Section 10.2 Graphing Polar Equations


 Shana Fisher
 5 years ago
 Views:
Transcription
1 Section 10.2 Grphing Polr Equtions OBJECTIVE 1: Sketching Equtions of the Form rcos, rsin, r cos r sin c nd Grphs of Polr Equtions of the Form rcos, rsin, r cos r sin c, nd where,, nd c re constnts. The grph of rcos is verticl line. The grph of rsin is horizontl line. The grph of rcos r sin c is line with slope m nd y intercept. The grph of is line through the pole tht mkes n ngle of with the polr xis.
2 Sketch the grph of the polr eqution
3 OBJECTIVE 2: Sketching Equtions of the Form r, r sin, nd r cos nd r cos Grphs of Polr Equtions of the Form r, r sin, nd cos r where 0 is constnt The grph of r is circle The grph of r sin is circle The grph of r cos is circle centered t the pole with centered on the line = tht is units rdius of length. centered on the polr xis tht is units 2 from the pole with rdius of length. from the pole with rdius of length.
4 Sketch the grph of the polr eqution
5 OBJECTIVE 3: Sketching Equtions of the Form r sin nd r cos Grphs of Polr Equtions of the Form r sinnd r cos where 0 nd 0 re constnts. The grph is crdioid if 1. The grph is limcon with n inner loop if <1. The grph is limcon with dimple if 1< <2. The grph is limcon with no inner loop nd no dimple if 2.
6 Steps for Sketching Polr Equtions (Limcons) of the Form r sinnd r cos Step 1. Identify the generl shpe using the rtio. If 1, then the grph is crdioid. If 1, then the grph is limcon with n inner loop tht intersects the pole. If 1 2, then the grph is limcon with dimple.. If 2, then the grph is limcon with no inner loop nd no dimple. Step 2. Determine the symmetry. If the eqution is of the form If the eqution is of the form r sin, then the grph must e symmetric out the line. 2 r cos, then the grph must e symmetric out the polr xis. Step 3. Plot the points corresponding to the qudrntl ngles 0,,, nd Step 4. If necessry, plot few more points until symmetry cn e used to complete the grph Sketch the grph of the eqution.
7 OBJECTIVE 4: Sketching Equtions of the Form r sin n nd r cos n Grphs of Polr Equtions of the Form r sin n nd r cos n where 0 is constnt nd n 1 is positive integer. The grph is rose with n petls. The endpoint of one petl lies 3 long the verticl line = or =. The grph is rose with n petls. The endpoint of one petl lies long the polr xis. The grph is rose with 2 n petls. None of the petls hve n endpoint lying on either the polr xis or the line =. 2 The grph is rose with 2 n petls. 3 on the lines = nd =. Two petls hve endpoints tht lie on the polr xis.
8 Steps for Sketching Polr Equtions (Roses) of the Form Step 1. Identify the numer of petls. If n is even, then there re 2n petls. If n is odd, then there re n petls. r sin n nd r cos n where 0 nd n 1is positive integer. Step 2. Determine the length of ech petl. The length of ech petl is units. Step 3. Determine ll ngles where n endpoint of petl lies. If the eqution is of the form r sin n sin n 1 ndsin n 1. If the eqution is of the form r cos n cos n 1 nd cos n 1., then the endpoints occur for ngles on the intervl, then the endpoints occur for ngles on the intervl 0,2 tht stisfy the equtions 0,2 tht stisfy the equtions Step 4. Plot ll points corresponding to the vlues of found in Step 3. These points represent the endpoints of ech petl. Step 5. Determine ngles where the grph psses through the pole. These ngles serve s guide when sketching the width of petl. If the eqution is of the form r sin n, then the grph psses through the pole when sin n 0. If the eqution is of the form r cos n, then the grph psses through the pole when cos n 0. Step 6. Drw ech petl to complete the grph.
9 Grph. OBJECTIVE 5: Sketching Equtions of the Form r sin2 nd r cos2 Grphs of Polr Equtions of the Form r 2 2 sin 2 nd r cos2 where 0 is constnt The grph is lemniscte symmetric out the pole with the endpoints of the two loops lying 5 long the ngles nd. 4 4 The grph is lemniscte symmetric out the pole, the polr xis, nd the verticl line =. The endpoints of the two loops lie long the 2 ngles 0nd.
10 Grph.
Vocabulary Check. Section 10.8 Graphs of Polar Equations not collinear The points are collinear.
Section.8 Grphs of Polr Equtions 98 9. Points:,,,,.,... The points re colliner. 9. Points:.,,.,,.,... not colliner. Section.8 Grphs of Polr Equtions When grphing polr equtions:. Test for symmetry. () )
More information10.4 AREAS AND LENGTHS IN POLAR COORDINATES
65 CHAPTER PARAMETRIC EQUATINS AND PLAR CRDINATES.4 AREAS AND LENGTHS IN PLAR CRDINATES In this section we develop the formul for the re of region whose oundry is given y polr eqution. We need to use the
More information9.4. ; 65. A family of curves has polar equations. ; 66. The astronomer Giovanni Cassini ( ) studied the family of curves with polar equations
54 CHAPTER 9 PARAMETRIC EQUATINS AND PLAR CRDINATES 49. r, 5. r sin 3, 5 54 Find the points on the given curve where the tngent line is horizontl or verticl. 5. r 3 cos 5. r e 53. r cos 54. r sin 55. Show
More informationGeometric quantities for polar curves
Roerto s Notes on Integrl Clculus Chpter 5: Bsic pplictions of integrtion Section 10 Geometric quntities for polr curves Wht you need to know lredy: How to use integrls to compute res nd lengths of regions
More informationPolar Coordinates. July 30, 2014
Polr Coordintes July 3, 4 Sometimes it is more helpful to look t point in the xyplne not in terms of how fr it is horizontlly nd verticlly (this would men looking t the Crtesin, or rectngulr, coordintes
More informationPolar coordinates 5C. 1 a. a 4. π = 0 (0) is a circle centre, 0. and radius. The area of the semicircle is π =. π a
Polr coordintes 5C r cos Are cos d (cos + ) sin + () + 8 cos cos r cos is circle centre, nd rdius. The re of the semicircle is. 8 Person Eduction Ltd 8. Copying permitted for purchsing institution only.
More informationc The scaffold pole EL is 8 m long. How far does it extend beyond the line JK?
3 7. 7.2 Trigonometry in three dimensions Questions re trgeted t the grdes indicted The digrm shows the ck of truck used to crry scffold poles. L K G m J F C 0.8 m H E 3 m D 6.5 m Use Pythgors Theorem
More informationTranslate and Classify Conic Sections
TEKS 9.6 A.5.A, A.5.B, A.5.D, A.5.E Trnslte nd Clssif Conic Sections Before You grphed nd wrote equtions of conic sections. Now You will trnslte conic sections. Wh? So ou cn model motion, s in E. 49. Ke
More informationTriangles and parallelograms of equal area in an ellipse
1 Tringles nd prllelogrms of equl re in n ellipse Roert Buonpstore nd Thoms J Osler Mthemtics Deprtment RownUniversity Glssoro, NJ 0808 USA uonp0@studentsrownedu osler@rownedu Introduction In the pper
More informationREVIEW, pages
REVIEW, pges 510 515 6.1 1. Point P(10, 4) is on the terminl rm of n ngle u in stndrd position. ) Determine the distnce of P from the origin. The distnce of P from the origin is r. r x 2 y 2 Substitute:
More informationSection 16.3 Double Integrals over General Regions
Section 6.3 Double Integrls over Generl egions Not ever region is rectngle In the lst two sections we considered the problem of integrting function of two vribles over rectngle. This sitution however is
More informationExercise 11. The Sine Wave EXERCISE OBJECTIVE DISCUSSION OUTLINE. Relationship between a rotating phasor and a sine wave DISCUSSION
Exercise 11 The Sine Wve EXERCISE OBJECTIVE When you hve completed this exercise, you will be fmilir with the notion of sine wve nd how it cn be expressed s phsor rotting round the center of circle. You
More information(b) ( 1, s3 ) and Figure 18 shows the resulting curve. Notice that this rose has 16 loops.
SECTIN. PLAR CRDINATES 67 _ and so we require that 6n5 be an even multiple of. This will first occur when n 5. Therefore we will graph the entire curve if we specify that. Switching from to t, we have
More informationExample. Check that the Jacobian of the transformation to spherical coordinates is
lss, given on Feb 3, 2, for Mth 3, Winter 2 Recll tht the fctor which ppers in chnge of vrible formul when integrting is the Jcobin, which is the determinnt of mtrix of first order prtil derivtives. Exmple.
More informationPrecalculus Lesson 9.2 Graphs of Polar Equations Mrs. Snow, Instructor
Precalculus Lesson 9.2 Graphs of Polar Equations Mrs. Snow, Instructor As we studied last section points may be described in polar form or rectangular form. Likewise an equation may be written using either
More informationINTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS
CHAPTER 8 INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS (A) Min Concepts nd Results Trigonometric Rtios of the ngle A in tringle ABC right ngled t B re defined s: sine of A = sin A = side opposite
More informationAlgebra Practice. Dr. Barbara Sandall, Ed.D., and Travis Olson, M.S.
By Dr. Brr Sndll, Ed.D., Dr. Melfried Olson, Ed.D., nd Trvis Olson, M.S. COPYRIGHT 2006 Mrk Twin Medi, Inc. ISBN 9781580377546 Printing No. 404042EB Mrk Twin Medi, Inc., Pulishers Distriuted y CrsonDellos
More informationFP2 POLAR COORDINATES: PAST QUESTIONS
FP POLAR COORDINATES: PAST QUESTIONS. The curve C hs polr eqution r = cosθ, () Sketch the curve C. () (b) Find the polr coordintes of the points where tngents to C re prllel to the initil line. (6) (c)
More informationNONCLASSICAL CONSTRUCTIONS II
NONLSSIL ONSTRUTIONS II hristopher Ohrt UL Mthcircle  Nov. 22, 2015 Now we will try ourselves on onceletsteiner constructions. You cn only use n (unmrked) strightedge but you cn ssume tht somewhere
More informationStudy Guide # Vectors in R 2 and R 3. (a) v = a, b, c = a i + b j + c k; vector addition and subtraction geometrically using parallelograms
Study Guide # 1 MA 26100  Fll 2018 1. Vectors in R 2 nd R 3 () v =, b, c = i + b j + c k; vector ddition nd subtrction geometriclly using prllelogrms spnned by u nd v; length or mgnitude of v =, b, c,
More informationKirchhoff s Rules. Kirchhoff s Laws. Kirchhoff s Rules. Kirchhoff s Laws. Practice. Understanding SPH4UW. Kirchhoff s Voltage Rule (KVR):
SPH4UW Kirchhoff s ules Kirchhoff s oltge ule (K): Sum of voltge drops round loop is zero. Kirchhoff s Lws Kirchhoff s Current ule (KC): Current going in equls current coming out. Kirchhoff s ules etween
More informationLECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY
LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY 1. Bsic roerties of qudrtic residues We now investigte residues with secil roerties of lgebric tye. Definition 1.1. (i) When (, m) 1 nd
More informationChapter 3, Part 1: Intro to the Trigonometric Functions
Haberman MTH 11 Section I: The Trigonometric Functions Chapter 3, Part 1: Intro to the Trigonometric Functions In Example 4 in Section I: Chapter, we observed that a circle rotating about its center (i.e.,
More informationSeven Sisters. Visit for video tutorials
Seven Sisters This imge is from www.quiltstudy.org. Plese visit this website for more informtion on Seven Sisters quilt ptterns. Visit www.blocloc.com for video tutorils 1 The Seven Sisters design cn be
More informationArkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Figure 50.1
50 Polar Coordinates Arkansas Tech University MATH 94: Calculus II Dr. Marcel B. Finan Up to this point we have dealt exclusively with the Cartesian coordinate system. However, as we will see, this is
More informationDomination and Independence on Square Chessboard
Engineering nd Technology Journl Vol. 5, Prt, No. 1, 017 A.A. Omrn Deprtment of Mthemtics, College of Eduction for Pure Science, University of bylon, bylon, Irq pure.hmed.omrn@uobby lon.edu.iq Domintion
More informationStudent Book SERIES. Patterns and Algebra. Name
E Student Book 3 + 7 5 + 5 Nme Contents Series E Topic Ptterns nd functions (pp. ) identifying nd creting ptterns skip counting completing nd descriing ptterns predicting repeting ptterns predicting growing
More informationLecture 20. Intro to line integrals. Dan Nichols MATH 233, Spring 2018 University of Massachusetts.
Lecture 2 Intro to line integrls Dn Nichols nichols@mth.umss.edu MATH 233, Spring 218 University of Msschusetts April 12, 218 (2) onservtive vector fields We wnt to determine if F P (x, y), Q(x, y) is
More informationb = and their properties: b 1 b 2 b 3 a b is perpendicular to both a and 1 b = x = x 0 + at y = y 0 + bt z = z 0 + ct ; y = y 0 )
***************** Disclimer ***************** This represents very brief outline of most of the topics covered MA261 *************************************************** I. Vectors, Lines nd Plnes 1. Vector
More information4.4 Slope and Graphs of Linear Equations. Copyright Cengage Learning. All rights reserved.
4.4 Slope and Graphs of Linear Equations Copyright Cengage Learning. All rights reserved. 1 What You Will Learn Determine the slope of a line through two points Write linear equations in slopeintercept
More informationDESIGN OF CONTINUOUS LAG COMPENSATORS
DESIGN OF CONTINUOUS LAG COMPENSATORS J. Pulusová, L. Körösi, M. Dúbrvská Institute of Robotics nd Cybernetics, Slovk University of Technology, Fculty of Electricl Engineering nd Informtion Technology
More information(CATALYST GROUP) B"sic Electric"l Engineering
(CATALYST GROUP) B"sic Electric"l Engineering 1. Kirchhoff s current l"w st"tes th"t (") net current flow "t the junction is positive (b) Hebr"ic sum of the currents meeting "t the junction is zero (c)
More informationGraph of the Sine Function
1 of 6 8/6/2004 6.3 GRAPHS OF THE SINE AND COSINE 6.3 GRAPHS OF THE SINE AND COSINE Periodic Functions Graph of the Sine Function Graph of the Cosine Function Graphing Techniques, Amplitude, and Period
More informationSynchronous Generator Line Synchronization
Synchronous Genertor Line Synchroniztion 1 Synchronous Genertor Line Synchroniztion Introduction One issue in power genertion is synchronous genertor strting. Typiclly, synchronous genertor is connected
More informationNow we are going to introduce a new horizontal axis that we will call y, so that we have a 3dimensional coordinate system (x, y, z).
Example 1. A circular cone At the right is the graph of the function z = g(x) = 16 x (0 x ) Put a scale on the axes. Calculate g(2) and illustrate this on the diagram: g(2) = 8 Now we are going to introduce
More informationMAT01B1: Calculus with Polar coordinates
MAT01B1: Calculus with Polar coordinates Dr Craig 23 October 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h30 12h55 Friday (this week) 11h20 12h25 Office CRing 508
More informationMEASURE THE CHARACTERISTIC CURVES RELEVANT TO AN NPN TRANSISTOR
Electricity Electronics Bipolr Trnsistors MEASURE THE HARATERISTI URVES RELEVANT TO AN NPN TRANSISTOR Mesure the input chrcteristic, i.e. the bse current IB s function of the bse emitter voltge UBE. Mesure
More informationDetermine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 A) Even B) Odd C) Neither
Assignment 6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 1) A)
More informationSect Linear Equations in Two Variables
99 Concept # Sect.  Linear Equations in Two Variables Solutions to Linear Equations in Two Variables In this chapter, we will examine linear equations involving two variables. Such equations have an infinite
More informationMath Circles Finite Automata Question Sheet 3 (Solutions)
Mth Circles Finite Automt Question Sheet 3 (Solutions) Nickols Rollick nrollick@uwterloo.c Novemer 2, 28 Note: These solutions my give you the nswers to ll the prolems, ut they usully won t tell you how
More informationCHAPTER 10 Conics, Parametric Equations, and Polar Coordinates
CHAPTER Conics, Parametric Equations, and Polar Coordinates Section. Conics and Calculus.................... Section. Plane Curves and Parametric Equations.......... Section. Parametric Equations and Calculus............
More information13.1 Double Integral over Rectangle. f(x ij,y ij ) i j I <ɛ. f(x, y)da.
CHAPTE 3, MULTIPLE INTEGALS Definition. 3. Double Integrl over ectngle A function f(x, y) is integrble on rectngle [, b] [c, d] if there is number I such tht for ny given ɛ>0thereisδ>0 such tht, fir ny
More information10.3 Polar Coordinates
.3 Polar Coordinates Plot the points whose polar coordinates are given. Then find two other pairs of polar coordinates of this point, one with r > and one with r
More information(1) Nonlinear system
Liner vs. nonliner systems in impednce mesurements I INTRODUCTION Electrochemicl Impednce Spectroscopy (EIS) is n interesting tool devoted to the study of liner systems. However, electrochemicl systems
More informationSection 17.2: Line Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 1. Compute line integrals in IR 2 and IR Read Section 17.
Section 7.: Line Integrls Objectives. ompute line integrls in IR nd IR 3. Assignments. Red Section 7.. Problems:,5,9,,3,7,,4 3. hllenge: 6,3,37 4. Red Section 7.3 3 Mple ommnds Mple cn ctully evlute line
More informationChapter 12 Vectors and the Geometry of Space 12.1 Threedimensional Coordinate systems
hpter 12 Vectors nd the Geometry of Spce 12.1 Threedimensionl oordinte systems A. Three dimensionl Rectngulr oordinte Sydstem: The rtesin product where (x, y, z) isclled ordered triple. B. istnce: R 3
More informationSynchronous Machine Parameter Measurement
Synchronous Mchine Prmeter Mesurement 1 Synchronous Mchine Prmeter Mesurement Introduction Wound field synchronous mchines re mostly used for power genertion but lso re well suited for motor pplictions
More informationHyperbolas Graphs, Equations, and Key Characteristics of Hyperbolas Forms of Hyperbolas p. 583
C H A P T ER Hyperbolas Flashlights concentrate beams of light by bouncing the rays from a light source off a reflector. The crosssection of a reflector can be described as hyperbola with the light source
More informationMATH 118 PROBLEM SET 6
MATH 118 PROBLEM SET 6 WASEEM LUTFI, GABRIEL MATSON, AND AMY PIRCHER Section 1 #16: Show tht if is qudrtic residue modulo m, nd b 1 (mod m, then b is lso qudrtic residue Then rove tht the roduct of the
More informationSOLVING TRIANGLES USING THE SINE AND COSINE RULES
Mthemtics Revision Guides  Solving Generl Tringles  Sine nd Cosine Rules Pge 1 of 17 M.K. HOME TUITION Mthemtics Revision Guides Level: GCSE Higher Tier SOLVING TRIANGLES USING THE SINE AND COSINE RULES
More information(1) Primary Trigonometric Ratios (SOH CAH TOA): Given a right triangle OPQ with acute angle, we have the following trig ratios: ADJ
Tringles nd Trigonometry Prepred y: S diyy Hendrikson Nme: Dte: Suppose we were sked to solve the following tringles: Notie tht eh tringle hs missing informtion, whih inludes side lengths nd ngles. When
More informationPOLAR FUNCTIONS. In Precalculus students should have learned to:.
POLAR FUNCTIONS From the AP Calculus BC Course Description, students in Calculus BC are required to know: The analsis of planar curves, including those given in polar form Derivatives of polar functions
More informationUniversity of Houston High School Mathematics Contest Geometry Exam Spring 2016
University of Houston High School Mathematics ontest Geometry Exam Spring 016 nswer the following. Note that diagrams may not be drawn to scale. 1. In the figure below, E, =, = 4 and E = 0. Find the length
More informationCh. 6 Linear Functions Notes
First Name: Last Name: Block: Ch. 6 Linear Functions Notes 6.1 SLOPE OF A LINE Ch. 6.1 HW: p. 9 #4 1, 17,,, 8 6. SLOPES OF PARALLEL AND PERPENDICULAR LINES 6 Ch. 6. HW: p. 49 # 6 odd letters, 7 0 8 6.
More informationTIME: 1 hour 30 minutes
UNIVERSITY OF AKRON DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 4400: 34 INTRODUCTION TO COMMUNICATION SYSTEMS  Spring 07 SAMPLE FINAL EXAM TIME: hour 30 minutes INSTRUCTIONS: () Write your nme
More information10.1 Curves defined by parametric equations
Outline Section 1: Parametric Equations and Polar Coordinates 1.1 Curves defined by parametric equations 1.2 Calculus with Parametric Curves 1.3 Polar Coordinates 1.4 Areas and Lengths in Polar Coordinates
More informationSAMPLE. End of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below.
End of term: TEST A You will need penil nd ruler. Yer Nme Clss Dte 2 Complete the missing numers in the sequenes elow. 50 25 00 75 8 30 3 28 2 9 Put irle round two of the shpes elow whih hve 3 shded. 3
More information2. Polar coordinates:
Section 9. Polar Coordinates Section 9. Polar Coordinates In polar coordinates ou do not have unique representation of points. The point r, can be represented b r, ± n or b r, ± n where n is an integer.
More informationMesh and Node Equations: More Circuits Containing Dependent Sources
Mesh nd Node Equtions: More Circuits Contining Dependent Sources Introduction The circuits in this set of problems ech contin single dependent source. These circuits cn be nlyzed using mesh eqution or
More information3.1 Start Thinking. 3.1 Warm Up. 3.1 Cumulative Review Warm Up
3.1 Start Thinking Sketch two perpendicular lines that intersect at point. Plot one point on each line that is not. all these points and. onnect and to make. What type of figure do points,, and make? ould
More informationUse smooth curves to complete the graph between and beyond the vertical asymptotes.
5.3 Graphs of Rational Functions Guidelines for Graphing Rational Functions 1. Find and plot the xintercepts. (Set numerator = 0 and solve for x) 2. Find and plot the yintercepts. (Let x = 0 and solve
More informationVector Calculus. 1 Line Integrals
Vector lculus 1 Line Integrls Mss problem. Find the mss M of very thin wire whose liner density function (the mss per unit length) is known. We model the wire by smooth curve between two points P nd Q
More informationSynchronous Machine Parameter Measurement
Synchronous Mchine Prmeter Mesurement 1 Synchronous Mchine Prmeter Mesurement Introduction Wound field synchronous mchines re mostly used for power genertion but lso re well suited for motor pplictions
More informationMAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNELSHAPED NODES
MAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNELSHAPED NODES Romn V. Tyshchuk Informtion Systems Deprtment, AMI corportion, Donetsk, Ukrine Emil: rt_science@hotmil.com 1 INTRODUCTION During the considertion
More informationSLOVAK UNIVERSITY OF TECHNOLOGY Faculty of Material Science and Technology in Trnava. ELECTRICAL ENGINEERING AND ELECTRONICS Laboratory exercises
SLOVAK UNIVERSITY OF TECHNOLOGY Fulty of Mteril Siene nd Tehnology in Trnv ELECTRICAL ENGINEERING AND ELECTRONICS Lbortory exerises Róbert Riedlmjer TRNAVA 00 ELECTRICAL ENGINEERING AND ELECTRONICS Lbortory
More informationSkills Practice Skills Practice for Lesson 4.1
Skills Prctice Skills Prctice for Lesson.1 Nme Dte Tiling Bthroom Wll Simplifying Squre Root Expressions Vocbulry Mtch ech definition to its corresponding term. 1. n expression tht involves root. rdicnd
More information7KH4XLQFXQ; Earth/matriX SCIENCE IN ANCIENT ARTWORK. Charles William Johnson
Erth/mtriX SCIENCE IN ANCIENT ARTWORK 7KH4XLQFXQ; Chrles Willim Johnson Erth/mtriX P.O. Box 231126, New Orlens, Louisin, 701831126 2001 Copyrighted y Chrles Willim Johnson www.erthmtrix.om www.theperioditle.om
More informationMath 1432 DAY 37 Dr. Melahat Almus If you me, please mention the course (1432) in the subject line.
Math 1432 DAY 37 Dr. Melahat Almus almus@math.uh.edu If you email me, please mention the course (1432) in the subject line. Bubble in PS ID and Popper Number very carefully. If you make a bubbling mistake,
More informationSpiral Tilings with Ccurves
Spirl Tilings with curves Using ombintorics to Augment Trdition hris K. Plmer 19 North Albny Avenue hicgo, Illinois, 0 chris@shdowfolds.com www.shdowfolds.com Abstrct Spirl tilings used by rtisns through
More informationSPECIAL EDITION. Spring 2012 Ezine. where crafty is contagious
Spring 2012 Ezine SPECIAL EDITION www.clubchiccircle.com where crfty is contgious shmrock sttionery It is so esy to mke these festive homemde crds! Mke homemde stmp from the end of n pencil erser. With
More informationCHAPTER 2 LITERATURE STUDY
CHAPTER LITERATURE STUDY. Introduction Multipliction involves two bsic opertions: the genertion of the prtil products nd their ccumultion. Therefore, there re two possible wys to speed up the multipliction:
More informationCHAPTER 10 Conics, Parametric Equations, and Polar Coordinates
CHAPTER Conics, Parametric Equations, and Polar Coordinates Section. Conics and Calculus.................... Section. Plane Curves and Parametric Equations.......... 8 Section. Parametric Equations and
More informationCompared to generators DC MOTORS. Back e.m.f. Back e.m.f. Example. Example. The construction of a d.c. motor is the same as a d.c. generator.
Compred to genertors DC MOTORS Prepred by Engr. JP Timol Reference: Electricl nd Electronic Principles nd Technology The construction of d.c. motor is the sme s d.c. genertor. the generted e.m.f. is less
More informationEffect of Highspeed Milling tool path strategies on the surface roughness of Stavax ESR mold insert machining
IOP Conference Series: Mterils Science nd Engineering PAPER OPEN ACCESS Effect of Highspeed Milling tool pth strtegies on the surfce roughness of Stvx ESR mold insert mchining Relted content  Reserch
More informationSection 6.1 Law of Sines. Notes. Oblique Triangles  triangles that have no right angles. A c. A is acute. A is obtuse
Setion 6.1 Lw of Sines Notes. Olique Tringles  tringles tht hve no right ngles h is ute h is otuse Lw of Sines  If is tringle with sides,, nd, then sin = sin = sin or sin = sin = sin The miguous se (SS)
More informationChapter 3, Part 4: Intro to the Trigonometric Functions
Haberman MTH Section I: The Trigonometric Functions Chapter, Part : Intro to the Trigonometric Functions Recall that the sine and cosine function represent the coordinates of points in the circumference
More informationMATH 255 Applied Honors Calculus III Winter Homework 1. Table 1: 11.1:8 t x y
MATH 255 Applied Honors Calculus III Winter 2 Homework Section., pg. 692: 8, 24, 43. Section.2, pg. 72:, 2 (no graph required), 32, 4. Section.3, pg. 73: 4, 2, 54, 8. Section.4, pg. 79: 6, 35, 46. Solutions.:
More informationRegular languages can be expressed as regular expressions.
Regulr lnguges cn e expressed s regulr expressions. A generl nondeterministic finite utomton (GNFA) is kind of NFA such tht: There is unique strt stte nd is unique ccept stte. Every pir of nodes re connected
More informationElectronic Circuits I  Tutorial 03 Diode Applications I
Electronic Circuits I  Tutoril 03 Diode Applictions I 1 / 9  T & F # Question 1 A diode cn conduct current in two directions with equl ese. F 2 When reversebised, diode idelly ppers s short. F 3 A
More informationPENNSYLVANIA. List properties, classify, draw, and identify geometric figures in two dimensions.
Know: Understand: Do: CC.2.3.4.A.1  Draw lines and angles and identify these in twodimensional figures. CC.2.3.4.A.2  Classify twodimensional figures by properties of their lines and angles. CC.2.3.4.A.3
More information2.3 Quick Graphs of Linear Equations
2.3 Quick Graphs of Linear Equations Algebra III Mr. Niedert Algebra III 2.3 Quick Graphs of Linear Equations Mr. Niedert 1 / 11 Forms of a Line SlopeIntercept Form The slopeintercept form of a linear
More informationChapter 5 Analytic Trigonometry
Section 5. Fundmentl Identities 03 Chter 5 Anlytic Trigonometry Section 5. Fundmentl Identities Exlortion. cos / sec, sec / cos, nd tn sin / cos. sin / csc nd tn / cot 3. csc / sin, cot / tn, nd cot cos
More informationTheme: Don t get mad. Learn mod.
FERURY When 1 is divided by 5, the reminder is. nother wy to sy this is opyright 015 The Ntionl ouncil of Techers of Mthemtics, Inc. www.nctm.org. ll rights reserved. This mteril my not be copied or distributed
More informationChapter 5 Analytic Trigonometry
Section 5. Fundmentl Identities 03 Chter 5 Anlytic Trigonometry Section 5. Fundmentl Identities Exlortion. cos > sec, sec > cos, nd tn sin > cos. sin > csc nd tn > cot 3. csc > sin, cot > tn, nd cot cos
More informationMath 122: Final Exam Review Sheet
Exam Information Math 1: Final Exam Review Sheet The final exam will be given on Wednesday, December 1th from 81 am. The exam is cumulative and will cover sections 5., 5., 5.4, 5.5, 5., 5.9,.1,.,.4,.,
More informationAnalytic Geometry ةيليلحتلا ةسدنھلا
Analytic Geometry الھندسة التحليلية نظام اإلحداثيات الديكارتي 11 Cartesian Coordinate System The Cartesian coordinate system, or the rectangular coordinate system, is a geometrical system that is used
More informationAnalytic Geometry. The x and y axes divide the Cartesian plane into four regions called quadrants.
Analytic Geometry الھندسة التحليلية نظام اإلحداثيات الديكارتي 11 Cartesian Coordinate System The Cartesian coordinate system, or the rectangular coordinate system, is a geometrical system that is used
More information& Y Connected resistors, Light emitting diode.
& Y Connected resistors, Light emitting diode. Experiment # 02 Ojectives: To get some hndson experience with the physicl instruments. To investigte the equivlent resistors, nd Y connected resistors, nd
More informationPearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world
Person Edution Limited Edinurgh Gte Hrlow Essex M20 2JE Englnd nd ssoited ompnies throughout the world Visit us on the World Wide We t: www.personed.o.uk Person Edution Limited 2014 ll rights reserved.
More informationThe Discussion of this exercise covers the following points:
Exercise 4 Bttery Chrging Methods EXERCISE OBJECTIVE When you hve completed this exercise, you will be fmilir with the different chrging methods nd chrgecontrol techniques commonly used when chrging NiMI
More informationIn this section, we find equations for straight lines lying in a coordinate plane.
2.4 Lines Lines In this section, we find equations for straight lines lying in a coordinate plane. The equations will depend on how the line is inclined. So, we begin by discussing the concept of slope.
More informationThreePhase Synchronous Machines The synchronous machine can be used to operate as: 1. Synchronous motors 2. Synchronous generators (Alternator)
ThreePhse Synchronous Mchines The synchronous mchine cn be used to operte s: 1. Synchronous motors 2. Synchronous genertors (Alterntor) Synchronous genertor is lso referred to s lterntor since it genertes
More informationSamantha s Strategies page 1 of 2
Unit 1 Module 2 Session 3 Smnth s Strtegies pge 1 of 2 Smnth hs been working with vriety of multiplition strtegies. 1 Write n expression to desribe eh of the sttements Smnth mde. To solve 18 20, I find
More informationSTUDY GUIDE, CALCULUS III, 2017 SPRING
TUY GUIE, ALULU III, 2017 PING ontents hpter 13. Functions of severl vribles 1 13.1. Plnes nd surfces 2 13.2. Grphs nd level curves 2 13.3. Limit of function of two vribles 2 13.4. Prtil derivtives 2 13.5.
More informationThe Sine Function. Precalculus: Graphs of Sine and Cosine
Concepts: Graphs of Sine, Cosine, Sinusoids, Terminology (amplitude, period, phase shift, frequency). The Sine Function Domain: x R Range: y [ 1, 1] Continuity: continuous for all x Increasingdecreasing
More informationEE Controls Lab #2: Implementing StateTransition Logic on a PLC
Objective: EE 44  Controls Lb #2: Implementing Stternsition Logic on PLC ssuming tht speed is not of essence, PLC's cn be used to implement stte trnsition logic. he dvntge of using PLC over using hrdwre
More informationApplication Note. Differential Amplifier
Appliction Note AN367 Differentil Amplifier Author: Dve n Ess Associted Project: Yes Associted Prt Fmily: CY8C9x66, CY8C7x43, CY8C4x3A PSoC Designer ersion: 4. SP3 Abstrct For mny sensing pplictions, desirble
More informationEnglish Printed in Taiwan XG
COVER 14 C M Y K English Printed in Tiwn XG0091001 Congrtultions on choosing our product! Thnk you very much for purchsing our product. To otin the est performnce from this device nd to ensure sfe nd
More informationSinusoidal Steady State Analysis
CHAPTER 8 Snusodl Stedy Stte Anlyss 8.1. Generl Approch In the prevous chpter, we hve lerned tht the stedystte response of crcut to snusodl nputs cn e otned y usng phsors. In ths chpter, we present mny
More informationUnit 8 Trigonometry. Math III Mrs. Valentine
Unit 8 Trigonometry Math III Mrs. Valentine 8A.1 Angles and Periodic Data * Identifying Cycles and Periods * A periodic function is a function that repeats a pattern of y values (outputs) at regular intervals.
More information