cosh x, using the result from (). This equls sech x. cosh x cosh x cosh x - sinh x (c) coth x- - sinh x sinh x, using the result from (). This equls csch x. sinh x 8. In the deciml window, the x coordintes used to lot the grh on the clcultor re (e.g.) 0, 0., 0., 0.3, etc. tht is, xn/0, where n is n integer. Then 0 x n, nd the sine of integer multiles of is 0; therefore, +sin 0 x+sin n+0. However, for other choices of x, such s x, we hve +sin 0 x+sin 0 Z. Section 5.3 Sum nd Difference Identities Exlortion. sin u + v -, sin u + sin v. No.. cos u + v, cos u + cos v. No. 3. tn >3 + >3-3, tn >3 + tn >3 3. (Mny other nswers re ossible.) Quick Review # # No. fx + fy ln x + ln y lnxy fxy Z fx + y

9 Section 5.3 Sum nd Difference Identities 8. No. fx + y e x + y e x e y 9. Yes. fx + y 3x + y 3x + 3y 0. No. fx + y x + y + 0 Section 5.3 Exercises. sin 5 sin5-30 sin 5 cos 30 - cos 5 sin 30. tn 5 tn >3 + 3> sin 75 sin sin 5 cos 30 + cos 5 sin 30. cos 75 cos cos 5 cos 30 - sin 5 sin cos sin 3 sin cos 3 - b cos 3 cos + 6. tn>3 - tn> 7. tn 5 tn 3 - b + tn>3 tn> tn>3 + tn> 8. tn tn 3 + b - tn>3 tn> fx fy Z fx + y fx + fy fx + y Z fx + fy # 3 - # 6 - # 3 + # 6 + # 3 - # 6 - # + 3 # + 6 sin 7 sin 3 + b sin 3 cos + 3 # + # 6 + cos 7 cos b cos 5 6 cos + 0. sin - b sin 6 - b sin 6 cos tn 5 - tn 30 + tn 5 tn 30 cos 3 sin sin 5 6 sin -3 # + # cos 6 sin # - 3 # In #, mtch the given exression with the sum nd difference identities.. sin - 7 sin 5. cos9-8 cos sin b sin 0. sin 3 - b sin 7 5. tn tn tn cos 7 - x b cos x - 7 b 8. cos x + 7 b 9. sin3x - x 0. cos7y + 3y cos 0y. tny + 3x. tn3 - b 3. b tn - 5 sin x - b cos - sin # 0 - # -. Using the difference identity for the tngent function, we encounter tn, which is undefined. However, we cn comute tn x - sinx - > b. From #3, cosx - > sin x -. Since the cosine function is even, b - cos x - (see Exmle, b cos - x b - or #5). Therefore this simlifies to. -cot x cos x - b cos + sin # 0 + # The simlest wy is to note tht, so tht - x b - y - x - y - x + y cos c. Now use - x b - y d cos c - x + yd Exmle to conclude tht cos c - x + y d sinx + y. 7. sin x + 6 b cos 6 + sin 6 # 3 + # 8. cos x - b cos + sin # + # +

10 Chter 5 Anlytic Trigonometry 9. tn + b tn + tn> - tn tn> + tn - tn 30. cos + b cos cos - sin sin cos # 0 - sin u # -sin 3. Equtions B nd F. 3. Equtions C nd E. 33. Equtions D nd H. 3. Equtions A nd G. 35. Rewrite s - 0; the left side equls sin(x-x), so xn, n n integer. 36. Rewrite s cos 3x -sin 3x 0; the left side equls cos(3x+x), so x ; then + n x n integer. 8 + n, n 37. sin - u b sin cos u - cos sin u # cos u - 0 # sin u cos u. 38. Using the difference identity for the tngent function, we encounter tn, which is undefined. However, we cn comute tn sin> - u - u b cos u cot u. cos> - u sin u Or, use #, nd the fct tht the tngent function is odd. 39. cot cos> - u - u b sin u tn u using sin> - u cos u the first two cofunction identities. 0. sec csc u using the - u b cos> - u sin u first cofunction identity.. csc sec u using the - u b sin> - u cos u second cofunction identity.. cos x + cos b - sin b b # 0 - # tn + - tn # - 3. To write y 3 + in the form y sinbx + c, rewrite the formul using the formul for the sine of sum: y sin bx cos c + cos bx sin c sin bx cos c + cos bx sin c cos csin bx + sin ccos bx. Then comre the coefficients: cos c 3, b, sin c. Solve for s follows: cos c + sin c 3 + cos c + sin c 5 cos c + sin c 5 5 ;5 If we choose to be ositive, then cos c 3>5 nd sin c >5. c cos - 3>5 sin - >5. So the sinusoid is y 5 sinx + cos - 3>5 L 5 sinx Follow the stes shown in Exercise 3 (using the formul for the sine of difference) to comre the coefficients in y cos csin bx - sin ccos bx to the coefficients in y 5 - : cos c 5,b, sin c. Solve for s follows: cos c + sin c 5 + cos c + sin c 69 ;3 If we choose to be ositive, then cos c 5>3 nd sin c >3. So the sinusoid is y 3 sinx - cos - 5>3 L 3 sinx Follow the stes shown in Exercise 3 to comre the coefficients in y cos csin bx + sin ccos bx to the coefficients in y cos 3x + sin 3x: cos c, b3, sin c. Solve for s follows: cos c + sin c + cos c + sin c 5 ;5 If we choose to be ositive, then cos c > 5 nd sin c > 5. So the sinusoid is y 5 sin3x - cos - > 5 L.36 sin3x Follow the stes shown in Exercise 3 to comre the coefficients in y cos csin bx + sin ccos bx to the coefficients in y : cos c -, b, sin c 3. Solve for s follows: cos c + sin c cos c + sin c 3 ;3 If we choose to be negtive, then cos c > 3 nd sin c -3> 3. So the sinusoid is y -3 - cos - > sinx sin(x-y)+sin(x+y) ( cos y- sin y) + ( cos y+ sin y) cos y 8. cos(x-y)+cos(x+y) ( cos y+ sin y) + ( cos y- sin y) cos y 9. cos 3xcos[(x+x)+x] cos(x+x) -sin(x+x) ( - ) -( + ) cos x-sin x - sin x cos x-3 sin x 50. sin 3usin[(u+u)+u]sin(u+u) cos u+ cos(u+u) sin u(sin u cos u+cos u sin u) cos u+ (cos u cos u-sin u sin u) sin u cos u sin u+ cos u sin u-sin u3 cos u sin u-sin u 5. cos 3x+cos(x+x)+cos(x-x); use #8 with x relced with x nd y relced with x. 5. +sin(3x+x)+sin(3x-x); use #7 with x relced with 3x nd y relced with x.

11 Section 5.3 Sum nd Difference Identities tn(x+y) tn(x-y) tn x + tn y tn x - tn y - tn x tn y b # + tn x tn y b tn x - tn y since both the numertor nd - tn x tn y denomintor re fctored forms for differences of squres. 5. tn 5u tn 3utn(u+u) tn(u-u); use #53 with xu nd yu. + y y cos y + sin y cos y - sin y cos y + sin y > cos y # cos y - sin y > cos y cos y> cos y + sin y> cos y cos y> cos y - sin y> cos y > + sin y>cos y > - sin y>cos y tn x + tn y tn x - tn y 56. True. If B -A, then cos A+cos B cos A+cos ( -A) cos A+cos cos A+sin cos A+( ) cos A+(0) Flse. For exmle, cos 3 +cos 0, but 3 nd re not sulementry. And even though cos (3 /)+cos (3 /)0, 3 / is not sulementry with itself. 58. If cos A cos B sin B, then cos (A+B) cos A cos B- sin B0. The nswer is A. 59. y + sin (x+x)sin 3x. The nswer is A. 60. Sin 5 sin5-30 sin 5 cos 30 - cos 5 sin 30 3 b - b 6 - The nswer is D. tn u + tn v 6. For ll u, v, tnu + v The nswer is B. - tn u tn v. sinu + v 6. tn(u+v) cosu + v sin u cos v + cos u sin v cos u cos v - sin u sin v sin u cos v cos u sin v + cos u cos v cos u cos v cos u cos v sin u sin v - cos u cos v cos u cos v sin u cos u + sin v cos v sin u sin v - cos u cos v tn u + tn v - tn u tn v sinu - v 63. tn(u-v) cosu - v sin u cos v - cos u sin v cos u cos v + sin u sin v sin u cos v cos u cos v cos u cos v cos u cos v sin u cos u - sin v cos v sin u sin v + cos u cos v tn u - tn v + tn u tn v 6. The identity would involve tn which does not exist. b, sin x + b tn x + b cos + sin cos - sin -cot x 65. The identity would involve tn 3, which does not exit. b tn x - 3 b sin x - cos 3 - sin 3 cos 3 + sin 3 cos x + b # 0 + # # 0 - # 3 b cos x - 3 b - cos u sin v cos u cos v + sin u sin v cos u cos v # 0 - # # 0 + # -cot x sinx + h - cos h + sin h h h cos h - + sin h h cos h - b + sin h h h

12 Chter 5 Anlytic Trigonometry cosx + h - cos h - sin h h h cos h - - sin h h cos h - b - sin h h h 68. The coordintes of ll oints must be cos k k b, sin for k0,,,», 3. We only bb need to find the coordintes of those oints in Qudrnt I, becuse the remining oints re symmetric. We lredy know the coordintes for the cses when k0,, 3,, 6 since these corresond to the secil ngles. k: cos b cos 3 - b cos 3 b cos b 6 - k5: cos 5 b cos 3-3 b cos 3 b cos 3 b + sin 3 b sin 3 b - # + sin 3 b cos 3 b - sin 3 b cos 3 b # 3 - # b Coordintes in the first qudrnt re (, 0), sin 5 b sin 3-3 b, b,,, sin 3 b sin b # + 3 # + 6 sin b sin 3 - b sin 3 b cos b sin b cos 3 b 3 # - # # b, 3, b,, b, + 6 b, 0, 69. sina + B sin - C sin cos C - cos sin C 0 # cos C - - sin C sin C 70. cos Ccos( -(A+B)) cos cos(a+b)+sin sin(a+b) ( )(cos A cos B- sin B) + 0 # sina + B sin B-cos A cos B 7. tn A+tn B+tn C cos A + sin B cos B + sin C cos C cos B cos C + sin Bcos A cos C cos A cos B cos C sin Ccos A cos B + cos A cos B cos C cos C cos B + cos A sin B + sin Ccos A cos B cos A cos B cos C cos C sina + B + sin CcosA + B + sin B cos A cos B cos C cos C sin - C + sin Ccos - C + sin B cos A cos B cos C cos C sin C + sin C -cos C + sin C sin B cos A cos B cos C sin B sin C cos A cos B cos C tn A tn B tn C 7. cos A cos B cos C- sin B cos C - cos B sin C-cos A sin B sin C cos A(cos B cos C-sin B sin C) -(sin B cos C+cos B sin C) cos A cos (B+C)- sin(b+c) cos(a+b+c) cos 73. This eqution is esier to del with fter rewriting it s cos 5x +sin 5x 0. The left side of this eqution is the exnded form of cos(5x-x), which of course equls ; the grh shown is simly y. The eqution 0 is esily solved on the intervl [, ]: x ; or x ; 3. The originl grh is so crowded tht one cnnot see where crossings occur. [, ] by [.,.] 7. x cos t c cos T b cos d - t cos d cos ( sin d) sin T b B B in + B ref E 0 x cos t - c b + E 0 x cos t + c c b c E 0 x cos t cos c c + cos t cos x c E 0 c t T + d b sin t T b sin d d + sin t sin x c x - sin t sin c b t T b x cos t cos c b E 0 x cos t cos c c

13 Section 5. Multile-Angle Identities 5 Section 5. Multile-Angle Identities Exlortion. sin 8 - cos> - > # -. sin. 8 ; - - B We tke the ositive squre root becuse is firstqudrnt ngle sin cos9> - > # - is third- 9. sin. 8 ; C We tke the negtive squre root becuse 8 qudrnt ngle. Quick Review 5.. tn x when x +n, n n integer. tn x when x - +n, n n integer 3. Either 0 or. The ltter imlies the former, so x, n n integer. + n. Either 0 or. The ltter imlies the former, so xn, n n integer. 5. when x - +n, n n integer 6. when x +n, n n integer 7. Either or -. Then x or 6 + n 5 x or x ;, n n integer. 6 + n 3 + n 3 8. Either or. Then x + n or x ;, n n integer. + n 9. The trezoid cn be viewed s rectngle nd two tringles; the re is then A()(3)+ ()(3)+ ()(3) 0.5 squre units. 0. View the tringle s two right tringles with hyotenuse 3, one leg, nd the other leg the height equl to 3-8 Section 5. Exercises. cos ucos(u+u)cos u cos u-sin u sin u cos u-sin u. Strting with the result of #: cos ucos u-sin u cos u-(-cos u) cos u- 3. Strting with the result of #: cos ucos u-sin u (-sin u)-sin u- sin u tn u + tn u. tn utn(u+u) - tn u tn u tn u - tn u , so (-)0; 0 or when x0 or x ( -)0, So 0 or when x0,,. 3, or sin x+-0, so ( -)(+) 0; or when x, x or x cos x--0, so ( +)(-) 0; - or when x0, x or x , so, or Then 0 or 0 3 (but Z 0), so x0, x, x, x, 5 7 x or x. ; 5 0. cos x--0, so. Only - 5 is in [, ], so xcos - 5 b.370 or x-cos - 5 b.06 For #, ny one of the lst severl exressions given is n nswer to the question. In some cses, other nswers re ossible, s well.. sin +cos sin cos +cos (cos )( sin +). sin +cos sin cos +cos -sin sin cos + cos - sin cos +- sin 3. sin +cos 3 sin cos +cos cos -sin sin sin cos +(cos -sin ) cos - sin cos sin cos +cos 3-3 sin cos sin cos + cos 3-3 cos

14 6 Chter 5 Anlytic Trigonometry. sin 3 +cos sin cos +cos sin +cos -sin sin cos +(cos -sin ) sin +cos -sin 3 sin cos -sin 3 +cos -sin 5. sin (x) 6. cos 6xcos (3x) cos 3x- 7. csc x # csc x tn x sin x 8. cot x tn x tn x - tn x tn x tn x - cot x-tn x 9. sin 3x + cos x +( cos x-) ()( cos x-) 0. sin 3x + cos x+(- sin x) ()( cos x+- sin x) ()(3- sin x). cos (x)- sin x -( ) -8 sin x cos x. sin (x) ( )( cos x-) ( )( cos x-) 3. cos x+-0, so or, 5 x, x or x sin x+0, so 7 or -, x, x, or x cos 3x - (- sin x) -( ) - sin x - sin x - sin x Thus the left side cn be written s ()(- sin x). This equls 0 in [0, ) when x x 3, x 5, x 3, or x 7, x,. 6. Using #9, this become cos x0, so x0, x., x, or x ()(+ )0. Then 0 or - ; the solutions in [0, ) re x0, x, 3, x x. 3, x, x 3, x 3, or x With ux, this becomes cos u+cos u0, the sme s #3. This mens u 3, u, u 5 3, etc. i.e., x. Then x 6, x, x n 3 6, x 7. 6, x 3, x 6 9. Using results from #5, -cos 3x ( )-(- sin x ) ()( sin x+ -) when x or x, while the second - ; 5 fctor equls zero when. It turns out s cn be observed by noting, e.g., tht sin b tht this mens x0., x0.9, x.3, or x Using #, the left side cn be rewritten s 3 cos x-sin 3 x+cos x-sin x. Relcing cos x with -sin x gives sin 3 x- sin x+3 + (+)( sin x+ +). This equls 0 when x 3, nd b ; 5 when. These vlues turn out to be x0.3, x0.7, x., nd x.9, s cn be observed by noting, e.g., tht sin - 5 b cos sin 5 B - 3 B b - 3. Since sin 5 7 0, tke the ositive squre root. - cos tn 95-3> - 3. Note sin 390 > tht tn 95 tn 5. + cos cos 75 C - 3 C b - 3. Since cos , tke the ositive squre root. 5 - cos 5>6 3. sin C + 3 C b Since sin 7 0, tke the ositive squre root tn. - cos7>6 + 3> sin7>6 -> + cos> 36. cos C + 8 C b 3 +. Since cos 7 0, tke the ositive 8 squre root.

15 Section 5. Multile-Angle Identities () Strting from the right side: - cos u ( sin u)sin u sin u (b) Strting from the right side: + cos u cos u. cos u 3 + cos u () tn sin u u cos u - cos u> - cos u + cos u> + cos u (b) The eqution is flse when tn u is negtive number. It would be n identity if it were written s - cos u tn u. B + cos u 39. sin x(sin x) c - d - + c d (3- +) 8 0. cos 3 x cos x # + +. sin 3 x sin x # - -. sin 5 x()(sin x) () c - d - + c d Alterntively, tke sin 5 x sin x nd ly the result of # cos x, so cos x+-0. Then or. In the intervl [0, ), x, 3 5 x, or x. Generl solution: +n or 3 3 x+n, n n integer.. -cos + x, so cos x+-0. Then or. In the intervl [0, ), 5 x, x, orx. Generl solution: 3 3 x +n or x+n, n n integer The right side equls tn (x/); the only wy tht tn(x/) tn (x/) is if either tn(x/)0 or tn(x/). In [0, ), this hens when x0 or x. The generl solution is xn or x n, n n integer cos x -, so cos x+-30, or ( -3)(+)0. Then or 3. Let Åcos In the intervl b [0, ), xå, x, or x-å. Generl solution: x_å+n or x+n, n n integer. 7. Flse. For exmle, f(x) hs eriod nd g(x) hs eriod, but the roduct f(x)g(x) hs eriod. 8. True. cos x sin - x - bb + The lst exression is in the form for sinusoid. 9. f(x) f(x)g(x). The nswer is D sin.5 sin 5 b sin - x b + C - cos 5 C - > C - - The nswer is E. 5. or 0 or 0 x 6 or 5 x 6 or 3 The nswer is E.

16 8 Chter 5 Anlytic Trigonometry 5. sin x-cos x- cos x, which hs the sme eriod s the function cos x, nmely. The nswer is C. 53. () In the figure, the tringle with side lengths x/ nd R is right tringle, since R is given s the erendiculr distnce. Then the tngent of the ngle / is the rtio oosite over djcent : tn Solving for x x> R gives the desired eqution. The centrl ngle is /n since one full revolution of rdins is divided evenly into n sections. u (b) 5.87 R tn, where /, so R 5.87/( tn ) R0. 5. () d A x D x E x Cll the center of the rhombus E. Consider right ABE, with legs d / nd d /, nd hyotenuse length x. jabe hs mesure /, nd using sine o dj equls nd cosine equls, we hve hy hy nd sin. d > d cos d > d x x x x (b) Use the double ngle formul for the sine function: sin sin b sin cos d # d x x d d x 55. () B x C d ft θ θ ft ft The volume is 0 ft times the re of the end. The end is mde u of two identicl tringles, with re (sin ) (cos ) ech, nd rectngle with re () (cos ). The totl volume is then 0 # (sin cos +cos )0 (cos )(+sin ). Considering only -, the mximum vlue occurs when 0.5 (in fct, it hens exctly t ). The mximum vlue is bout.99 ft () x y 00 (x, y) x y The height of the tunnel is y, nd the width is x, so the re is xy. The x- nd y-coordintes of the vertex re 0 cos nd 0 sin, so the re is (0 cos )(0 sin )00( cos sin )00 sin. (b) Considering 0, the mximum re occurs when, or bout This gives x0 cos, or bout., for width of 0 bout 8.8, nd height of y 0 L. 57. csc u sin u sin u cos u # # sin u cos u csc u sec u 58. cot u tn u - tn u tn u - tn u tn u b cot u cot u b cot u - cot u 59. sec u cos u - sin u u - sin u bcsc csc u b csc u csc u sec u cos u cos u - u cos u - bsec sec u b sec u - sec u 6. sec u cos u cos u - sin u u csc u cos u - sin u bsec sec u csc u b sec u csc u csc u - sec u 6. The second eqution cnnot work for ny vlues of x for which 6 0, since the squre root cnnot be negtive. The first is correct since double ngle identity for the cosine gives - sin x; solving for gives sin x -, so tht -. The bsolute vlue of both A sides removes the _. 63. () The following is sctter lot of the dys st Jnury s x-coordintes (L) nd the time (in hour mode) s y-coordintes (L) for the time of dy tht stronomicl twilight begn in northestern Mli in 005. [ 30, 370] by [ 60, 60]

17 Section 5.5 The Lw of Sines 9 (b) The sine regression curve through the oints defined by L nd L is y.656 sin(0.05x-0.85)-.73. This is firly good fit, but not relly s good s one might exect from dt generted by sinusoidl hysicl model. [ 30, 370] by [ 60, 60] (c) Using the formul L-Y(L) (where Y is the sine regression curve), the residul list is: {3.6, 7.56, 3.35, 5.9, 9.35, 3.90, 5., 9.3, 3.90,.57, 9.7, 3.}. (d) The following is sctter lot of the dys st Jnury s x-coordintes (L) nd the residuls (the difference between the ctul number of minutes (L) nd the number of minutes redicted by the regression curve (Y)) s y-coordintes (L3) for the time of dy tht stronomicl twilight begn in northestern Mli in 005. The sine regression curve through the oints defined by L nd L3 is y8.856 sin(0.036x ) (Note: Round L3 to deciml lces to obtin this nswer.) This is nother firly good fit, which indictes tht the residuls re not due to chnce. There is eriodic vrition tht is most robbly due to hysicl cuses. [ 30, 370] by [ 5, 5] (e) The first regression indictes tht the dt re eriodic nd nerly sinusoidl. The second regression indictes tht the vrition of the dt round the redicted vlues is lso eriodic nd nerly sinusoidl. Periodic vrition round eriodic models is redictble consequence of bodies orbiting bodies, but ncient stronomers hd difficult time reconciling the dt with their simler models of the universe. Section 5.5 The Lw of Sines Exlortion. If BC AB, the segment will not rech from oint B to the dotted line. On the other hnd, if BC 7 AB, then circle of rdius BC will intersect the dotted line in unique oint. (Note tht the line only extends to the left of oint A.). A circle of rdius BC will be tngent to the dotted line t C if BCh, thus determining unique tringle. It will miss the dotted line entirely if BC 6 h, thus determining zero tringles. 3. The second oint (C ) is the reflection of the first oint (C ) on the other side of the ltitude.. sin C sin (-C )sin cos C -cos sin C sin C. 5. If BC AB, then BC cn only extend to the right of the ltitude, thus determining unique tringle. Quick Review 5.5. bc/d. bd/c 3. cd/b. dbc/ 7 sin 8 5. L 3.3 sin 3 9 sin 6. L sin 7. xsin x80 -sin x80 -sin ( 0.7).7 0. x360 +sin ( 0.7) Section 5.5 Exercises. Given: b3.7, B5, A60 n AAS cse. C80 -(A+B)75 ; b sin B b sin B c sin C b 3.7 sin 60 L.5; sin B sin 5. Given: c7, B5, C0 n AAS cse. A80 -(B+C)5 ; c 7 sin 5 L 3.9; c sin C sin C sin 0 b b c sin B 7 sin 5 L 5. sin B c sin C sin C sin 0 3. Given: A00, C35, n AAS cse. B80 -(A+C)5 ; L 5.8;. Given: A8, B0, b9 n AAS cse. C80 -(A+B)59 ; b sin B c b sin C sin B L.; 5. Given: A0, B30, b0 n AAS cse. C80 -(A+B)0 ; b sin B c b sin C sin B L.9; 6. Given: A50, B6, n AAS cse. C80 -(A+B)68 ; b sin B c sin C b sin B c sin C sin 5 sin 00 sin 35 sin 00 9 sin 8 sin 0 9 sin 59 sin 0 0 sin 0 sin 30 0 sin 0 sin 30 sin 6 sin 50 sin 68 sin 50 c b sin C sin B L.8 L.7 L 8.8 L.6; L sin 75 sin 5 L 5.

18 0 Chter 5 Anlytic Trigonometry 7. Given: A33, B70, b7 n AAS cse. C80 -(A+B)77 ; b sin B c b sin C sin B L.; 8. Given: B6, C03, c n AAS cse. A80 -(B+C)6 ; c sin C b c sin B sin C 7 sin 33 sin 70 7 sin 77 sin 70 sin 6 sin 03 sin 6 sin 03 L 7.3 L 0.8; L Given: A3, 7, b n SSA cse. hb 5.8; h<b<, so there is one tringle. B sin - b b sin L 0. C80 -(A+B) 7.9 ; c sin C 7 sin 7.9 L 5.3 sin 3 0. Given: A9, 3, b8 n SSA cse. hb.; h<b<, so there is one tringle. B sin - b b sin L.3 C80 -(A+B)89.7 ; c sin C 3 sin 89.7 L. sin 9. Given: B70, b, c9 n SSA cse. hc sin B 8.5; h<c<b, so there is one tringle. C sin - c sin B b sin L 37. b A80 -(B+C) 7.8 ; b sin 7.8 L. sin B sin 70. Given: C03, b6, c6 n SSA cse. hb sin C.8; h<b<c, so there is one tringle. B sin - b sin C b sin L 7.3 c A80 -(B+C)9.7 ; c 6 sin 9.7 L 3.0 sin C sin Given: A36,, b7. hb.; <h, so no tringle is formed.. Given: B8, b7, c5. hc sin B.9; h<c<b, so there is one tringle. 5. Given: C36, 7, c6. h sin C 0.0; h<c<, so there re two tringles. 6. Given: A73,, b8. hb 6.8; <h, so no tringle is formed. 7. Given: C30, 8, c9. h sin C9; hc, so there is one tringle. 8. Given: B88, b, c6. hc sin B 6.0; b<h, so no tringle is formed. 9. Given: A6, 6, b7. hb 5.3; h<<b, so there re two tringles. B sin - b b sin L 7.7 C 80 -(A+B ) 3.3 ; c sin C 6 sin 3.3 L. sin 6 Or (with B obtuse): B 80 -B 07.3 ; C 80 -(A+B ) 8.7 ; c sin C L.7 0. Given: B38, b, c5. hc sin B 5.; h<b<c, so there re two tringles. C sin - c sin B b sin L 7. b A 80 -(B+C ) 9.9 ; b sin 9.9 L 3.0 sin B sin 38 Or (with C obtuse): C 80 -C 3.9 ; A 80 -(B+C ) 9. ; b sin B L 5.. Given: C68, 9, c8. h sin C 7.6; h<c<, so there re two tringles. A sin - sin C b sin L 78. c B 80 -(A+C) 33.8 ; b c sin B 8 sin 33.8 L 0.8 sin C sin 68 Or (with A obtuse): A 80 -A 0.8 ; B 80 -(A +C) 0. ; b c sin B sin C L 3.. Given: B57,, b0. h sin B 9.; h<b<, so there re two tringles. A sin - sin B b sin L 67.3 b C 80 -(A +B) 55.7 ; c b sin C 0 sin 55.7 L 9.9 sin B sin 57 Or (with A obtuse): A 80 -A.7 ; C 80 -(A +B) 0.3 ; c b sin C sin B L. 3. h0 sin 6.69, so: () b 6 0. (b) b 6.69 or b 0. (c) b h sin , so: () c 6. (b) c 9.58 or c. (c) c () No: this is n SAS cse (b) No: only two ieces of informtion given.

19 Section 5.5 The Lw of Sines 6. () Yes: this is n AAS cse. B80 -(A+C)3 ; sin B 8 sin 3 b L 88.5; sin 9 sin C 8 sin 9 c L 6. sin 9 (b) No: this is n SAS cse. 7. Given: A6, 8, b n SSA cse. hb 8.; <h, so no tringle is formed. 8. Given: B7, 8, b n SSA cse. h sin B 5.9; h<<b, so there is one tringle. A sin - sin B b sin L 6. b C80 -(A+B)6.8 ; c b sin C sin 6.8 L 5.6 sin B sin 7 9. Given: A36, 5, b8 n SSA cse. hb 9.5; <h, so no tringle is formed. 30. Given: C5, b, c7 n SSA cse. hb sin C 0.9; c<h, so no tringle is formed. 3. Given: B, c8, C39 n AAS cse. A80 -(B+C)99 ; c sin C b c sin B sin C L 8.3; 3. Given: A9, b, B7 n AAS cse. C80 -(A+B) ; b sin B c b sin C sin B 8 sin 99 sin 39 8 sin sin 39 sin 9 sin 7 sin sin 7 L 9.8; 33. Given: C75, b9, c8. n SSA cse. hb sin C 7.3; h<c<b, so there re two tringles. B sin - b sin C b sin L 80. c A 80 -(B+C).6 ; c 8 sin.6 L 0.7 sin C sin 75 Or (with B obtuse): B 80 -B 99.6 ; A 80 -(B +C) 5. ; c sin C L.7 3. Given: A5, 3, b5. n SSA cse. hb.; h<<b, so there re two tringles. B sin - b b sin L 69.0 C 80 -(A+B ) 57.0 ; c sin C 3 sin 57.0 L 3.5 sin 5 Or (with B obtuse): B 80 -B.0 ; C 80 -(A+B ) 5.0 ; c sin C L. L 9. L Cnnot be solved by lw of sines (n SAS cse). 36. Cnnot be solved by lw of sines (n SAS cse). 37. Given: cab56, A7, B53 n ASA cse, so C80 -(A+B)55 c sin B 56 sin 53 () ACb L 5.6 ft. sin C in 55 (b) hb ( sin B) 5.9 ft. 38. Given: c5, A , B n ASA cse, so C80 -(A+B)9 nd c 5 sin 5 L 9.7 mi. sin C sin 9 c sin B 5 sin 37 b L 5.0 mi, sin C sin 9 nd finlly hb sin B.9 mi. 39. Given: c6, C90-68, B n AAS cse. A80 -(B+C)7, so c 6 sin 7 L.9 ft. sin C sin 8 0. Given: c.3, A8, B37 n ASA cse. C80 -(A+B)5 ; c.3 sin 8 L. mi. sin C sin 5 c sin B.3 sin 37 b L.5 mi. sin C sin 5 Therefore, the ltitude is hb (.5) sin mi or sin B (.) sin 37 mi 0.7 mi... ft 8 0 The length of the brce is the leg of the lrger tringle. sin 8 x, so x.9 ft B ft x C The center of the wheel (A) nd two djcent chirs 360 (B nd C) form tringle with 5.5, A 6.5, nd BC This is n ASA cse, so sin B 5.5 sin the rdius is bc L 39.7 ft. sin.5 Alterntively, let D be the midoint of BC, nd consider right ^ABD, with mjbad.5 nd BD7.75 ft; then r is the hyotenuse of this tringle, so 7.75 r L 39.7 ft. sin.5

20 Chter 5 Anlytic Trigonometry 3. Consider the tringle with vertices t the to of the flgole (A) nd the two observers (B nd C). Then 600, B9, nd C (n ASA cse), so A80 -(B+C)0 ; sin B 600 sin 9 b L 303.9; sin 0 sin C 600 sin c L 33.5 sin 0 nd finlly hb sin Cc sin B 08.9 ft.. Consider the tringle with vertices t the to of the tree (A) nd the two observers (B nd C). Then 00, B5, nd C0 (n ASA cse), so A80 -(B+C)5 ; sin B 00 sin 5 b L 80.5; sin 5 sin C 00 sin 0 c L 38.5; sin 5 nd finlly hb sin Cc sin B 6.7 ft. 5. Given: c0, B5, C33 n AAS cse. A80 -(B+C)95, so c 0 sin 95 L 36.6 mi, nd sin C sin 33 c sin B 0 sin 5 b L 8.9 mi. sin C sin We use the men (verge) mesurements for A, B, nd AB, which re 79.7, 83.9, nd 5.9 feet, resectively. This gives 6. for ngle C. By the Lw of Sines, 5.9 sin 83.9 AC L 9. feet. sin True. By the lw of sines, sin B, b which is equivlent to (since, sin B Z 0). sin B b 8. Flse. By the lw of sines, the third side of the tringle 0 sin 00 mesures, which is bout 5.3 inches. Tht sin 0 mkes the erimeter bout , which is less thn 36 inches. 9. The third ngle is 3. By the Lw of Sines, sin 3 sin 53, which cn be solved for x..0 x The nswer is C. 50. With SSA, the known side oosite the known ngle sometimes hs two different ossible ositions. The nswer is D. 5. The longest side is oosite the lrgest ngle, while the shortest side is oosite the smllest ngle. By the Lw of sin 50 sin 70 Sines,, which cn be solved for x. 9.0 x The nswer is A. 5. Becuse BC>AB, only one tringle is ossible. The nswer is B. 53. () Given ny tringle with side lengths, b, nd c, the lw of sines sys tht sin B sin C. b c But we cn lso find nother tringle(using ASA) with two ngles the sme s the first (in which cse the third ngle is lso the sme) nd different side length sy,. Suose tht k for some constnt k. Then for this new tringle, we hve sin B sin C. Since b c k # sin B, we cn see tht # sin B, k b k b so tht b kb nd similrly, c kc. So for ny choice of ositive constnt k, we cn crete tringle with ngles A, B, nd C. (b) Possible nswers:, b 3, c (or ny set of three numbers roortionl to these). (c) Any set of three identicl numbers. 5. In ech roof, ssume tht sides, b, nd c re oosite ngles A, B, nd C, nd tht c is the hyotenuse. sin 90 () c c c o hy sin B sin 90 (b) b c cos> - B b c b cos A c dj hy (c) sin B b sin B b cos A b tn A b o dj 55. () hab (b) BC 6 AB (c) BC AB or BCAB (d) AB 6 BC 6 AB 56. Drwing the line suggested in the hint, nd extending to meet tht line t, sy, D, gives right ^ADC nd right ^ADB. A 8 C 5 B D BC Then AD8 sin 3.0 nd DC8 cos 7., so DBDC-5 nd cab AD + DB L 3.9. Finlly, A(90 - )-sin DB nd AB b L 9. B80 -A-C 8.9.

21 Section 5.6 The Lw of Cosines Given: c., B5, C An AAS cse: A80 -(B+C)3.5, so c sin B. sin 5 ACb L 8.7 mi, nd sin C sin.5 c. sin 3.5 BC L. mi. sin C sin.5 The height is h sin 5 b sin mi. Section 5.6 The Lw of Cosines Exlortion. The semierimeters re 5 nd 50. A ces.,0.595 squre feet squre miles cres 5. The estimte of little over n cre seems questionble, but the roughness of their mesurement system does not rovide firm evidence tht it is incorrect. If Jim nd Brbr wish to mke n issue of it with the owner, they would be well-dvised to get some more relible dt. 6. Yes. In fct, ny olygonl region cn be subdivided into tringles. Quick Review 5.6. Acos b. Ccos ( 0.3) Acos ( 0.68) 3.8. Ccos b 5. () (b) Acos 6. () cos A 8 - x - y -xy (b) Acos x + y - 8 b xy cos A y - x x - y + 5 b 0 x + y - 8. xy x - y One nswer: (x-)(x-)x -3x+. Generlly: (x-)(x-b)x -(+b)x+b for ny two ositive numbers nd b. 8. One nswer: (x-)(x+)x -. Generlly, (x-)(x+b)x -(-b)x-b for ny two ositive numbers nd b. 9. One nswer: (x-i)(x+i)x + 0. One nswer: (x-) x -x+. Generlly: (x-) x -x+ for ny ositive number. Section 5.6 Exercises. Given: B3, c8, 3 n SAS cse. b + c - c cos B L L 9.; C cos - + b - c b L cos L 8.3 ; b A 80 - B + C L Given: C, b, n SAS cse. c + b - b cos C L L 9.5; A cos - b + c - b L cos L 80.3 ; bc B 80 - A + C L Given: 7, b9, c n SSS cse. A cos - b + c - b L cos L 76.8 ; bc B cos - + c - b b L cos L 3. ; c C 80 - A + B L 60.. Given: 8, b35, c7 n SSS cse. A cos - b + c - b L cos L 5. ; bc B cos - + c - b b L cos L 99. ; c C 80 - A + B L Given: A55, b, c7 n SAS cse. b + c - bc cos A L L 9.8; B cos - + c - b b L cos L 89.3 ; c C 80 - A + B L Given: B35, 3, c9 n SAS cse. b + c - c cos B L L 9.5; C cos - + b - c b L cos L.7 ; b A 80 - B + C L Given:, b, C95 n SAS cse. c + b - b cos C L L 5.; A cos - b + c - b L cos L 8.5 ; bc B 80 - A + C L Given: b, c3, A8 n SAS cse. b + c - bc cos A L L 35.; B cos - + c - b b L cos L 37.9 ; c C 80 - A + B L No tringles ossible (+cb) 0. No tringles ossible (+b<c). Given: 3., b7.6, c6. n SSS cse. A cos - b + c - b L cos L.6 ; bc B cos - + c - b b L cos L 99. ; c C 80 - A + B L 56..

22 Chter 5 Anlytic Trigonometry. No tringles ossible (+b<c) Exercises 3 6 re SSA cses, nd cn be solved with either the Lw of Sines or the Lw of Cosines. The lw of cosines solution is shown. 3. Given: A, 7, b0 n SSA cse. Solve the qudrtic eqution 7 0 +c -(0)c cos, or c -(.86 )c+50; there re two ositive + c - b solutions: L9.87 or Since cos B : c c 9.87, B cos (0.9) 7.9, nd C 80 -(A+B ) 65., or c 5.376, B cos ( 0.9) 07., nd C 80 -(A+B ) Given: A57,, b0 n SSA cse. Solve the qudrtic eqution 0 +c -(0)C cos 57, or c -(0.893)c-0; there is one ositive + c - b solution c.56. Since cos B, c B cos (0.67) 9.7 nd C80 -(A+B) Given: A63, 8.6, b. n SSA cse. Solve the qudrtic eqution c -(.)c cos 63, or c -(0.079)c+9.50; there re no rel solutions, so there is no tringle. 6. Given: A7, 9.3, b8.5 n SSA cse. Solve the qudrtic eqution c -(8.5)c cos 7, or c -(5.535)c-.0; there is one ositive + c - b solution: c 7.7. Since cos B, c B cos (0.503) 59.8 nd C80 -(A+B) Given: A7, b3, c9 n SAS cse. b + c - bc cos A L L 3.573, so Are L L.33 ft (using Heron s formul). Or, use A bc. 8. Given: A5, b, c n SAS cse. b + c - bc cos A L 7.99 L 6.583, so Are L L 5.8 m (using Heron s formul). Or, use A bc. 9. Given: B0, 0, c n SAS cse. b + c - c cos B L L 5.85, so Are L L cm (using Heron s formul). Or, use A c sin B. 0. Given: C,.8, b5. n SAS cse. c + b - b cos C L 36.8 L 6.0, so Are L 8. L.6 in. (using Heron s formul). Or, use A b sin C. For # 8, tringle cn be formed if +b<c, +c<b, nd b+c<. 7. s ; Are L 8.8. s ; Are L No tringle is formed (+bc).. s7; Are, L ; Are 6,70.36 L No tringle is formed (+b<c) 7. s.; Are 98, L s3.8; Are0,69. L Let, b5, nd c6. The lrgest ngle is oosite the lrgest side, so we cll it C. Since cos C + b - c, C cos - b 8 b L rdins. 30. The shorter digonl slits the rllelogrm into two (congruent) tringles with 6, B39, nd c8. The digonl hs length b + c - c cos B 7.59 L 6.5 ft. 3. Following the method of Exmle 3, divide the hexgon into 6 tringles. Ech hs two -inch sides tht form 60 ngle. 3. Following the method of Exmle 3, divide the nongon into 9 tringles. Ech hs two 0-inch sides tht form 0 ngle * sin L 37. squre inches 9 * 00sin 0 L 89.3 squre inches 30 s s In the figure, nd so s sec The re of the hexgon is 6 * 8383sin L 98.8 squre inches s s In the figure, 0 nd so s0 sec 0. The re of the nongon is 9 * 0 sec 0 0 sec 0 sin 0 L 37.6 squre inches.

23 Section 5.6 The Lw of Cosines Given: C5, BC60, ACb0 n SAS cse. AB c + b - b cos C 7, L 30. ft. 36. () The home-to-second segment is the hyotenuse of right tringle, so the distnce from the itcher s rubber to second bse is L 66.8 ft. This is bit more thn c cos L 63.7 ft. (b) B cos - + c - b b L cos c () c cos L.5 ft. (b) The home-to-second segment is the hyotenuse of right tringle, so the distnce from the itcher s rubber to second bse is 60-0 L.9 ft. (c) B cos - + c - b b L cos c Given: 75, b860, nd C78. An SAS cse, so ABc + b - b cos C L 707, ft. 39. () Using right ACE, mjcae tn b tn - 3 b L (b) Using A L 8.35, we hve n SAS cse, so DF cos A L ft. (c) EF cos A L ft. 0. After two hours, the lnes hve trveled 700 nd 760 miles, nd the ngle between them is.5, so the distnce is cos.5 8,59.77 L 90.8 mi.. AB cos L.5 yd.. mjhab 35,so HB cos L 37.0 ft. Note tht AB is the hyotenuse of n equilterl right 0 tringle with leg length, nd HC is the 0 hyotenuse of n equilterl right tringle with leg length 0 + 0, so HC L 8.3 ft. Finlly, using right HAD with leg lengths HA 0 ft nd AD HC L 8.3 ft, we hve HD HA + AD L 5.3 ft. 3. AB c + 3 3, AC b + 3 0, nd BC + 5, so A cos - b + c - mjcab b bc 9 cos b. ABC is right tringle (C90 ), with BC + nd ACb, so ABc nd Bm ABCsin + b 3 j 3 b True. By the Lw of Cosines, b +c -bc cos A, which is ositive number. Since b +c -bc cos A>0, it follows tht b +c >bc cos A. 6. True. The digonl oosite ngle slits the rllelogrm into two congruent tringles, ech with re b sin. θ b 7. Following the method of Exmle 3, divide the dodecgon into tringles. Ech hs two -inch sides tht form 30 ngle. * sin 30 3 The nswer is B. 8. The semierimeter is s(7+8+9)/. Then by Heron s Formul, A The nswer is B. 9. After 30 minutes, the first bot hs trveled miles nd the second hs trveled 6 miles. By the Lw of Cosines, the two bots re cos 0 L 3.05 miles rt. The nswer is C. 50. By the Lw of Cosines, (7)(5) cos, so cos The nswer is E. 5. Consider tht n-sided regulr olygon inscribed within circle cn divide into n equilterl tringles, ech with r 360 equl re of sin. (The two equl sides of the n equilterl tringle re of length r, the rdius of the circle.) Then, the re of the olygon is exctly nr 360 sin. n b + c - 5. () b + c - b + c - bc cos A bc bc Lw of Cosines bc cos A bc cos A (b) The identity in () hs two other equivlent forms: cos B + c - b b bc cos C + b - c c bc

24 6 Chter 5 Anlytic Trigonometry () Shi A: 5. knots; hr Shi B:. knots hrs (b) We use them ll in the roof: cos A + cos B + cos C b c b + c - bc cos A b + c - bc A 35.8 (c) c +b -b cos C (9.6) +(60.) -(9.6)(60.) cos (35.8 ).0, so the bots re 3.8 nuticl miles rt t noon. 5. Use the re formul nd the Lw of Sines: A b sin C sin B b sin C sin B sin C sin sin B qlw of Sines b r 55. Let P be the center of the circle. Then, cos P , so P The re 55 of the segment is The re of the tringle, however, is 55 sin in, so the re of the shded region is rox. 6.9 in. Chter 5 Review. sin 00 cos 00 sin c - b bc + + b - c bc b + c c - b + + b - c bc + b + c bc r # L 5 # 0.7 L 9.39 in. tn 0. tn 80 - tn 0 3. ; the exression simlifies to (cos ) +( sin cos ) (cos ) +(sin ).. cos x; the exression cn be rewritten -( ) -() cos x. 5. cos 3xcos(x+x) - (cos x-sin x) -( ) cos 3 x-3 sin x cos 3 x-3(-cos x) cos 3 x-3 +3 cos 3 x cos 3 x-3 6. cos x-cos x(-sin x)-(-sin x) sin x-sin x 7. tn x-sin xsin x - b cos x sin x # sin x tn x cos x 8. sin cos 3 + sin 3 cos ( sin cos )(cos +sin ) ( sin cos )()sin. 9. csc x- cot x - # - cos x tn u + sin u 0. + cos u + cos u ; b tn u A cos u b + tn u. Recll tht tn cot. - tn u + + cot u - cot u + tn u - cot u + + cot u - tn u - tn u - cot u + tn u - cot u cot u - tn u - - tn u - cot u tn u - cot u. sin 3 sin( + )sin cos +cos sin sin cos +(cos -sin ) sin 3 sin cos -sin 3 3. cos t c; B + cos t d + cos t + cos t b sec t sec t b + sec t sec t tn 3 g - cot 3 g. tn g + csc g 5. tn g - cot gtn g + tn g cot g + cot g tn g + csc g tn g - cot gtn g + + cot g tn g + csc g tn g - cot gtn g + csc g tn g - cot g tn g + csc g cos f - tn f + sin f - cot f cos f - tn f bcos f cos f b + sin f - cot f bsin f sin f b cos f sin f sin f - cos f cos f - sin f cos f - sin f + cos f - sin f cos f + sin f cos -z cos -z 6. sec -z + tn -z 3 + sin -z>cos -z cos -z cos z + sin -z - sin z - sin z - sin z + sin z

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Section 5. Fundmentl Identities 03 Chter 5 Anlytic Trigonometry Section 5. Fundmentl Identities Exlortion. cos / sec, sec / cos, nd tn sin / cos. sin / csc nd tn / cot 3. csc / sin, cot / tn, nd cot cos

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Section 5. Fundamental Identities 0 Cater 5 Analytic Trigonometry Section 5. Fundamental Identities Exloration. cos > sec, sec > cos, and tan sin > cos. sin > csc and tan > cot. csc > sin, cot > tan, and

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Section 5. Fundamental Identities 5 Chater 5 Analytic Trigonometry Section 5. Fundamental Identities Exloration. cos / sec, sec / cos, and tan sin / cos. sin / csc and tan / cot 3. csc / sin, cot / tan,

More information

LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY

LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY 1. Bsic roerties of qudrtic residues We now investigte residues with secil roerties of lgebric tye. Definition 1.1. (i) When (, m) 1 nd

More information

First Round Solutions Grades 4, 5, and 6

First Round Solutions Grades 4, 5, and 6 First Round Solutions Grdes 4, 5, nd 1) There re four bsic rectngles not mde up of smller ones There re three more rectngles mde up of two smller ones ech, two rectngles mde up of three smller ones ech,

More information

INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS

INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS CHAPTER 8 INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS (A) Min Concepts nd Results Trigonometric Rtios of the ngle A in tringle ABC right ngled t B re defined s: sine of A = sin A = side opposite

More information

MATH 118 PROBLEM SET 6

MATH 118 PROBLEM SET 6 MATH 118 PROBLEM SET 6 WASEEM LUTFI, GABRIEL MATSON, AND AMY PIRCHER Section 1 #16: Show tht if is qudrtic residue modulo m, nd b 1 (mod m, then b is lso qudrtic residue Then rove tht the roduct of the

More information

SOLVING TRIANGLES USING THE SINE AND COSINE RULES

SOLVING TRIANGLES USING THE SINE AND COSINE RULES Mthemtics Revision Guides - Solving Generl Tringles - Sine nd Cosine Rules Pge 1 of 17 M.K. HOME TUITION Mthemtics Revision Guides Level: GCSE Higher Tier SOLVING TRIANGLES USING THE SINE AND COSINE RULES

More information

Polar Coordinates. July 30, 2014

Polar Coordinates. July 30, 2014 Polr Coordintes July 3, 4 Sometimes it is more helpful to look t point in the xy-plne not in terms of how fr it is horizontlly nd verticlly (this would men looking t the Crtesin, or rectngulr, coordintes

More information

9.4. ; 65. A family of curves has polar equations. ; 66. The astronomer Giovanni Cassini ( ) studied the family of curves with polar equations

9.4. ; 65. A family of curves has polar equations. ; 66. The astronomer Giovanni Cassini ( ) studied the family of curves with polar equations 54 CHAPTER 9 PARAMETRIC EQUATINS AND PLAR CRDINATES 49. r, 5. r sin 3, 5 54 Find the points on the given curve where the tngent line is horizontl or verticl. 5. r 3 cos 5. r e 53. r cos 54. r sin 55. Show

More information

(1) Primary Trigonometric Ratios (SOH CAH TOA): Given a right triangle OPQ with acute angle, we have the following trig ratios: ADJ

(1) Primary Trigonometric Ratios (SOH CAH TOA): Given a right triangle OPQ with acute angle, we have the following trig ratios: ADJ Tringles nd Trigonometry Prepred y: S diyy Hendrikson Nme: Dte: Suppose we were sked to solve the following tringles: Notie tht eh tringle hs missing informtion, whih inludes side lengths nd ngles. When

More information

Example. Check that the Jacobian of the transformation to spherical coordinates is

Example. Check that the Jacobian of the transformation to spherical coordinates is lss, given on Feb 3, 2, for Mth 3, Winter 2 Recll tht the fctor which ppers in chnge of vrible formul when integrting is the Jcobin, which is the determinnt of mtrix of first order prtil derivtives. Exmple.

More information

REVIEW, pages

REVIEW, pages REVIEW, pges 510 515 6.1 1. Point P(10, 4) is on the terminl rm of n ngle u in stndrd position. ) Determine the distnce of P from the origin. The distnce of P from the origin is r. r x 2 y 2 Substitute:

More information

10.4 AREAS AND LENGTHS IN POLAR COORDINATES

10.4 AREAS AND LENGTHS IN POLAR COORDINATES 65 CHAPTER PARAMETRIC EQUATINS AND PLAR CRDINATES.4 AREAS AND LENGTHS IN PLAR CRDINATES In this section we develop the formul for the re of region whose oundry is given y polr eqution. We need to use the

More information

Lecture 20. Intro to line integrals. Dan Nichols MATH 233, Spring 2018 University of Massachusetts.

Lecture 20. Intro to line integrals. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. Lecture 2 Intro to line integrls Dn Nichols nichols@mth.umss.edu MATH 233, Spring 218 University of Msschusetts April 12, 218 (2) onservtive vector fields We wnt to determine if F P (x, y), Q(x, y) is

More information

Section 16.3 Double Integrals over General Regions

Section 16.3 Double Integrals over General Regions Section 6.3 Double Integrls over Generl egions Not ever region is rectngle In the lst two sections we considered the problem of integrting function of two vribles over rectngle. This sitution however is

More information

c The scaffold pole EL is 8 m long. How far does it extend beyond the line JK?

c The scaffold pole EL is 8 m long. How far does it extend beyond the line JK? 3 7. 7.2 Trigonometry in three dimensions Questions re trgeted t the grdes indicted The digrm shows the ck of truck used to crry scffold poles. L K G m J F C 0.8 m H E 3 m D 6.5 m Use Pythgors Theorem

More information

Exercise 1-1. The Sine Wave EXERCISE OBJECTIVE DISCUSSION OUTLINE. Relationship between a rotating phasor and a sine wave DISCUSSION

Exercise 1-1. The Sine Wave EXERCISE OBJECTIVE DISCUSSION OUTLINE. Relationship between a rotating phasor and a sine wave DISCUSSION Exercise 1-1 The Sine Wve EXERCISE OBJECTIVE When you hve completed this exercise, you will be fmilir with the notion of sine wve nd how it cn be expressed s phsor rotting round the center of circle. You

More information

Polar coordinates 5C. 1 a. a 4. π = 0 (0) is a circle centre, 0. and radius. The area of the semicircle is π =. π a

Polar coordinates 5C. 1 a. a 4. π = 0 (0) is a circle centre, 0. and radius. The area of the semicircle is π =. π a Polr coordintes 5C r cos Are cos d (cos + ) sin + () + 8 cos cos r cos is circle centre, nd rdius. The re of the semicircle is. 8 Person Eduction Ltd 8. Copying permitted for purchsing institution only.

More information

Theme: Don t get mad. Learn mod.

Theme: Don t get mad. Learn mod. FERURY When 1 is divided by 5, the reminder is. nother wy to sy this is opyright 015 The Ntionl ouncil of Techers of Mthemtics, Inc. www.nctm.org. ll rights reserved. This mteril my not be copied or distributed

More information

Section 17.2: Line Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 1. Compute line integrals in IR 2 and IR Read Section 17.

Section 17.2: Line Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 1. Compute line integrals in IR 2 and IR Read Section 17. Section 7.: Line Integrls Objectives. ompute line integrls in IR nd IR 3. Assignments. Red Section 7.. Problems:,5,9,,3,7,,4 3. hllenge: 6,3,37 4. Red Section 7.3 3 Mple ommnds Mple cn ctully evlute line

More information

Francis Gaspalou Second edition of February 10, 2012 (First edition on January 28, 2012) HOW MANY SQUARES ARE THERE, Mr TARRY?

Francis Gaspalou Second edition of February 10, 2012 (First edition on January 28, 2012) HOW MANY SQUARES ARE THERE, Mr TARRY? Frncis Gslou Second edition of Ferury 10, 2012 (First edition on Jnury 28, 2012) HOW MANY SQUARES ARE THERE, Mr TARRY? ABSTRACT In this er, I enumerte ll the 8x8 imgic sures given y the Trry s ttern. This

More information

5.3 Sum and Difference Identities

5.3 Sum and Difference Identities SECTION 5.3 Sum and Difference Identities 21 5.3 Sum and Difference Identities Wat you ll learn about Cosine of a Difference Cosine of a Sum Sine of a Difference or Sum Tangent of a Difference or Sum Verifying

More information

Geometric quantities for polar curves

Geometric quantities for polar curves Roerto s Notes on Integrl Clculus Chpter 5: Bsic pplictions of integrtion Section 10 Geometric quntities for polr curves Wht you need to know lredy: How to use integrls to compute res nd lengths of regions

More information

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1 8.3-1 Transformation of sine and cosine functions Sections 8.2 and 8.3 Revisit: Page 142; chapter 4 Section 8.2 and 8.3 Graphs of Transformed Sine and Cosine Functions Graph transformations of y = sin

More information

Triangles and parallelograms of equal area in an ellipse

Triangles and parallelograms of equal area in an ellipse 1 Tringles nd prllelogrms of equl re in n ellipse Roert Buonpstore nd Thoms J Osler Mthemtics Deprtment RownUniversity Glssoro, NJ 0808 USA uonp0@studentsrownedu osler@rownedu Introduction In the pper

More information

Math Circles Finite Automata Question Sheet 3 (Solutions)

Math Circles Finite Automata Question Sheet 3 (Solutions) Mth Circles Finite Automt Question Sheet 3 (Solutions) Nickols Rollick nrollick@uwterloo.c Novemer 2, 28 Note: These solutions my give you the nswers to ll the prolems, ut they usully won t tell you how

More information

Section 10.2 Graphing Polar Equations

Section 10.2 Graphing Polar Equations Section 10.2 Grphing Polr Equtions OBJECTIVE 1: Sketching Equtions of the Form rcos, rsin, r cos r sin c nd Grphs of Polr Equtions of the Form rcos, rsin, r cos r sin c, nd where,, nd c re constnts. The

More information

Vocabulary Check. Section 10.8 Graphs of Polar Equations not collinear The points are collinear.

Vocabulary Check. Section 10.8 Graphs of Polar Equations not collinear The points are collinear. Section.8 Grphs of Polr Equtions 98 9. Points:,,,,.,... The points re colliner. 9. Points:.,,.,,.,... not colliner. Section.8 Grphs of Polr Equtions When grphing polr equtions:. Test for symmetry. () )

More information

Topic 20: Huffman Coding

Topic 20: Huffman Coding Topic 0: Huffmn Coding The uthor should gze t Noh, nd... lern, s they did in the Ark, to crowd gret del of mtter into very smll compss. Sydney Smith, dinburgh Review Agend ncoding Compression Huffmn Coding

More information

Seven Sisters. Visit for video tutorials

Seven Sisters. Visit   for video tutorials Seven Sisters This imge is from www.quiltstudy.org. Plese visit this website for more informtion on Seven Sisters quilt ptterns. Visit www.blocloc.com for video tutorils 1 The Seven Sisters design cn be

More information

CS 135: Computer Architecture I. Boolean Algebra. Basic Logic Gates

CS 135: Computer Architecture I. Boolean Algebra. Basic Logic Gates Bsic Logic Gtes : Computer Architecture I Boolen Algebr Instructor: Prof. Bhgi Nrhri Dept. of Computer Science Course URL: www.ses.gwu.edu/~bhgiweb/cs35/ Digitl Logic Circuits We sw how we cn build the

More information

ABB STOTZ-KONTAKT. ABB i-bus EIB Current Module SM/S Intelligent Installation Systems. User Manual SM/S In = 16 A AC Un = 230 V AC

ABB STOTZ-KONTAKT. ABB i-bus EIB Current Module SM/S Intelligent Installation Systems. User Manual SM/S In = 16 A AC Un = 230 V AC User Mnul ntelligent nstlltion Systems A B 1 2 3 4 5 6 7 8 30 ma 30 ma n = AC Un = 230 V AC 30 ma 9 10 11 12 C ABB STOTZ-KONTAKT Appliction Softwre Current Vlue Threshold/1 Contents Pge 1 Device Chrcteristics...

More information

Math 102 Key Ideas. 1 Chapter 1: Triangle Trigonometry. 1. Consider the following right triangle: c b

Math 102 Key Ideas. 1 Chapter 1: Triangle Trigonometry. 1. Consider the following right triangle: c b Math 10 Key Ideas 1 Chapter 1: Triangle Trigonometry 1. Consider the following right triangle: A c b B θ C a sin θ = b length of side opposite angle θ = c length of hypotenuse cosθ = a length of side adjacent

More information

Trigonometry Review Page 1 of 14

Trigonometry Review Page 1 of 14 Trigonometry Review Page of 4 Appendix D has a trigonometric review. This material is meant to outline some of the proofs of identities, help you remember the values of the trig functions at special values,

More information

Vector Calculus. 1 Line Integrals

Vector Calculus. 1 Line Integrals Vector lculus 1 Line Integrls Mss problem. Find the mss M of very thin wire whose liner density function (the mss per unit length) is known. We model the wire by smooth curve between two points P nd Q

More information

Spiral Tilings with C-curves

Spiral Tilings with C-curves Spirl Tilings with -curves Using ombintorics to Augment Trdition hris K. Plmer 19 North Albny Avenue hicgo, Illinois, 0 chris@shdowfolds.com www.shdowfolds.com Abstrct Spirl tilings used by rtisns through

More information

Skills Practice Skills Practice for Lesson 4.1

Skills Practice Skills Practice for Lesson 4.1 Skills Prctice Skills Prctice for Lesson.1 Nme Dte Tiling Bthroom Wll Simplifying Squre Root Expressions Vocbulry Mtch ech definition to its corresponding term. 1. n expression tht involves root. rdicnd

More information

Student Book SERIES. Patterns and Algebra. Name

Student Book SERIES. Patterns and Algebra. Name E Student Book 3 + 7 5 + 5 Nme Contents Series E Topic Ptterns nd functions (pp. ) identifying nd creting ptterns skip counting completing nd descriing ptterns predicting repeting ptterns predicting growing

More information

Trigonometry. David R. Wilkins

Trigonometry. David R. Wilkins Trigonometry David R. Wilkins 1. Trigonometry 1. Trigonometry 1.1. Trigonometric Functions There are six standard trigonometric functions. They are the sine function (sin), the cosine function (cos), the

More information

Study Guide # Vectors in R 2 and R 3. (a) v = a, b, c = a i + b j + c k; vector addition and subtraction geometrically using parallelograms

Study Guide # Vectors in R 2 and R 3. (a) v = a, b, c = a i + b j + c k; vector addition and subtraction geometrically using parallelograms Study Guide # 1 MA 26100 - Fll 2018 1. Vectors in R 2 nd R 3 () v =, b, c = i + b j + c k; vector ddition nd subtrction geometriclly using prllelogrms spnned by u nd v; length or mgnitude of v =, b, c,

More information

Domination and Independence on Square Chessboard

Domination and Independence on Square Chessboard Engineering nd Technology Journl Vol. 5, Prt, No. 1, 017 A.A. Omrn Deprtment of Mthemtics, College of Eduction for Pure Science, University of bylon, bylon, Irq pure.hmed.omrn@uobby lon.edu.iq Domintion

More information

Math 3 Trigonometry Part 2 Waves & Laws

Math 3 Trigonometry Part 2 Waves & Laws Math 3 Trigonometry Part 2 Waves & Laws GRAPHING SINE AND COSINE Graph of sine function: Plotting every angle and its corresponding sine value, which is the y-coordinate, for different angles on the unit

More information

METHOD OF LOCATION USING SIGNALS OF UNKNOWN ORIGIN. Inventor: Brian L. Baskin

METHOD OF LOCATION USING SIGNALS OF UNKNOWN ORIGIN. Inventor: Brian L. Baskin METHOD OF LOCATION USING SIGNALS OF UNKNOWN ORIGIN Inventor: Brin L. Bskin 1 ABSTRACT The present invention encompsses method of loction comprising: using plurlity of signl trnsceivers to receive one or

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 4 Bttery Chrging Methods EXERCISE OBJECTIVE When you hve completed this exercise, you will be fmilir with the different chrging methods nd chrge-control techniques commonly used when chrging Ni-MI

More information

NONCLASSICAL CONSTRUCTIONS II

NONCLASSICAL CONSTRUCTIONS II NONLSSIL ONSTRUTIONS II hristopher Ohrt UL Mthcircle - Nov. 22, 2015 Now we will try ourselves on oncelet-steiner constructions. You cn only use n (unmrked) stright-edge but you cn ssume tht somewhere

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 Problem 1: Using DC Mchine University o North Crolin-Chrlotte Deprtment o Electricl nd Computer Engineering ECGR 4143/5195 Electricl Mchinery Fll 2009 Problem Set 4 Due: Thursdy October 8 Suggested Reding:

More information

b = and their properties: b 1 b 2 b 3 a b is perpendicular to both a and 1 b = x = x 0 + at y = y 0 + bt z = z 0 + ct ; y = y 0 )

b = and their properties: b 1 b 2 b 3 a b is perpendicular to both a and 1 b = x = x 0 + at y = y 0 + bt z = z 0 + ct ; y = y 0 ) ***************** Disclimer ***************** This represents very brief outline of most of the topics covered MA261 *************************************************** I. Vectors, Lines nd Plnes 1. Vector

More information

Section 6.1 Law of Sines. Notes. Oblique Triangles - triangles that have no right angles. A c. A is acute. A is obtuse

Section 6.1 Law of Sines. Notes. Oblique Triangles - triangles that have no right angles. A c. A is acute. A is obtuse Setion 6.1 Lw of Sines Notes. Olique Tringles - tringles tht hve no right ngles h is ute h is otuse Lw of Sines - If is tringle with sides,, nd, then sin = sin = sin or sin = sin = sin The miguous se (SS)

More information

FP2 POLAR COORDINATES: PAST QUESTIONS

FP2 POLAR COORDINATES: PAST QUESTIONS FP POLAR COORDINATES: PAST QUESTIONS. The curve C hs polr eqution r = cosθ, () Sketch the curve C. () (b) Find the polr coordintes of the points where tngents to C re prllel to the initil line. (6) (c)

More information

Chapter 1 and Section 2.1

Chapter 1 and Section 2.1 Chapter 1 and Section 2.1 Diana Pell Section 1.1: Angles, Degrees, and Special Triangles Angles Degree Measure Angles that measure 90 are called right angles. Angles that measure between 0 and 90 are called

More information

Notes on Spherical Triangles

Notes on Spherical Triangles Notes on Spheril Tringles In order to undertke lultions on the elestil sphere, whether for the purposes of stronomy, nvigtion or designing sundils, some understnding of spheril tringles is essentil. The

More information

Kirchhoff s Rules. Kirchhoff s Laws. Kirchhoff s Rules. Kirchhoff s Laws. Practice. Understanding SPH4UW. Kirchhoff s Voltage Rule (KVR):

Kirchhoff s Rules. Kirchhoff s Laws. Kirchhoff s Rules. Kirchhoff s Laws. Practice. Understanding SPH4UW. Kirchhoff s Voltage Rule (KVR): SPH4UW Kirchhoff s ules Kirchhoff s oltge ule (K): Sum of voltge drops round loop is zero. Kirchhoff s Lws Kirchhoff s Current ule (KC): Current going in equls current coming out. Kirchhoff s ules etween

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions Chapter 4 Trigonometric Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Radian and Degree Measure Trigonometric Functions: The Unit Circle Right Triangle Trigonometry

More information

Student Book SERIES. Fractions. Name

Student Book SERIES. Fractions. Name D Student Book Nme Series D Contents Topic Introducing frctions (pp. ) modelling frctions frctions of collection compring nd ordering frctions frction ingo pply Dte completed / / / / / / / / Topic Types

More information

Math 116 Calculus II

Math 116 Calculus II Mth 6 Clculus II Contents 7 Additionl topics in Integrtion 7. Integrtion by prts..................................... 7.4 Numericl Integrtion.................................... 7 7.5 Improper Integrl......................................

More information

Unit 1: Chapter 4 Roots & Powers

Unit 1: Chapter 4 Roots & Powers Unit 1: Chpter 4 Roots & Powers Big Ides Any number tht cn be written s the frction mm, nn 0, where m nd n re integers, is nn rtionl. Eponents cn be used to represent roots nd reciprocls of rtionl numbers.

More information

Synchronous Generator Line Synchronization

Synchronous Generator Line Synchronization Synchronous Genertor Line Synchroniztion 1 Synchronous Genertor Line Synchroniztion Introduction One issue in power genertion is synchronous genertor strting. Typiclly, synchronous genertor is connected

More information

NUMBER THEORY Amin Witno

NUMBER THEORY Amin Witno WON Series in Discrete Mthemtics nd Modern Algebr Volume 2 NUMBER THEORY Amin Witno Prefce Written t Phildelphi University, Jordn for Mth 313, these notes 1 were used first time in the Fll 2005 semester.

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a right triangle, and related to points on a circle. We noticed how the x and y

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

(CATALYST GROUP) B"sic Electric"l Engineering

(CATALYST GROUP) Bsic Electricl Engineering (CATALYST GROUP) B"sic Electric"l Engineering 1. Kirchhoff s current l"w st"tes th"t (") net current flow "t the junction is positive (b) Hebr"ic sum of the currents meeting "t the junction is zero (c)

More information

Module 9. DC Machines. Version 2 EE IIT, Kharagpur

Module 9. DC Machines. Version 2 EE IIT, Kharagpur Module 9 DC Mchines Version EE IIT, Khrgpur esson 40 osses, Efficiency nd Testing of D.C. Mchines Version EE IIT, Khrgpur Contents 40 osses, efficiency nd testing of D.C. mchines (esson-40) 4 40.1 Gols

More information

Trigonometric Integrals Section 5.7

Trigonometric Integrals Section 5.7 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Trigonometric Integrals Section 5.7 Dr. John Ehrke Department of Mathematics Spring 2013 Eliminating Powers From Trig Functions

More information

You found trigonometric values using the unit circle. (Lesson 4-3)

You found trigonometric values using the unit circle. (Lesson 4-3) You found trigonometric values using the unit circle. (Lesson 4-3) LEQ: How do we identify and use basic trigonometric identities to find trigonometric values & use basic trigonometric identities to simplify

More information

REVIEW QUESTIONS TOPIC 5 TRIGONOMETRY I FLUENCY

REVIEW QUESTIONS TOPIC 5 TRIGONOMETRY I FLUENCY TOPIC 5 TRIGONOMETRY I REVIEW QUESTIONS FLUENCY The most urte mesure for the length of the third side in the tringle elow is: A 4.83 m B 23.3 m C 3.94 m D 2330 mm E 4826 mm 2 Wht is the vlue of x in this

More information

Trigonometry. An Overview of Important Topics

Trigonometry. An Overview of Important Topics Trigonometry An Overview of Important Topics 1 Contents Trigonometry An Overview of Important Topics... 4 UNDERSTAND HOW ANGLES ARE MEASURED... 6 Degrees... 7 Radians... 7 Unit Circle... 9 Practice Problems...

More information

cos 2 x + sin 2 x = 1 cos(u v) = cos u cos v + sin u sin v sin(u + v) = sin u cos v + cos u sin v

cos 2 x + sin 2 x = 1 cos(u v) = cos u cos v + sin u sin v sin(u + v) = sin u cos v + cos u sin v Concepts: Double Angle Identities, Power Reducing Identities, Half Angle Identities. Memorized: cos x + sin x 1 cos(u v) cos u cos v + sin v sin(u + v) cos v + cos u sin v Derive other identities you need

More information

2. Be able to evaluate a trig function at a particular degree measure. Example: cos. again, just use the unit circle!

2. Be able to evaluate a trig function at a particular degree measure. Example: cos. again, just use the unit circle! Study Guide for PART II of the Fall 18 MAT187 Final Exam NO CALCULATORS are permitted on this part of the Final Exam. This part of the Final exam will consist of 5 multiple choice questions. You will be

More information

Senior Math Circles: Geometry III

Senior Math Circles: Geometry III University of Waterloo Faculty of Mathematics entre for Education in Mathematics and omputing Senior Math ircles: Geometry III eview of Important Facts bout Trigonometry Most famous trig identity: sin

More information

5.4 Multiple-Angle Identities

5.4 Multiple-Angle Identities 4 CHAPTER 5 Analytic Trigonometry 5.4 Multiple-Angle Identities What you ll learn about Double-Angle Identities Power-Reducing Identities Half-Angle Identities Solving Trigonometric Equations... and why

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1316 Ch.1-2 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Find the supplement of an angle whose

More information

TRIGONOMETRIC APPLICATIONS

TRIGONOMETRIC APPLICATIONS HPTER TRIGONOMETRI PPLITIONS n ocen is vst expnse tt cn e life-tretening to person wo experiences disster wile oting. In order for elp to rrive on time, it is necessry tt te cost gurd or sip in te re e

More information

Year 10 Term 1 Homework

Year 10 Term 1 Homework Yimin Math Centre Year 10 Term 1 Homework Student Name: Grade: Date: Score: Table of contents 6 Year 10 Term 1 Week 6 Homework 1 6.1 Triangle trigonometry................................... 1 6.1.1 The

More information

MONOCHRONICLE STRAIGHT

MONOCHRONICLE STRAIGHT UPDATED 09-2010 HYDROCARBON Hydrocrbon is poncho-style cowl in bulky-weight yrn, worked in the round. It ws designed to be s prcticl s it is stylish, with shping tht covers the neck nd shoulders nd the

More information

Lecture 16. Double integrals. Dan Nichols MATH 233, Spring 2018 University of Massachusetts.

Lecture 16. Double integrals. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. Leture 16 Double integrls Dn Nihols nihols@mth.umss.edu MATH 233, Spring 218 University of Msshusetts Mrh 27, 218 (2) iemnn sums for funtions of one vrible Let f(x) on [, b]. We n estimte the re under

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions By Dr. Mohammed Ramidh Trigonometric Functions This section reviews the basic trigonometric functions. Trigonometric functions are important because

More information

cos sin sin 2 60 = 1.

cos sin sin 2 60 = 1. Name: Class: Date: Use the definitions to evaluate the six trigonometric functions of. In cases in which a radical occurs in a denominator, rationalize the denominator. Suppose that ABC is a right triangle

More information

Trigonometric ratios 9B 1 a d b 2 a c b

Trigonometric ratios 9B 1 a d b 2 a c b Trigonometric ratios 9B 1 a a Using sin A sin B 8 sin 72 sin 30 8sin 72 sin 30 As 72 > 30, > 8 cm 15.2 cm ( ) ABC 180 68.4 + 83.7 27.9 Using a 9.8 sin 27.9 sin 83.7 9.8sin 27.9 a sin 83.7 4.61 cm ( ) 2

More information

Translate and Classify Conic Sections

Translate and Classify Conic Sections TEKS 9.6 A.5.A, A.5.B, A.5.D, A.5.E Trnslte nd Clssif Conic Sections Before You grphed nd wrote equtions of conic sections. Now You will trnslte conic sections. Wh? So ou cn model motion, s in E. 49. Ke

More information

CHAPTER 2 LITERATURE STUDY

CHAPTER 2 LITERATURE STUDY CHAPTER LITERATURE STUDY. Introduction Multipliction involves two bsic opertions: the genertion of the prtil products nd their ccumultion. Therefore, there re two possible wys to speed up the multipliction:

More information

Synchronous Machine Parameter Measurement

Synchronous Machine Parameter Measurement Synchronous Mchine Prmeter Mesurement 1 Synchronous Mchine Prmeter Mesurement Introduction Wound field synchronous mchines re mostly used for power genertion but lso re well suited for motor pplictions

More information

Pythagorean Identity. Sum and Difference Identities. Double Angle Identities. Law of Sines. Law of Cosines

Pythagorean Identity. Sum and Difference Identities. Double Angle Identities. Law of Sines. Law of Cosines Review for Math 111 Final Exam The final exam is worth 30% (150/500 points). It consists of 26 multiple choice questions, 4 graph matching questions, and 4 short answer questions. Partial credit will be

More information

Chapter 12 Vectors and the Geometry of Space 12.1 Three-dimensional Coordinate systems

Chapter 12 Vectors and the Geometry of Space 12.1 Three-dimensional Coordinate systems hpter 12 Vectors nd the Geometry of Spce 12.1 Three-dimensionl oordinte systems A. Three dimensionl Rectngulr oordinte Sydstem: The rtesin product where (x, y, z) isclled ordered triple. B. istnce: R 3

More information

MAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNEL-SHAPED NODES

MAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNEL-SHAPED NODES MAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNEL-SHAPED NODES Romn V. Tyshchuk Informtion Systems Deprtment, AMI corportion, Donetsk, Ukrine E-mil: rt_science@hotmil.com 1 INTRODUCTION During the considertion

More information

SECOND EDITION STUDENT BOOK GRADE

SECOND EDITION STUDENT BOOK GRADE SECOND EDITION STUDENT BOOK GRADE 5 Bridges in Mthemtics Second Edition Grde 5 Student Book Volumes 1 & 2 The Bridges in Mthemtics Grde 5 pckge consists of: Bridges in Mthemtics Grde 5 Techers Guide Units

More information

Synchronous Machine Parameter Measurement

Synchronous Machine Parameter Measurement Synchronous Mchine Prmeter Mesurement 1 Synchronous Mchine Prmeter Mesurement Introduction Wound field synchronous mchines re mostly used for power genertion but lso re well suited for motor pplictions

More information

Patterns and Algebra

Patterns and Algebra Student Book Series D Mthletis Instnt Workooks Copyright Series D Contents Topi Ptterns nd funtions identifying nd reting ptterns skip ounting ompleting nd desriing ptterns numer ptterns in tles growing

More information

3. Given the similarity transformation shown below; identify the composition:

3. Given the similarity transformation shown below; identify the composition: Midterm Multiple Choice Practice 1. Based on the construction below, which statement must be true? 1 1) m ABD m CBD 2 2) m ABD m CBD 3) m ABD m ABC 1 4) m CBD m ABD 2 2. Line segment AB is shown in the

More information

Section 5.1 Angles and Radian Measure. Ever Feel Like You re Just Going in Circles?

Section 5.1 Angles and Radian Measure. Ever Feel Like You re Just Going in Circles? Section 5.1 Angles and Radian Measure Ever Feel Like You re Just Going in Circles? You re riding on a Ferris wheel and wonder how fast you are traveling. Before you got on the ride, the operator told you

More information

Verifying Trigonometric Identities

Verifying Trigonometric Identities 25 PART I: Solutions to Odd-Numbered Exercises and Practice Tests a 27. sina =- ==> a = c. sin A = 20 sin 28 ~ 9.39 c B = 90 -A = 62 b cosa=- ==~ b=c.cosa~ 7.66 c 29. a = ~/c 2 - b 2 = -~/2.542-6.22 ~

More information

Solutions to Assignment #07 MATH radians = = 7 (180 ) = 252 : 5

Solutions to Assignment #07 MATH radians = = 7 (180 ) = 252 : 5 Solutions to Assignment #0 MATH 0 Precalculus Section. (I) Comlete Exercises #b & #0b on. 0. (#b) We robabl need to convert this to degrees. The usual wa of writing out the conversion is to alwas multil

More information

Math 1205 Trigonometry Review

Math 1205 Trigonometry Review Math 105 Trigonometry Review We begin with the unit circle. The definition of a unit circle is: x + y =1 where the center is (0, 0) and the radius is 1. An angle of 1 radian is an angle at the center of

More information

ECE 274 Digital Logic. Digital Design. Datapath Components Shifters, Comparators, Counters, Multipliers Digital Design

ECE 274 Digital Logic. Digital Design. Datapath Components Shifters, Comparators, Counters, Multipliers Digital Design ECE 27 Digitl Logic Shifters, Comprtors, Counters, Multipliers Digitl Design..7 Digitl Design Chpter : Slides to ccompny the textbook Digitl Design, First Edition, by Frnk Vhid, John Wiley nd Sons Publishers,

More information

MATH Week 10. Ferenc Balogh Winter. Concordia University

MATH Week 10. Ferenc Balogh Winter. Concordia University MATH 20 - Week 0 Ferenc Balogh Concordia University 2008 Winter Based on the textbook J. Stuart, L. Redlin, S. Watson, Precalculus - Mathematics for Calculus, 5th Edition, Thomson All figures and videos

More information

Some Connections Between Primitive Roots and Quadratic Non-Residues Modulo a Prime

Some Connections Between Primitive Roots and Quadratic Non-Residues Modulo a Prime Some Connections Between Primitive Roots nd Qudrtic Non-Residues Modulo Prime Sorin Iftene Dertment of Comuter Science Al. I. Cuz University Isi, Romni Emil: siftene@info.uic.ro Abstrct In this er we resent

More information

Unit 6 Test REVIEW Algebra 2 Honors

Unit 6 Test REVIEW Algebra 2 Honors Unit Test REVIEW Algebra 2 Honors Multiple Choice Portion SHOW ALL WORK! 1. How many radians are in 1800? 10 10π Name: Per: 180 180π 2. On the unit circle shown, which radian measure is located at ( 2,

More information

Yellowknife km Vancouver km NEL

Yellowknife km Vancouver km NEL ic tio n Yellowknife Pr e- Pu bl 1566 km 67.3 Vncouver 112 1870 km hpter 3 tio n cute Tringle Trigonometry ic LERNING GOLS You will be ble to develop your sptil sense by Pr e- Pu bl? Using the sine lw

More information

The Math Learning Center PO Box 12929, Salem, Oregon Math Learning Center

The Math Learning Center PO Box 12929, Salem, Oregon Math Learning Center Resource Overview Quntile Mesure: Skill or Concept: 300Q Model the concept of ddition for sums to 10. (QT N 36) Model the concept of sutrction using numers less thn or equl to 10. (QT N 37) Write ddition

More information